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ACPI implementation on FreeBSD

Takanori Watanabe
Kobe University

Abstract

Prior to the introduction of the Advanced Configura-
tion and Power Management Interface (ACPI), PCs did
not have a unified standard mechanism that allowed
the operating system to enumerate, configure, and man-
age the power usage and thermal properties of built-
in hardware devices. Instead, these devices were ei-
ther left unmanaged, or they were managed by spe-
cial BIOS-level code such as Plug-and-Play BIOS (PnP
BIOS), Advanced Power Management BIOS (APM),
or other vendor-specific BIOS code. These firmware-
driven methods increase firmware costs, and the result-
ing BIOS code is difficult to alter or debug. Device
management issues are becoming more important, es-
pecially in moble computing environments where fine-
grain power management is often necessary. ACPI re-
places PnP BIOS, APM, and a number of ad hoc meth-
ods while providing a management framework that al-
lows increased flexibility in hardware design. Unfor-
tunately, the increased power and flexibility of ACPI
comes with a cost: it requires substantial software sup-
port from the operating system kernel. In this paper we
describe ACPI, how it is implemented in FreeBSD, and
the lessons we learned from working with ACPI.

1 Introduction

Almost all modern computer system hardware allows its
power usage to be managed and its temperature to be
monitored and kept at the appropriate level. This al-
lows users to achieve the best performance from a sys-
tem for a given level of power usage. This is especially
important for battery-driven mobile platforms where un-
necessary use of power reduces battery life and thus re-
duces the amount of work that can be done before a
recharge is necessary. It is also useful in desktop envi-
ronments where devices such as computer monitors and
disk drives can be powered down during idle times to
reduce energy consumption.

Unfortunately, in the typical PC most of the software
that configures and manages the power and thermal en-
vironment within the computer is locked up within the
BIOS. In addition, unless a power management device
is attached to a PnP bus (e.g. PCI), the operating system
has no easy way to detect, configure, or manage it. For
example, mechanisms such as ISA PnP are usually used
to enumerate add-on ISA cards rather than for on-board
devices. Systems like PnP BIOS can be used to enumer-
ate on-board devices, but it is hard to extend in a generic
way. Also, PnP BIOS is written in 16-bit code, so the
operating system must use 16-bit emulation in order to
call PnP BIOS functions.

Prior to the introduction of the Advanced Configuration
and Power Management Interface (ACPI), the Advanced
Power Management (APM) BIOS was commonly used
for power management. In APM, the bulk of the power
management control and logic resides within the APM
BIOS code itself. APM-aware operating systems com-
municate with the APM BIOS through a fixed BIOS API
which provides basic access to BIOS functions. APM-
aware operating systems must periodically poll APM for
APM-related events that must be processed. The APM
BIOS may also make use of special system management
interrupts which are invisible to the operating system it-
self. APM provides four states: run, suspend, sleep and
soft-off.

APM has three main limitations. First, without special
vendor programs, many APM features are only available
through vendor-specific BIOS menus before the operat-
ing system is loaded. For example, the amount of con-
sole idle time required before powering down the video
display is usually configured this way. Also, with APM,
the number of power management configurations are
fixed by the BIOS vendor. For example, the APM BIOS
may always slow the CPU clock or power down other
devices (e.g. networking card) when powering down the
monitor. Since this is under control of the BIOS, there is
no way to change the policy without changing the BIOS.

Second, APM is BIOS-level code that operates outside
of the scope of the operating system. This make develop-
ing and debugging APM code a challenge. It also means



that users can only fix bugs in their APM BIOS by flash-
ing a new one into ROM. Flashing a new BIOS is a dan-
gerous operation because if the BIOS fails, the system
may well become useless.

Third, as APM is vendor-specific, efforts to develop and
maintain the complex APM BIOS code are duplicated
across the vendors that use it. This is wasteful.

ACPI addresses the limitations of APM and other con-
figuration mechanisms by unifying all device manage-
ment within the operating system kernel rather than hav-
ing BIOS code make most of the decisions. Thus, ACPI
is said to allow “operating system directed” power and
thermal management that is more flexible than other
mechanisms. The cost of this flexibility is the extra
complexity required in the kernel to support ACPI. In
this paper we describe ACPI, how it is implemented
in FreeBSD, and the lessons we learned from working
with ACPI. In Section 2 we describe the general archi-
tecture of ACPI. Section 3 explains the architecture of
the FreeBSD ACPI implementation and its impact on the
rest of the kernel. Section 4 contains related work, and
Section 5 has our conclusions and future work.

2 ACPI Architecture

The ACPI standard [1] was developed by Intel, Toshiba,
and Microsoft and has been adopted by most PC manu-
facturers. Figure 1 shows the main components of a sys-
tem that uses ACPI. At the lower level, the ACPI stan-
dard defines a set of tables that describe the hardware
platform, a BIOS API for low-level management oper-
ations, and a pre-defined set of registers. In the upper
level, the operating system contains some core software
and drivers used to communicate with APCI in addition
to the usual device framework and drivers used to man-
age non-ACPI devices. In this section we examine both
levels of the ACPI architecture.

2.1 ACPI Specified Components

The ACPI Specification defines three types of compo-
nents:

ACPI tables: The ACPI tables are the central data
structure of an ACPI-based system. They contain
definition blocks that describe all the hardware that
can be managed through ACPI. These definition
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Figure 1: ACPI Architecture

blocks include both data and machine-independent
byte-code that is used to perform hardware man-
agement operations.

ACPI BIOS: The ACPI BIOS is a small BIOS that per-
forms basic low-level management operations on
the hardware. These operations include code to
help boot the system and to put the system to sleep
or wake it up. Note that the ACPI BIOS is much
smaller than an APM BIOS because most of the
management functions have moved into the operat-
ing system and ACPI tables.

ACPI registers: The ACPI registers are a set of hard-
ware management registers defined by the ACPI
specification. The address of these registers is lo-
cated through definition blocks in the ACPI tables.
Note that hardware designers may provide addi-
tional management registers beyond the ones de-
fined in the ACPI specification. These additional
registers can be located and accessed through the
byte-code stored in the device-specific part of the
ACPI tables.

When an ACPI-based system is powered up, before the
operating system is loaded the ACPI BIOS places the
initial ACPI tables in memory. Since the ACPI tables are
typically too large to put in the 128KB BIOS memory
area, the ACPI BIOS obtains a physical memory map
of the system in order to allocate space for the ACPI
tables. When an ACPI-aware operating system kernel
is started, it search for a small data structure within the
BIOS memory area. If a valid structure is found (e.g. if



its checksum and signature match) then the kernel uses
this structure to obtain a pointer to the ACPI tables and
memory map. This information is used by the kernel
to preserve the ACPI tables when the virtual memory
system is started.

The definition blocks within the ACPI tables are stored
in a hierarchical tree-based name space. Each node in
the tree is named. Node names consist of four capital
alphanumeric characters and underscores (e.g. “FOO_,”
or “_CRS”). Namespace components are separated by
periods, and the root of the namespace is denoted with a
backslash (“n”). Names without a leading backslash are
considered to be relative to the current scope in the name
space. Node names that begin with an underscore are
reserved by the ACPI specification for describing fea-
tures. For example, nodes in the \_SB namespace refer
to busses and devices attached to the main system bus,
nodes in the \_TZ namespace relate to thermal manage-
ment, and nodes in \_GPE are associated with general
purpose ACPI events.

Except for the few operations performed by the ACPI
BIOS, almost all ACPI operations are performed in
the operating system context by interpreting machine-
independent ACPI Machine Language (AML) byte-code
stored in the ACPI tables. These blocks of AML are
called methods. AML methods are stored in specially
named nodes in the ACPI namespace. For example, the
name _PS0 is reserved for storing AML methods that
evaluate a device’s power requirements in the “D0” state
(device fully on). Thus the node \_SB.PCI0.CRD0.
_PS0 contains an AML _PS0method for the CRD0 de-
vice on the system’s PCI0 bus.

AML is usually compiled from human-readable ACPI
Source Language (ASL). Figure 2 shows an example
block of ASL code for thermal management that de-
fines four named data elements and two methods. The
“Scope” operator defines what part of the ACPI names-
pace the contained block of code resides in. The “Ther-
malZone” operator defines a object representing a re-
gion of thermal control. The “Device” operator defines
a device object, and the “PowerSource” operator de-
fines a power switch object. The “OperationRegion” and
“Field” operators are used to define blocks of registers
and fields within them, respectively. The “Name” and
“Method” operators define data and program elements
belonging to their parent objects. For example, the first
“Name” in the figure defines \_TZ.TMZN._AC0 (the
fan high-speed threshold) to be the integer 3272, which
means 327.2 K. The “_ON” method defined in the figure
contains code to turn the fan on. A graphical represen-
tation of the namespace defined in Figure 2 is shown in

Scope(\_TZ){
ThermalZone(TMZN){

Name(_AC0, 3272)
Name(_AL0, Package{FAN})
....

}
Device(FAN){

Name(_HID, 0xb00cd041)
Name(_PR0, Package{PFAN})

}
OperationRegion(FANR,SystemIO,

0x8000, 0x10)
Field(FANR, ByteAcc, NoLock,

Preserve){
FCTL, 8

}
PowerSource(PFAN, 0, 0){

Method(_ON){
Store(0x4,FCTL)

}
Method(_OFF){

Store(0x0,FCTL)
}

}
}

Figure 2: Example ASL Code

Figure 3.

In the next three subsections we describe ACPI’s config-
uration, power management, and thermal management
subsystems.

2.1.1 Configuration

The ACPI namespace contains a tree of devices attached
to the system. ACPI-aware operating systems walk this
tree to enumerate devices and gain access to the device’s
data and control methods. In the ACPI namespace, an
ACPI device description consists of a device object node
and its children. Common children of device nodes in-
clude:

_ADR: a bus-specific address. For example, this could
be a PCI device and function number.

_HID: the EISA ID of an on-board device. This is used
to identify the device.

_UID: the unit number of an on-board device. This is
used to distinguish between same kind of device.
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_CRS: the current resource settings. This method pro-
duces a byte stream that is similar to a PnP resource
encoding.

_PRS: the possible resource settings. This method also
produces a byte stream similar to a PnP resource
encoding.

_SRS: set resource settings. This method takes a PnP-
encoded byte stream and uses it to set the device’s
configuration.

Note that the operating system accesses device data
and methods through the ACPI-CA software layer (de-
scribed in Section 2.2).

2.1.2 ACPI Power Management

Hardware power management events trigger an OS-
visible interrupt called a “system control interrupt”
(SCI). Operating systems handle simple SCI interrupts
(e.g. fixed-feature power button state change) directly.
Complex SCI interrupts are are handled by the OS using
AML code associated with the interrupt. For example,
consider what happens when a “sleep” SCI interrupt oc-
curs. The kernel must first save hardware state. The
kernel then calls the \_PTS (prepare to sleep) method.
Finally, it puts the system to sleep by writing the appro-
priate value to an ACPI register.

In ACPI there are six power states: S0, S1, S2, S3, S4,
and S5. These states are defined as follows:

S0: the run state. In this state, the machine is fully run-
ning.

S1: the suspend state. In this state, the CPU will sus-
pend activity but retain its contexts.

S2 and S3: sleep states. In these states, memory con-
texts are held but CPU contexts are lost. The
differences between S2 and S3 are in CPU re-
initialization done by firmware and device re-
initialization.

S4: a sleep state in which contexts are saved to disk.
The context will be restored upon the return to S0.
This is identical to soft-off for hardware. This state
can be implemented by either OS or firmware.

S5: the soft-off state. All activity will stop and all con-
texts are lost.

In addition to managing transitions between system
power states, ACPI can also manage the power state of
individual devices to a fine-grained level. For example,
if two devices share the same power line, that informa-
tion can be encoded in the ACPI tables in such a way
that the power line is active only if one or both of the
devices are in use.

2.1.3 Thermal Management

ACPI supports operating system directed thermal man-
agement. Prior to ACPI there was no unified interface
for thermal management (e.g. APM did not support it).
On some systems the platform specific BIOS code han-
dles thermal management, but this is invisible to the op-
erating system and few OS developers noticed it. Ther-
mal management is becoming more important important
as system efficiency increases and the system gets hotter
when working.

The ACPI thermal management subsystem provides a
way to get the current temperature, and it provides hints
to control thermal policy. The thermal policy infor-
mation includes information on how to get the system
cooler and at what point the cooling method should be
invoked. There are two ways to cool the system down:
active cooling, which activates cooling devices such as
fans, and passive cooling, in which the CPU operation
slows down to decrease heat generation.

Thermal management is controlled in the ThermalZone
section of the AML namespace. Note that in ACPI, all
temperatures are in tenths of degrees kelvin. Important



sections of the thermal management part of the ACPI
namespace include:

_TMP: gets the current temperature.

_ACx: the temperature at which the system should
switch to active cooling mode “x.”

_ALx: a list of objects that should be active when the
system is in cooling mode “x.”

_CRT: the temperature at which we should halt the en-
tire system.

_PSV: the temperature at which the system should
switch to passive cooling mode.

_PSL: a list of objects (typically the CPU) that should
be slowed in passive cooling mode.

_SCP: a method that allows the operating system to set
the cooling policy.

_TCx: a parameter for passive cooling mode “x.”

Note that in the event of a thermal emergency (e.g. a bug
in ACPI software), ACPI allows the hardware to take
over thermal management in order to protect the hard-
ware from damage.

2.2 ACPI Component Architecture (ACPI-CA)

An ACPI-aware operating system must include code that
accesses the ACPI BIOS, registers, and tables. It must
also include an AML byte-code interpreter. This upper
layer of core ACPI software is shown in Figure 1. Intel
has implemented an OS-independent implementation of
this layer of software called ACPI Component Architec-
ture or ACPI-CA [2]. ACPI-CA is used by many open
source operating systems including FreeBSD and Linux.

ACPI-CA provides a high-level ACPI API to the operat-
ing system. The OS uses this API to implement power
management, device configuration, and thermal man-
agement. All fixed features and some access to AML
names are wrapped by the exported function. But some
ACPI-specific devices have to access ACPI namespace.
The ACPI-CA API is shown in Table 1.

Operating systems that use ACPI-CA must provide it
with some basic low-level functions. Intel has imple-
mented the low-level part for Linux. A list of these func-
tions is shown in Table 2.

One of the main user-visible differences between
FreeBSD ACPI and Linux ACPI is the user interface.
FreeBSD uses sysctl to export ACPI-related kernel vari-
ables, while Linux uses the procfs /proc filesystem to
export them.

3 Design of FreeBSD ACPI

In this section we describe how we made the FreeBSD
kernel ACPI-aware. We first implemented our own ver-
sion of the ACPI core software (we later switched to
ACPI-CA). We then addressed the issues of ACPI device
enumeration, supporting ACPI sleep modes, and ACPI
thermal management.

3.1 Our ACPI Core Software Implementation

In September 1999 we started writing our own ACPI
core software implementation, including an AML exe-
cution environment. The implementation was based on
Doug Rabson’s ACPI disassembler and our ACPI data
analyzing tool.

We first wrote a ACPI memory recognition routine to
detect and preserve the ACPI tables. We then wrote a
process that could run AML methods manually (e.g. sus-
pend and wakeup) based on somewhat incomplete ASL
output. This allowed us to enter power state S1 and also
to shutdown a machine by pushing the power button.

We also wrote an AML interpreter in user space by
merging the namespace functions from our analyzing
tool into the ACPI disassembler and adding a memory
management module to it. After this was implemented
we merged the AML interpreter module into a kernel
driver and then we had a basic working version of power
management.

While we were working out the bugs in our in-kernel
AML interpreter, we noticed that ACPI-CA software
from Intel had a suitable license to merge into FreeBSD.
As we were preparing to merge our ACPI into the main
branch of the FreeBSD source repository we read the
ACPI-CA implementation. We then decided to switch to
ACPI-CA using glue code that we wrote. The reason we
switched was that ACPI-CA is an OS-independent im-
plementation so we can share and benefit from feedback
from other groups. While the ACPI-CA implementation
is larger, it is also more complete and well documented.



Function Class Functions
ACPI subsystem manage-
ment

AcpiInitializeSubsystem, AcpiEnableSubsystem, AcpiTerminate, AcpiSubsys-
temStatus, AcpiDisable, AcpiGetSystemInfo, AcpiFormatException, AcpiPurge-
CachedObjects

memory management AcpiAllocate, AcpiFree
ACPI table management AcpiFindRootPointer, AcpiLoadTables, AcpiLoadTable, AcpiUnloadTable,

AcpiGetTableHeader, AcpiGetTable AcpiGetFirmwareTable,
namespace interface AcpiWalkNamespace, AcpiGetDevices, AcpiGetName, AcpiGetHandle, AcpiAt-

tachData, AcpiDetachData, AcpiGetData
object manipulation AcpiEvaluateObject, AcpiGetObjectInfo, AcpiGetNextObject, AcpiGetType,

AcpiGetParent
event handler interface AcpiInstallFixedEventHandler, AcpiRemoveFixedEventHandler, AcpiInstall-

NotifyHandler, AcpiRemoveNotifyHandler, AcpiInstallAddressSpaceHandler,
AcpiRemoveAddressSpaceHandler, AcpiInstallGpeHandler, AcpiAcquireGlobal-
Lock, AcpiReleaseGlobalLock, AcpiRemoveGpeHandler, AcpiEnableEvent, Ac-
piDisableEvent, AcpiClearEvent, AcpiGetEventStatus,

resource interfaces AcpiGetCurrentResources, AcpiGetPossibleResources, AcpiSetCurrentRe-
sources, AcpiGetIrqRoutingTable,

hardware interface AcpiSetFirmwareWakingVector, AcpiGetFirmwareWakingVector, AcpiEnter-
SleepStatePrep, AcpiEnterSleepState, AcpiLeaveSleepState

Table 1: ACPI-CA API

So our implementation is no longer in the kernel, but it
still remains in user-level tools such as amldb(8) and
acpidump(8).

3.2 FreeBSD ACPI Device Enumeration

FreeBSD uses a configuration system known as “new-
bus.” [5] In this system, an opaque “device t” type
object represents each bus/device. There are functions
to manipulate device t objects. These functions (e.g.
probe, attach, allocate resources) are device specific.
They are invoked through a function table that acts as an
associative array. The array key is called a method. This
is the same technique used in the BSD virtual filesystem
layer (VFS). Each device has a parent device, except for
the root device. Each device t object has two device-
specific structures: “ivar” and “softc.”

The softc structure is a device-specific structure used to
store a device’s state. Each driver determines the size
of its own softc structure, and the new-bus framework
allocates memory for the softc structures as devices are
configured.

The “ivar” structure is used by a parent device to man-
age its children. This variable should not be accessed
from the child device directly, but via the parent device
method. The child device uses this method to obtain

bus-specific values and resources. An example of this
method is BUS READ—WRITE IVAR, which is used
to access a bus-specific value. This function is usually
wrapped by macro-definition in a bus-specific header
file.

PnP devices are processed by a “pnp” or “pnpbios”
driver that provides only the DEVICE IDENTIFY
method. The DEVICE IDENTIFY method is usually
called from a parent bus’s routine, after the bus was
probed and before the actual attach process, via the
bus generic probe function. This method records the de-
vice’s logical id in the ISA bus-specific ivars structure.
This value is then used when the isa get logicalid macro
is invoked. This macro calls the BUS READ IVAR bus
method to get the ID.

In FreeBSD ACPI, all device objects, thermal zone ob-
jects, and some other fixed features are added as child
devices in the acpi bus attach code. This is done with
the “device add child” function. Once an ACPI child
device is added, this function sets ACPI object handles
in the ivars. The probe routine check to see whether the
_HID of the device will match the driver. If it does, then
the attach routine calls the resource parser to get the re-
sources the driver will use.

The Host-PCI bus bridge appears in the ACPI names-
pace and is treated as an ACPI-specific device. The
driver will call the machine-dependent PCI bridge func-



Function Class Functions
library initialization AcpiOsInitialize, AcpiOsTerminate
semaphore control AcpiOsCreateSemaphore, AcpiOsDeleteSemaphore, AcpiOsWaitSemaphore,

AcpiOsSignalSemaphore
memory allocation AcpiOsAllocate, AcpiOsCallocate, AcpiOsFree, AcpiOsMapMemory, AcpiO-

sUnmapMemory, AcpiOsGetPhysicalAddress
interrupt control AcpiOsInstallInterruptHandler, AcpiOsRemoveInterruptHandler
process control AcpiOsGetThreadId, AcpiOsQueueForExecution, AcpiOsSleep, AcpiOsStall
device access AcpiOsReadPort, AcpiOsWritePort, AcpiOsReadMemory, AcpiOsWriteMem-

ory, AcpiOsReadPciConfiguration, AcpiOsWritePciConfiguration, AcpiOsRead-
able, AcpiOsWritable

signal/timer control AcpiOsGetTimer, AcpiOsSignal
diagnostic functions AcpiOsPrintf, AcpiOsVprintf, AcpiOsGetLine, AcpiOsDbgAssert

Table 2: OS functions provided to ACPI-CA
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Figure 4: FreeBSD device tree corresponding to the
ACPI name space

tion to implement a bus-bridge function and manage PCI
interrupt routing with ACPI. In ACPI, PCI routing infor-
mation is in a _PRT object. A _PRT object contains an
array of structured objects, each of which has informa-
tion about the slot, pin, and interrupt source. The inter-
rupt source points to the device object of the interrupt
router and assigns the interrupt resource to the device
route interrupt to the pin. The interrupt router device
object is not currently treated as a FreeBSD new-bus de-
vice. The ACPI device driver mimics some ISA-like be-
haviors. This responds to the isa get logicalid function
and answers the device logical id value, using HID ob-
ject. Figure 4 shows device tree constructed from ACPI
name space.

Prior to September 2001 a different approach was taken.

The earlier approach was closer to a PnP driver. The
“acpi isa” driver was used for this. Like a PnP driver, the
“acpi isa” driver provides only the DEVICE IDENTIFY
method.

3.3 FreeBSD ACPI Power States

In this section we describe how FreeBSD implements
ACPI power states. We start with some background of
the i386 architecture before going into the details of the
FreeBSD implementation.

3.3.1 I386 Background

To understand ACPI power states, it is important to be
familiar with i386 CPU architecture and CPU initializa-
tion. All i386 CPUs support “real mode.” Real mode is a
CPU state that is compatible with the old i8086 proces-
sor. In this mode each memory access pointer, including
the instruction pointer, is 16 bits long. This provides a
64KB address space. Segment registers are used to ex-
tend the memory address space that can be referenced
and also to separate the code, data, and stack areas. To
convert a segment-based address into a physical address,
take the segment register value and shift it left four bits
and add it to the address. The extra four bits from the
segment register allow us to reference up to 1MB of
physical memory. There are six segment registers: CS,
DS, SS, ES, FS and GS. The code segment register (CS)
is used when accessing instructions through the instruc-
tion pointer. When accessing data memory, the data seg-
ment register (DS) is used by default. Stack operations
use the stack segment register (SS).



When booting, the BIOS firmware passes program con-
trol to software in real mode, as described above. Most
modern operating systems do not operate in real mode.
Instead, they change the working mode from real mode
to “protected mode.” To switch to the protected mode,
the kernel must set up the GDTR register and update
control register CR0. The GDTR register points to the
global descriptor table (GDT). The GDT is used for ad-
dress translation in protected mode.

In protected mode, segment registers and some special
registers, such as TR (Task register), point to an entry
in the GDT. This entry is then used when translating ad-
dresses. The current mode of the CPU is determined by
the mode-select flag in the CR0 register. Once the sys-
tem is in protected mode, kernels that wish to use paging
for virtual memory must enable it. To enable paging, the
kernel has to set the CR3 register to point to the page
table structures to use and then change the mode flag in
the CR0 register.

3.3.2 FreeBSD ACPI Sleeping States

The S1 state is implemented simply by calling an ACPI-
CA function after sending the device-sleeping request to
the device driver. This ACPI-CA function uses the ACPI
registers to stop the system. When the system wakes
up from S1 sleep, it can immediately resume process-
ing from where it was just before the sleep request was
made.

The S2 and S3 states do not preserve the CPU context.
So the FreeBSD kernel is required to do a CPU context
save is required before entering the sleep state.

Since entering and exiting the S3 sleep state requires the
use of real-mode, the kernel must place a “resume han-
dler” somewhere in the first 1MB of memory so that it
can be addressed from real mode. We use a perl script
along with objcopy, hexdump, and nm to generate code.
With this script, a real-mode executable object is turned
into a header file with an array of chars and some defini-
tions that point to the offset of the symbol in the object
file. When the system boots the memory for the resume
handler is allocated in the first 1MB as early as possi-
ble using a special memory allocator. The ACPI driver
attach routine then copies and links in the resume han-
dler code to the newly allocated memory area. Finally,
the physical address of the resume handler is recorded in
the ACPI driver software context.

When S3 is invoked, the physical address of the resume
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Figure 5: Memory mapping transition

handler is installed in the ACPI firmware context via an
ACPI-CA function. The memory mapping table of the
current process is used to create an identity mapping
where a process’ virtual address maps directly to the
hardware’s physical address. This mapping is needed
to restart paging when the system resumes. Next, the
sleeping procedure saves all the registers. Special regis-
ters (segment selectors, GDTR, TR, LDTR, IDTR, CR2,
CR3, CR4) are put into the appropriate places so they
can be restored later by the real mode wake-up code.
Other registers are saved in static variables in the kernel
data area.

When the machine wakes up the firmware passes con-
trol, in real mode, to the resume handler. This is done
by placing the top 16 bits of the physical address of the
resume handler in the code segment register and placing
the lower 4 bits in the instruction pointer. The handler
sets the other segment registers to the same value as code
segment registers. The CPU state can then be switched
to protected mode by changing CR0. At this point the
special registers are restored. Note that before restoring
the task register, the task selector entry in GDT should
be fixed up so that it does not become marked as a busy
task selector.

After the special registers have been restored, then pag-
ing can be reenabled by setting the appropriate bit in
CR0. After the paging has started, the instruction pointer
is still pointing to an identity-mapped page. Next, the
handler passes the control back to its calling routine
which resides in normal kernel virtual memory. Finally,
the stack pointer and remaining preserved registers are
restored. Figure 5 shows memory mapping transition.

After returning to the sleep code, hardware devices



should be restored. First, the interrupt controller must be
reprogrammed because some device drivers and ACPI
itself depend on functioning interrupts. To do this,
we split the isa defaultirq()@intr machdep.c function
into two. Now isa defaultirq() installs a stray inter-
rupt handler, and then calls init i8259 to initialize the
interrupt controller. We call the resumption function
icu reinit()@intr machdep, and then we call the routine
init i8259(). We then check the interrupt handler and
enable the interrupt if the handler is not a stray inter-
rupt handler. After this call, we use the routine call DE-
VICE RESUME method of root bus to request that the
device drivers resume the device, after which normal op-
eration resumes.

3.4 FreeBSD ACPI Thermal Management

The thermal zone is represented as a device in FreeBSD.
The FreeBSD thermal zone device driver exports ther-
mal information using the sysctl interface. Passive cool-
ing is not yet implemented, though CPU throttling is im-
plemented. The device driver checks the thermal zone
when a tunable polling time expires and also when ther-
mal zone Notify AML opcode are evaluated. Notify op-
codes are typically found in the general purpose inter-
rupt handlers or in the query handler for ACPI-capable
embedded controllers. ACPI routines check the ther-
mal zone by fetching the temperature using the thermal
zone _TMPmethod and comparing its value to the _ACx
value. If the _ACx value is smaller than current tem-
perature, then we change thermal mode to the largest x
value. If the new thermal state value is larger than old
one, we activate the device object listed in the _ALx
object where x is the new state number, otherwise we
deactivate them.

4 Related Work

In this section we compare FreeBSD ACPI to Linux
ACPI and we examine the relationship between Open
Firmware and ACPI.

4.1 Comparison with Linux ACPI

As both FreeBSD and Linux use Intel ACPA-CA, the ba-
sic architecture of their ACPI subsystems is similar. The
major differences are in user interface and bus enumera-
tion. For user interface, FreeBSD uses sysctls, which are

variables that kernel exports. Linux uses the “procfs”
filesystem. While both system have procfs, FreeBSD
uses procfs purely for query process information. The
sysctl interface is interface provides a tree of for ker-
nel tunable variable. We export some ACPI informa-
tion such as temperature temperature to userspace via
the sysctl interface.

The ACPI-CA code is currently distributed with a
user-space ACPI interpreter which is the counterpart
of FreeBSD’s amldb(8) and ASL assembler. But
ACPI-CA has no disassembler tool (like FreeBSD’s
acpidump(8)) that produces ASL compatible with
the ACPI-CA ASL assembler.

In Linux, there were no generalized ways to create de-
vice trees, so Intel used a “bus manager” mechanism to
recognize ACPI-specific devices. The bus manager ab-
straction was introduced when the ACPI-CA was devel-
oped and build under WIN32. We decided not to use
it early in our development process because it collides
with the FreeBSD driver recognition mechanism. But
the Intel Linux-ACPI team recognized the necessity of
the unified mechanism to configure devices (including
non-ACPI ones), so they proposed a mechanism called
“Linux Driver Model.” This mechanism will be intro-
duced in next major version of the Linux kernel (2.5).

FreeBSD uses a three stage boot loader. Currently
the FreeBSD boot loader detects ACPI by scanning the
BIOS memory and loads the acpi kernel module au-
tomatically if it is needed. Linux use initrd mecha-
nism to do early configuration. Initrd is special memory
filesystem loaded by the boot loader. This file system is
mounted as root for initial configuration such as mod-
ule loading. After the configuration is finished, the file
system is unmounted or moved to another mount point.

4.2 Comparison with Open Firmware

Open Firmware was originally developed by Sun Mi-
crosystems and is now standardized as IEEE 1275-
1994 [6]. It is currently used in the SPARC architec-
ture, the PowerPC architecture, and the ARM architec-
ture. Open Firmware acts as monitor that can interpret
the Forth language. It covers the boot process, device
configuration, and power management. Operation sys-
tems running on Open Firmware based machines must
implement some architecture-dependent way to access
the firmware interpreter for use in auto-configuration.

ACPI and Open Firmware are similar in that some func-



tions of the firmware are written for an interpretor. This
makes it easier to extend without breaking compatibil-
ity. But the most important difference is that ACPI byte
code is interpreted by the operating system, while Open
Firmware Forth code is interpreted by the firmware it-
self. The Open Firmware solution provides a powerful
framework to describe and extend functionally, but this
is not accepted in Intel architecture (IA32/IA64) for the
following reasons:

� Firmware space is limited for compatibility rea-
sons.

� Firmware cannot figure out all states in the devices,
which is especially needed to implement suspend
state.

� Calling firmware from 32 bit code is somewhat un-
stable in Intel architecture. There is no compatible
way to setup without calling 16bit code. And there
is no way to notify event other than polling.

5 Conclusion and Future Work

In this paper we have described ACPI, how it is imple-
mented in FreeBSD, and the lessons we learned from
working with ACPI. We believe that ACPI support will
become more important as new devices with demanding
configuration, power, and thermal management needs
become more widespread. Although we have a basic
working ACPI environment under FreeBSD there is still
lots of work left to do.

5.1 Device Enumeration Enhancement

ACPI has a hot-plugging feature, and the current PCI in-
terrupt routing code is not capable of routing interrupts
for devices that are on a PCI-PCI bridge. This will re-
quire large modification to the current device enumera-
tion scheme in ACPI. We have proposed a scheme de-
signed so that existing drivers are not modified unless
absolutely necessary. The scheme is:

1. Add a bus bridge enumerator driver (only have de-
vice identify bus method) for each bus bridge de-
vice that can be a descendant of ACPI and appear
as a namespace. In this method, add children to
the bus and register acpi name-device t table in the

acpi driver. Then evaluate _INI object after check-
ing by _STA. Then the driver install address space
handler, etc.

2. The manipulation to get ACPI HANDLE, etc., is
not done via DEVMETHOD but by a direct func-
tion call. This may require module dependency
with the acpi driver, but if the driver wants to
use ACPI HANDLE, it must depend on acpi. If
a device other than ACPI is used, it may not use
ACPI HANDLE to get information.

3. Add acpi attachment for devices that can be at-
tached to acpi directly. The acpi-pcib driver is quite
a different implement than the nexus-pcib driver.

5.2 User-land Interface

There are already some user-land interfaces in the ACPI
driver. The interface is provided in two ways: /dev/acpi
ioctl’s and hw.acpi sysctls. Currently provided interfaces
are:

� Battery charge information.

� Thermal zone information.

� CPU speed configuration.

There is a piece missing relating to the ACPI event noti-
fication system. We plan to use kqueue [7] to implement
the event notification system.

5.3 S4 Implementation

The S4 sleep state is also known as “Suspend to Disk.”
ACPI S4 implementation is achieved in two ways. The
first way is called S4 BIOS: Firmware saves the run-
ning state to disk, and the operating system should do
the same thing as S2/S3, then issue a suspend request to
BIOS via the special port that triggers a system manage-
ment interrupt. The second way to handle S4 is to have
the operating system handle the saving of state to disk.
In this scheme, the operating system should preserve all
memory contents, device contexts, and the CPU con-
text. FreeBSD includes a crash dump mechanism that
we believe can be adapted for use when implementing
OS-initiated S4 sleep.
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