
USENIX Association

Proceedings of the
FREENIX Track:

2002 USENIX Annual Technical
Conference

Monterey, California, USA
June 10-15, 2002

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



XCL : An Xlib Compatibility Layer For XCB

Jamey Sharp Bart Massey
Computer Science Department

Portland State University
Portland, Oregon USA 97207–0751

{jamey,bart}@cs.pdx.edu

Abstract

The X Window System has provided the standard graph-
ical user interface for UNIX systems for more than 15
years. One result is a large installed base of X applica-
tions written in C and C++. In almost all cases, these
programs rely on the Xlib library to manage their inter-
actions with the X server. The reference implementation
of Xlib is as old as X itself, and has been freely available
in source form since its inception: it currently is a part
of the XFree86 [xfr] distribution.

Unfortunately, Xlib suffers from a number of imple-
mentation issues that have made it unsuitable for some
classes of application. Most notably, Xlib is a large body
of code. This is of most significance on small platforms
such as hand-held computers, where permanent and tem-
porary storage are both limited, but can also have perfor-
mance disadvantages on any modern architecture due to
factors such as cache size. In addition, because of Xlib’s
monolithic nature, it is difficult to maintain.

The authors’ prior work on the X protocol C Binding
(XCB) is intended to provide a high-quality but incom-
patible replacement for Xlib. While XCB is believed
to be suitable for most new application and toolkit con-
struction, it is desirable to support the large installed
base of legacy code and experience by augmenting XCB
with an Xlib-compatible API.

This desire has led to the construction of a new library,
the Xlib Compatibility Layer (XCL), that is binary-
compatible with frequently-used portions of Xlib while
being significantly smaller and easier to maintain. Bene-
fits are demonstrated for both existing and new applica-
tions written for Xlib. In particular, the significant share
of existing knowledge and written material about Xlib
remains applicable to XCL. Also, XCL can significantly
ease the migration path from Xlib to XCB.

1 The X Window System

The X Window System [SG86] is the de facto standard
technology for UNIX applications wishing to provide a
graphical user interface. The power and success of the
X model is due in no small measure to its separation of
hardware control from application logic with a stable,
published client-server network protocol. In this model,
the hardware controller is considered the server, and in-
dividual applications and other components of a com-
plete desktop environment are clients.

Development of X began in 1984, and it has become a
mature and stable specification that many vendors have
implemented for their particular hardware and operat-
ing environments. There is now a huge installed base
of client applications: X is available for most modern
computer systems, and is typically the default on UNIX
systems.

To date, most client software for X has been built on top
of one or more libraries that hide various details of the
protocol, as illustrated in figure 1. Many applications are
built using a GUI toolkit, such at Xt [AS90], Qt [Dal01],
or GTK+ [Pen99]. These toolkits themselves, however,
are almost invariably built on top of Xlib [SGFR92], a
library that provides C and C++ language bindings for
the X Window System protocol. It is also not uncommon
to build applications directly atop Xlib.

2 Xlib and XCB

The authors’ recent work has included development of
a new X protocol C binding, XCB [MS01], that is in-
tended as a replacement for Xlib in new applications
and toolkits. XCB has a number of interesting features,
but the XCB API is quite different from the Xlib API:
XCB is not intended as a plug-compatible replacement
for Xlib in existing applications.

XCB and Xlib are both designed to be C library inter-
faces to the X Window System network protocol for X



Xlib

Client

Toolkit

X Server

Figure 1: Xlib’s role in the X Window System

client applications. However, XCB exchanges Xlib’s nu-
merous features for smaller size and enhanced perfor-
mance. XCB is a lower level API than Xlib: much of
the built-in functionality of Xlib (such as caching, dis-
play property management, and internationalization) is
expected to instead be implemented as separate libraries
above XCB, with XCB handling only interaction with
the X server at the protocol level.

Some of the Xlib features omitted from XCB are impor-
tant for getting reasonable performance or proper behav-
ior from an X application. Nonetheless, we believe that
these features do not belong in the core protocol library,
and should instead be built on top of XCB.

Some of the differences between Xlib and XCB are wor-
thy of detailed consideration.

2.1 Code Generation

The reference implementation of Xlib’s core X protocol
support alone consists of around 400 files comprising
about 100,000 lines of hand-written code. Though the
X protocol has a well designed mechanism for protocol
extension, and the XFree86 X server allows for reason-
ably straightforward server-side implementation of these
extensions, Xlib has not made the client-side task partic-
ularly easy.

In contrast, XCB provides a domain-specific language
for specification of the binary encoding of the core pro-
tocol and of the majority of extensions. Automated tools
translate these protocol descriptions into C implementa-
tions. The domain-specific language has significant ad-
vantages for maintenance, as well as for implementation
of new features and extensions in XCB.

Protocol descriptions may be easily verified against the
published specifications for the core X protocol and ex-
tensions. Experience with XCB has shown that a brief

inspection of the XCB protocol description for a broken
request can quickly lead to a correct fix. This benefit
is due to the language making the structure of a request
clear, while hiding implementation details in a single lo-
cation in the source: the protocol-to-C translator.

This encapsulation has also made possible the imple-
mentation of a number of useful features, including
request marshaling (described next) and tracing of re-
quests and events. Without a common nexus for imple-
mentation of these features, the effort required to imple-
ment them would have been prohibitive.

2.2 Request Marshaling

For requests that pass to the server a list of independent
items, such as a collection of arbitrary line segments,
Xlib provides a form of transparent batching known as
request marshaling. Marshaling allows client applica-
tions to draw individual lines, for example, from differ-
ent sections of code in rapid succession, without incur-
ring overhead from many similar request headers being
sent to the server with small payloads.

Most requests are unsuitable for marshaling, for any of
several reasons. If the request is expected to return a re-
ply, combining requests would cause too few replies to
be generated. Many requests send only a fixed-length
data section with their request header: in these cases,
there is generally no room to place additional data. In
some cases, requests are not idempotent, so that combin-
ing requests would result in different behavior than send-
ing the requests individually. SetClipRectangles
is one example of this case. (In this paper, we will re-
fer to X protocol requests by the name given to them
in the X protocol manual. We will refer to Xlib or
XCB functions by their function name: for example,
XSetClipRectangles.)

XCB also supports marshaling, but treats it as a request
attribute that may be specified in the description of the
binary encoding of the X protocol. Because of this de-
sign, marshaling in XCB is generically supported any-
where in the core protocol or in any extension, although
it should only be used if the conditions for correctness
given above are satisfied. In the reference implemen-
tation of Xlib, marshaling is only used in the places
where it is most likely to help: for instance, it will
marshal multiple calls to XDrawLine but not calls to
XDrawLines. While this is a wise optimization of pro-
grammer time when each function is hand-coded, XCB’s
use of automated code generation techniques allows it to
be more thorough.



2.3 Latency Hiding and Caching

XCB has an easy-to-use latency hiding mechanism in-
tended to allow client applications to get useful work
done while waiting for information to return from the
server. In XCB, this is accomplished by returning
only a placeholder for an expected reply to a server re-
quest. Acquiring the placeholder takes no more time
than would a request that does not expect a reply. The
application can then convert this placeholder into the ac-
tual reply data at any time. When the actual data is
requested the requesting thread may or may not block.
Obtaining the reply data represented by the placeholder
takes a small amount of time in most cases: it is quite
likely that a request’s reply data will already be avail-
able by the time the application asks for it.

The reference implementation of Xlib has a mechanism
for the same purpose, called an async-handler, based on
a callback model where one registered function after an-
other is called until one of the callbacks claims respon-
sibility for the data. However, use of Xlib’s mechanism
is considerably more complex.

Xlib also does extensive client-side caching. Implemen-
tation of various caches built on top of XCB is planned
as future work, but XCB does no caching. The assump-
tion is that caching can be better managed by a higher
layer, for example a toolkit (such as Xt) or a convenience
library. In some instances, caching is actually undesir-
able, either because memory is scarce or because an ap-
plication needs to know what requests it is generating.

2.4 Thread Safety

Following the successful application of threads in Java’s
Swing GUI framework, XCB has been designed from
the start with the needs of multi-threaded applications in
mind, while still supporting single-threaded client appli-
cations. While Xlib was designed to support threaded
applications, and while that support is not unusable,
there are known race conditions that cannot be elimi-
nated without changing the Xlib interface. In particu-
lar, if an application needs the protocol sequence num-
ber of the request it is making, Xlib forces it to make
the request and, without any lock held, query the last se-
quence number sent. If another thread issues a request
between these two events, the first thread will obtain the
wrong sequence number. XCB simply returns the se-
quence number from every request.

2.5 Interfaces

Xlib and XCL have different function signatures for
each request in the protocol. In some cases, such as

Xlib’s XCreateSimpleWindow, the differences are
substantial. Still, in many cases these are simple re-
orderings of the same parameters, since both libraries
provide APIs for the same X protocol. The ordering of
fields in the protocol specification is optimized primar-
ily for packing efficiency. Xlib uses a parameter order-
ing based on the parameter ordering of the reference li-
brary from version 10 of the X specification. Since X10
compatibility is no longer an important issue, XCB at-
tempts to re-use the existing X11 protocol documenta-
tion by keeping its parameter order identical to the order
of the fields in the binary protocol specification.

2.6 Feature Comparison

Thanks to the modular design of XCB, applications need
only link against the small quantity of code that they ac-
tually need. In contrast, Xlib is a monolithic library sup-
porting a variety of disjoint feature sets. Some features
are not directly related to the core protocol:

• A color management system consists of mecha-
nisms that enable colors to displayed consistently
across a variety of hardware. Within Xlib is
Xcms [SGFR92, Ber95], a complex set of func-
tions for manipulating colors that includes support
for device-independent color-spaces. This feature,
though a good idea, is layered atop the RGB-based
device-dependent color descriptions of the X proto-
col. While this functionality was included in Xlib
in anticipation of its widespread adoption, it has
in fact been little-used by applications, and does
not appear in XCB. There exist stand-alone color-
management libraries [lcm, Gil99] that do not de-
pend on X at all. New code probably should use
one of these libraries for color management.

• Xlib has extensive support for internationaliza-
tion. In particular, it has functions for work-
ing with strings of 16-bit characters (such as
XwcDrawText) and for interaction with input
methods. This functionality is not intrinsic to the
X Window System, but is conveniently separable.
Only the internationalization support inherent in
the core protocol is included in XCB. Xlib’s in-
ternationalization support is becoming less rele-
vant to modern X applications as libraries such as
Xft [Pac01b] replace the core protocol font support
in order to add anti-aliased fonts and other features
unavailable in Xlib.

• Xlib has functions for performing many different
kinds of searches on its event queue, including
search for particular types of events and on partic-
ular windows. XCB provides only a generic queue



traversal, allowing layers closer to the application
to provide implementations of predicates that select
events.

• Xlib has convenience functions that build on the X
protocol’s notion of window properties to provide
a resource database, a sophisticated configuration
mechanism for X applications. Since the idea of a
resource database is not inherent in the protocol, it
is not supported at all by XCB, though the property
primitives it relies on are. It would be straightfor-
ward to build a compatible resource database atop
XCB using window properties.

3 XCL: Xlib Compatibility Layer

XCB has significant advantages over Xlib in some en-
vironments, especially small platforms such as hand-
held computers. However, there are more than 15 years’
worth of applications and toolkits built using Xlib. For
most existing software, the benefits obtainable by using
XCB are outweighed by the effort required to port to it.
As an alternative, the XCB design allows it to be used
as a replacement “lower layer” for Xlib, efficiently han-
dling X protocol interactions for existing software.

The Xlib Compatibility Layer (XCL) library is an at-
tempt to provide an Xlib-compatible API atop XCB.
While Xlib does attempt to layer portions of its imple-
mentation, the division between upper and lower layers
in Xlib is only visible upon careful examination of the
library. Identifying this split is key to providing an Xlib-
compatible C library implementing the most commonly
used portions of Xlib as a layer on top of XCB, as illus-
trated in figure 2.

3.1 Xlib Coverage

XCL provides a significant fraction of the functional-
ity of Xlib. This includes adapters from Xlib’s protocol
request functions to XCB’s, implementation of specific
predicates for searching XCB’s event queue, and a re-
implementation of the resource database.

Xlib’s interfaces for text internationalization are not
provided by XCL. A significant portion of the code
size of Xlib is dedicated to translating text strings be-
tween various character sets and encodings: XCL deals
strictly with glyph rendering using the encoding-neutral
interfaces of Xlib. Currently, few Xlib applications
and toolkits actually use the internationalized interfaces.
Given the decreasing relevance of Xlib’s font and text

XCB

XCL

Toolkit

Client

X Server

Figure 2: XCL’s role in the X Window System

drawing support and the predominance of ASCII en-
coded text, applications are not expected to need inter-
national text rendering functionality from XCL in the fu-
ture.

Xlib color management is not supported by XCL. The
Xlib implementation of this function is by way of inte-
grating an existing color management library: it would
be difficult to either duplicate or import this functional-
ity in XCL. In addition, as discussed earlier, few exist-
ing applications use the Xlib color management. Many
applications use the non-uniform RGB color space pro-
vided by Xlib by default. Most applications that do
require more sophisticated color management obtain
this functionality through toolkit APIs or third-party li-
braries.

XCL imports some of the caching implementation of
Xlib, for example the GCValues cache. In addition,
some additional caching is planned, for example an
Atom cache. However, substantially less client-side
caching is performed by XCL than by the reference Xlib
implementation. This decision is a design tradeoff that
may need to be revisited as more performance data be-
comes available.

3.2 Source vs. Binary Compatibility

Many applications and libraries that use Xlib have
source code available. In initially specifying require-
ments for XCL, it was deemed necessary that XCL be
at least source-compatible with Xlib, but not necessar-
ily binary-compatible. This weaker requirement leaves
open the possibility of sacrificing compatibility of im-
plementation details such as CPP macros and underlying



data structures in order to simplify and ease the imple-
mentation.

As it turns out, making XCL largely binary-compatible
with Xlib is straightforward. The majority of X appli-
cations can use the shared library version of the current
XCL implementation as a transparent replacement for
the Xlib shared library. Some applications or libraries
use obscure features or unpublished interfaces, and may
thus need to be recompiled or adapted at the source level.

3.3 Using XCL

XCL is expected to be useful to a variety of different
audiences. While each of these target uses is limited, to-
gether they cover a broad spectrum of X software devel-
opment activities. This section enumerates and evaluates
some of the expected uses of XCL.

3.3.1 Porting From Xlib to XCB

Applications or toolkits written for Xlib may be ported
to XCB in stages using XCL. By simply including
xcl.h instead of Xlib.h, code gains access to the
XCB connection structure, and can mix calls to XCB
with calls to XCL. Thus software can evolve over time
from being entirely Xlib based to being entirely XCB
based, claiming the full benefits of XCB.

There are a few cases where the effect of mixing calls
to XCL and XCB can be problematic. For example,
attempts to manipulate the same graphics context from
both XCB and XCL may have unexpected results and
lead to client software errors. However, XCL is largely
stateless, with most of its state encapsulated by XCB.
Most calls to either XCL or XCB should thus produce
consistent and predictable effects.

3.3.2 Writing Threaded Code

Xlib is “thread-safe” in the sense that its internal state
invariants are protected against simultaneous access by
different threads. However, the implementation of
thread safety in Xlib is problematic. Internally, a single
global lock protects most Xlib state, leading to the pos-
sibility of unnecessary interference between unrelated
threads and a resulting loss of client efficiency. In ad-
dition, the Xlib interface to threading is awkward.

Implementing threaded programs to the XCL interface
has a couple of advantages. As noted in the previous
section, calls to XCB’s more thread-friendly interfaces

can be used to replace sections of Xlib code of prob-
lematic correctness or efficiency. In addition, the finer-
grained locking offers the potential for performance en-
hancement.

3.3.3 Leveraging X Knowledge

There are a wide variety of books available describing
programming at the Xlib level, as well as web sites and
other documentation. Since the XCL interface is a large
proper subset of the published interface of Xlib, all of
these resources can still be used by those wishing to
learn to write X applications. Those already familiar
with Xlib programming can also avoid a steep learning
curve while gaining some of the advantages offered by
XCL and XCB.

3.3.4 Understanding X Internals

The implementation of XCL may be instructive to those
interested in learning about the inner workings of the
X Window System. The division of XCL into an upper
layer consisting of code borrowed from Xlib and a lower
layer replacing some of the more complex and confusing
portions of Xlib with calls to XCB may help to illumi-
nate the structure of Xlib and of X protocol bindings in
general.

As another example, the transparent translations to the
protocol performed by XCB may provide opportunities
for better understanding the runtime behavior of Xlib.
For example, consider the Inter-Client Communications
Conventions Manual (ICCCM) [Ros] that governs inter-
actions between applications and the desktop environ-
ment. The ability of XCB to accurately specify and pre-
cisely report the ICCCM interactions of an Xlib window
manager running atop XCL may be of great benefit in
both validating the window manager and increasing de-
veloper understanding of ICCCM.

3.3.5 Developing Toolkits

XCB’s latency hiding mechanisms and simple design are
expected to be particularly useful to toolkit authors, who
can implement optimizations unavailable through Xlib.
That expectation applies also to this work. XCL allows
toolkit authors to implement XCB-based optimizations
in portions of their toolkits needing high performance,
while leaving the rest of their Xlib-oriented code base
intact. Better yet, toolkits may benefit from further per-
formance gains as XCL and XCB are developed further
to support caching and other optimizations.



3.3.6 Accommodating Small Environments

Until XCB becomes widespread on standard systems,
applications and toolkits targeted exclusively to XCB
will be rare. On the other hand, applications and toolkits
targeted to Xlib comprise the bulk of available software.
XCL supports these applications by implementing the
important portions of Xlib in an extremely lightweight
library. The combination of XCL and XCB should pro-
vide a platform for legacy X application execution sig-
nificantly smaller than Xlib. While development should
eventually proceed towards new interfaces, support for
legacy applications in constrained environments can be
a useful feature.

3.4 XCL Influences on XCB

While XCB is largely completed, its development con-
tinues in parallel with implementation of XCL. XCB as
it currently stands provides a good basis for the XCL
implementation. However, in the process of defining
XCL, some additional desirable XCB functionality has
become apparent.

During the X protocol connection setup phase, a wide
variety of per-session server data is sent from the X
server to the connecting client. Xlib provides access to
this data by way of a plethora of convenience functions.
While a clean mechanism for accessing this information
has yet to be completed in XCB, a design using accessor
functions, including iterators, is currently being imple-
mented. In the meantime, XCB provides direct access to
structure accessors for setup data. XCL hides the details
of XCB’s accessors by copying the data into the XCL
Display structure in an Xlib-compatible form at con-
nection setup time.

Another aspect of XCB that needs work is its X proto-
col error handling. In the current implementation, XCB
treats X protocol error responses and events similarly,
placing error responses in the event queue as though they
were events. In addition, XCB does not provide any call-
back mechanism for error handling, so the only ways to
discover that an error has occurred are to process all of
the events that precede it in the event queue or to search
the event queue using the XCB API. The most signifi-
cant impact of these XCB design decisions on the design
of XCL is that errors often are reported only after dozens
of further requests have been processed.

4 XCL Design

XCL copes with two principal APIs. On the client side,
it provides the published Xlib API. On the downstream

side, it makes calls to XCB. XCL never communicates
directly with the X server: all of its requests and all
server responses are routed through XCB.

As discussed previously, XCL’s overall architecture is a
two-layer affair similar to that of Xlib. Reuse of Xlib
code in the XCL upper layer eases verification of the re-
quirement that XCL behave identically to Xlib. In fact,
one of the implementation strategies used has been to
copy the source for the relevant sections of the reference
Xlib implementation, remove sections deemed irrelevant
to XCL, and replace them with XCB-based equivalent
lower layer code. (Another strategy is discussed in sec-
tion 4.3.)

It may seem that this implementation approach would
make the implementation of XCL relatively trivial, but
that is not the case. Different sections of Xlib are cou-
pled together tightly: for example, a significant number
of utility and convenience functions contain (sometimes
slightly modified) copies of code needed to deliver re-
quests to and accept replies from the X server. XCL
makes explicit the idea that a lower layer (XCB) han-
dles communication with the X server. XCL also al-
lows other distinct libraries to handle other jobs, such
as caching or color management. In doing so, the inter-
face between the convenience functions and the server
has been narrowed and standardized, facilitating future
code reuse and maintenance.

XCL’s current build process uses the Xlib header files in-
stalled on the build machine for their definitions of func-
tion prototypes and data structures as an aid to matching
the behavior specified for Xlib. This means that as long
as the same compiler is used, applications built against
these header files are sure to be binary-compatible with
XCL, as long as they use only supported interfaces. On
the other hand, it means XCL is tied to particular ver-
sions of particular implementations of Xlib, a difficulty
we encountered early in development. A more detailed
analysis of Xlib headers is needed to identify those that
should be included in the XCL source.

Another downside to reusing Xlib source in XCL is that
Xlib source is not always particularly easy to under-
stand. Some defects in XCL have been caused by misin-
terpreting the semantics of the Xlib implementation. For
example, XPending and XNextEvent were imple-
mented incorrectly during early development of XCL.
The reference implementation of Xlib includes func-
tions XReadEvents and XEventsQueued: both
may read events from the X server, but XReadEvents
always reads one or more events by blocking until
some are available, while XEventsQueued reads
zero or more without blocking. As this distinction was
missed in a superficial reading, it was assumed that
XReadEvents could be used for both jobs. As a re-



sult, it was discovered during testing that test applica-
tions would freeze once a window was mapped and the
event loop was entered.

Since XCL reuses much of the source of an Xlib imple-
mentation, there are a large number of small source files
in XCL. Xlib has only one or two functions in most of its
source files, so that applications statically linked against
Xlib can draw in as little code as possible. While this
is a sensible plan for the large and monolithic Xlib, it
makes less sense for the small and modular XCL imple-
mentation. Future work for XCL includes organizing the
source appropriately for its environment.

It is worth noting that the license of the reference Xlib
implementation (the MIT license) allows development
through code reuse. This licensing policy has made the
current XCL implementation possible. Had Xlib been
developed under a closed-source or limited-availability
license, the task of creating XCL would have been much
more daunting. Hopefully, making the source to XCB
and XCL freely reusable will allow similar opportunities
for future developers.

4.1 XCBConnection and Display

Xlib uses a Display data structure to track a single
connection to an X server and its state. XCB uses
an XCBConnection structure for the same purpose.
However, these structures have few similarities.

When the XCL XOpenDisplay function is called, it in
turn calls XCBConnect to get an XCBConnection.
It then sets up a new Display structure. In order
to support applications that peek into the Display
structure, XCL copies a number of values from the
XCBConnection into the Display, including the
data from connection setup and the file descriptor asso-
ciated with the server connection. In many applications,
this data is part of the required binary interface: although
Xlib provides dedicated accessors for this data, the ac-
cessors are implemented as CPP macros. It is therefore
impossible for XCL to replace the accessors with func-
tions that examine XCB’s state directly without breaking
binary compatibility. While binary compatibility is not a
mandatory requirement of XCL, it is reasonable to pro-
vide it when possible: the current architecture permits
this.

Early in the development of XCL, an important ques-
tion arose: how can an XCBConnection be associ-
ated with a Display so that XCL can retrieve the for-
mer from the latter? The solution chosen is a stan-
dard one: XCL internally manages a structure con-
taining both the Display data and a pointer to an
XCBConnection. The XCBConnection pointer is
used by internal operations, while the return value of

XCL’s XOpenDisplay is a pointer to the Display
data.

4.2 XID Types

The X protocol identifies resources such as windows and
fonts using XIDs, small integers that are generated by
the client rather than the server. In Xlib-based applica-
tions Xlib handles generation of new XIDs as needed.
XIDs are declared to be 32-bit integers by Xlib, using C
typedef statements. This has the significant disadvan-
tage of allowing a variety of type-safety errors: because
C types are structurally equivalent, it is easy to use a font
XID, for example, where a window XID is required. To
remedy this problem, XCB uses a distinct structure type
for each kind of resource, allowing the C type system to
distinguish between them and ensure that XIDs are used
in appropriate contexts.

This causes some difficulty for XCL, however: XCL has
to deal with and be able to convert between the two sys-
tems of XID types. Conversion from XCB-style to Xlib-
style types is easy: the single member of an XCB XID
structure is of the same 32-bit integer type as the Xlib
XIDs are derived from, and so a structure member ac-
cess (effectively a type coercion) is all that is needed to
perform the conversion. Conversion in the other direc-
tion, however, is not so simple.

C does not allow anonymous construction of structure-
typed values. To work around this difficulty, XCL pro-
vides a number of inline functions that declare a struc-
ture of an XCB XID type, initialize it with a value of
an Xlib XID type, and return the structure by value. In
principal, this could be a source of inefficiency. How-
ever, as the bit patterns of the types are identical in both
systems, a good optimizing compiler ought to be able to
inline and then entirely eliminate the conversion code.
In fact, the GNU C compiler does a very good job at
this.

4.3 Core Protocol Requests

With XCB handling actual communications tasks, XCL
simply needs to manage the data it delivers between
XCB and the client application. Figure 3 shows the im-
plementation of XInternAtom. The implementation
delivers an InternAtom request to the X server and
extracts the atom XID from the reply data.

Most functions in XCL at this point are at least this sim-
ple, if not simpler: when caching, color management,
internationalization, and other miscellaneous features of
Xlib are removed, the core protocol is the largest piece



Atom XInternAtom(Display *dpy,
const char *name,
const Bool onlyIfExists)

{
register XCBConnection *c =
XCBConnectionOfDisplay(dpy);

Atom atom;
XCBInternAtomRep *r;

if (!name)
name = "";

r = XCBInternAtomReply(c,
XCBInternAtom(c,
onlyIfExists,
strlen(name), name),
0);

if (!r)
return None;

atom = r->atom.xid;
free(r);
return (atom);

}

Figure 3: XCL implementation of XInternAtom.

that remains. Almost all of the code needed to imple-
ment the core protocol is supplied by XCB. Function-
ality only loosely related to the X protocol should be
placed in modules separate from XCL itself, to facilitate
maintenance and avoid dragging large amounts of dead
code along with every X application.

Some XCL functions are even simpler to implement than
XInternAtom, as illustrated by XCreatePixmap in
figure 4. As development of XCL has proceeded, com-
mon structures became apparent amongst several of the
functions that had previously been hand-coded for XCL.
In the current implementation, 43 of the roughly 120
requests in the core X protocol are described using a
domain-specific language. This language, related to the
language used by XCB, describes only the interface to
Xlib. A translator to C, implemented in M4 [KR77],
reads XCB’s interface from XCB’s description of the
core protocol. Given descriptions of both of the inter-
faces with which Xlib communicates, the translator can
generate the correct code to map parameters between
XID type systems and function parameter orderings.

The same benefits expected from XCB’s protocol de-
scription language (section 2.1) are also expected for
XCL’s interface description language: maintenance,
implementation of new features and extensions, and
demonstration of correctness should all be simpler than

XCLREQ(CreatePixmap,
XCLALLOC(Pixmap, pid),
XCLPARAMS(Drawable drawable,

unsigned int width,
unsigned int height,
unsigned int depth))

Figure 4: XCL description of XCreatePixmap.

for hand-coded implementations. The most immediate
benefit is that functions generated from this language
are known to be implemented to XCB’s interface, and
can be easily checked against the published Xlib inter-
face specification rather than against the Xlib reference
implementation. Future work for XCL thus includes ex-
tending this code generation system to implement more
requests, including extension requests.

4.4 Protocol Extensions

Since XCB can generate the code for all aspects of the X
protocol defined by protocol extensions, implementation
of each extension in XCL requires only a proper XCB
description of the extension, and any code needed to pre-
process requests to or replies from the server.

An example of an extension requiring more than a sim-
ple protocol description is the shared memory extension.
This extension allows raw data to be transferred through
shared memory segments when both the client and the
server have access to the same physical memory. XCB
can only deal with the X network protocol: shared mem-
ory is outside its scope. Thus, an XCL implementa-
tion of the shared memory extension would include code
to access the shared memory segment, while leaving to
XCB the job of exchanging segment identifiers with the
server.

4.5 Caching and Latency Hiding

XCL should have as low a latency as reasonably possi-
ble from a client call to the desired effect or response.
There are two ways to accomplish this goal: hiding the
effect of latency from the client application, and remov-
ing sources of latency by eliminating high-latency oper-
ations.

Caching is an instance of the latter strategy. Little
caching is implemented within XCL itself, although
graphics context values, for example, are cached using
code borrowed from Xlib. Various cache modules will
eventually be built directly atop XCB: as these become
available XCL will be modified to use them. Until then,
most requests through XCL will produce protocol re-
quests to the X server. This can substantially increase



latency in client applications under XCL: fortunately the
impact on client applications in current common envi-
ronments is expected to be minimal.

XCB has latency hiding functionality, and it is desirable
to extend this effect to XCL. Unfortunately, Xlib’s in-
terface is generally not conducive to this effort. In most
cases where a reply is expected, Xlib’s interface requires
the caller to block until the reply arrives from the X
server. However, there are some cases where the inter-
face allows for a potentially large number of requests to
be processed in parallel.

XInternAtoms (the plural here is important) is one
such case: given a list of atom names to map to atom
IDs, it sends requests for all of the atoms to the server,
and then waits for each of the replies. The Xlib ver-
sion of this code, using the async-handler interface dis-
cussed in section 2.3, is significantly more complex than
the XCL version built on XCB. XCL’s XInternAtoms
implementation contains considerably less code than
Xlib’s. (Although, to be fair, this is also because the
atom cache has been decoupled from the library and is
not yet implemented).

4.5.1 Request Marshaling

Xlib’s ability to marshal several independent client
drawing requests (such as line drawing requests) into a
single protocol request is of minor importance for per-
formance on core protocol requests, at least on modern
hardware. However, more recent X extensions, partic-
ular the Render extension [Pac01a], depend on request
marshaling for performance. In these cases, marshaling
opportunities are frequent, and failure to do so may be
expensive.

XCB provides request marshaling using a mechanism
transparent to clients. In XCB, the ability of a type of
request to be marshaled is considered an attribute of the
request, and is specified in the same protocol descrip-
tion language as is used to define the binary protocol
encoding. Care has been taken to ensure that extensions
and the core protocol may be described with the same
language, so request marshaling is available to any ex-
tension with no more effort on the part of the extension
implementor than an extra line of markup.

Because of the transparency of XCB marshaling, the
primitive drawing requests in XCL have been trivial to
implement, while still performing competitively with
their Xlib counterparts. In fact, because only Xlib’s
XDrawLine (singular) and similar functions marshal
in the reference implementation, while XDrawLines
(plural) and others do not, some applications could theo-
retically experience performance gains just by re-linking

with XCL: this could be especially important over low-
bandwidth or high-latency links, where marshaling in
the core protocol has the most effect. Since marshaling
is an intrinsic capability of XCB and not of XCL, all ap-
plications built on XCB gain the performance benefits,
not just clients built on XCL.

4.6 Threaded Clients

XCL’s support for threaded applications is about as com-
plete as the Xlib API will allow. Unfortunately, certain
race conditions are still possible, as discussed in sec-
tion 2.4. Clearly, XCL cannot ensure the correctness of
threaded programs written to the Xlib interface. How-
ever, it can improve performance for multi-threaded ap-
plications.

Xlib uses a single lock to protect the entire contents of its
Display data structure, meaning that for most appli-
cations all calls into Xlib are serialized. However, there
is no reason in principle to disallow multiple threads to
access disjoint portions of the internal state simultane-
ously: while one thread is accessing the event queue,
another could be sending a request to the server, and a
third could be querying the GC cache.

Currently, XCL allocates a single lock for the entire
Display as Xlib does, but for protocol requests that
lock is unused. XCB provides a separate thread-safety
mechanism for its XCBConnection data that ensures
that protocol requests and responses are handled cor-
rectly. Any caches implemented atop XCB in the future
can (and should) handle their own data structures in a
thread-safe fashion.

By leveraging XCB’s thread-safety mechanisms, XCL
provides fine-grained locking. This may allow multi-
threaded applications to take better advantage of the re-
sources of a system than the Xlib implementation would
permit.

4.7 Events and Errors

Event and error handling represents a fairly significant
portion of the implementation of XCL. Not coinciden-
tally, this portion of the implementation is also one of
the least well-specified and understood pieces of Xlib.
Several aspects of event and error handling warrant fur-
ther consideration.

4.7.1 The XCL Event Queue

XCB’s event queue is accessed through simple traversal
functions. However, this narrow interface is sufficient



for the XCL implementation of Xlib’s event search in-
terfaces. Xlib’s predicated event retrieval functions may
all be implemented as traversals of the event queue, eval-
uating each event against some arbitrary predicate.

Internally, XCB has a generic linked list implementation
that it uses to track several distinct types of information,
including a list of replies expected from the server. All
users of these internal XCB lists must be able to search
for particular items: thus, when the predicated event
queue code was added, its implementation added almost
no new code to XCB. All of XCB’s event queue man-
agement implementation combined amounts to only 20
lines of code.

Throughout the design and implementation of XCB and
XCL, significant decreases in code size and improve-
ments in maintainability have resulted from the use of
modular, layered architecture. Separating list implemen-
tations from event queue maintenance and event queue
maintenance from XCL predicate implementations pro-
vides a nice example of this phenomenon. The modu-
lar, layered design provides flexibility, permitting such
improvements as reimplementation of internal list inter-
faces atop new data structures, or pooling of list nodes
for reuse. This can be accomplished without modifica-
tions to the rest of XCB or XCL, providing improve-
ments transparently to all XCB and XCL client applica-
tions.

4.7.2 X Protocol Errors

When XCB reports to XCL that an X protocol error
has been received, XCL passes the error off to an error
handler as required by the Xlib API. The default error
handler displays a (somewhat) human-readable descrip-
tion of what went wrong and terminates the application:
however, the handler may be replaced by the client pro-
gram with an arbitrary client function. This mechanism
is awkward to use: as a result, most existing Xlib ap-
plications exhibit poor behavior in response to protocol
errors. Unfortunately, it is not clear how to address that
problem without changing the Xlib error handling API.

4.7.3 XCL and XCB Internal Errors

The reference implementation of Xlib performs various
error checks on data coming both from Xlib’s callers
and from the X server. XCB simply delivers whatever
data it is given. The primary benefit of this approach
is that XCB may deliver the data faster. An interest-
ing side benefit is that XCB allows for the creation of
certain kinds of tools for testing X servers by deliver-
ing bad input. Naturally, the trade-off is that XCB does

not particularly help a developer debug a faulty client or
server.

In most cases, XCL and XCB have identical failure
modes to Xlib, and XCL can return status codes iden-
tical to Xlib’s when an XCL or XCB error occurs. How-
ever, in a small number of instances, XCL can fail in
ways that Xlib could not. First, XCL will detect fail-
ure in situations that Xlib does not. Second, there may
be opportunities for the XCL implementation to fail
that were not present in the Xlib implementation (as
in the XDrawString example below). Unfortunately,
Xlib has no particularly well-structured or application-
honored mechanism for reporting errors. The current
XCL implementation makes reasonable efforts to sen-
sibly handle and report internal errors within the bounds
of the Xlib API semantics.

For example, XDrawString has to break the string
given to it into 254 character chunks, with a two-
byte header per chunk. Xlib uses the Display’s out-
put buffer directly, while XCL uses malloc to create
a temporary buffer, subjecting XCL to potential out-
of-memory errors. In XCL’s current implementation,
we call the Xlib-compatible XIOError handler when
malloc fails.

Despite the fact that even the Xlib implementation of
XDrawString can fail (if the string provided has a
non-positive length), the Xlib implementation always re-
turns success. It would be nice to develop better er-
ror handling and reporting mechanisms for these cases
within the constraints of the Xlib API.

5 Results

The implementation of XCL is not yet quite complete.
However, we have some promising preliminary results.

5.1 RXVT on XCL

The XCL development model includes an initial itera-
tion implementing enough of Xlib to support a single
reasonable-sized Xlib application. This is intended to
serve as proof of concept, and as validation and evalua-
tion of the design and implementation. The application
we chose was the rxvt [rxv] terminal emulator, a more
modern replacement for xterm.

The rxvt terminal emulator is related to the standard
xterm utility in the same way that XCL is related to
Xlib. According to the manual, rxvt is “intended as an
xterm replacement for users who do not require features



such as Tektronix 4014 emulation and toolkit-style con-
figurability,” with the benefit that “rxvt uses much less
swap space.”

This similarity of purpose made rxvt an attractive ini-
tial target for XCL. In addition, rxvt is a reasonably
powerful X application that performs very useful work.
Finally, rxvt exercises a large portion of the core X
protocol, including text, rendering and events.

XCL is currently complete enough that rxvt, without
any source code changes, may be linked against XCL
rather than Xlib and will run correctly. In fact, the
current stable and development versions of rxvt can
be compiled against Xlib and then correctly executed
against the XCL library binary. The first iteration of
XCL development is therefore complete and successful.
The remaining work is expected to be largely straight-
forward, if time-consuming.

5.2 Gnome gw: GDK on XCL

As mentioned in section 3.3.5, one expected use of XCL
is with toolkits originally written for Xlib. To test the
feasibility of this use, we selected one of the simpler
Gnome/GTK+ applications for trials on early versions of
XCL. gw is a graphical version of the venerable Berke-
ley “w” command used to list the users currently logged
into a Unix system.

The gw user interface contains a button, a list widget
with a scrollbar, and a dockable menu bar. We found that
these widgets need only a small subset of Xlib’s func-
tionality. Getting the basic interface to run on XCL was
a simple matter: scrollbars scroll, buttons click, menus
drop down, and menu bars undock and re-dock. GTK+
and Gnome/GTK+ applications are implemented using a
window system independent layer known as GDK. Since
the XCL functionality necessary to get gw working cov-
ers a large portion of the Xlib API subset used by GDK,
there is reason to believe that a substantial fraction of
the work needed to port GTK+ in its entirety is already
completed.

XCL is not perfect yet: some aspects of current gw op-
eration atop XCL are visibly wrong, or trigger X proto-
col errors that shut down the application. XPutImage
and XSendEvent, among others, have been sources of
trouble. While fixing these problems may require sub-
stantial debugging effort, no major technical barriers are
expected.

5.3 Size and Performance

While the implementations of XCL and XCB are still
subject to change, it is nonetheless useful to take at least

a first look at the size and performance of the current
system. Here are some preliminary metrics:

5.3.1 Size

The size metric used is kilobytes of code in the text sec-
tion of the compiled object file. The text section needs
to be stored both on disk and in memory, both of which
are scarce on small systems. In addition, if the entire text
section can fit into the L2 cache of the target system (typ-
ically between 64kB and 512kB on modern machines), a
significant performance improvement might be possible
for typical applications making a mix of calls into the
library. Including data and BSS size would not signifi-
cantly impact the reported measurements. All numbers
are produced by examining the text sections of either ob-
ject (.o) files or statically-linked library (.a) files on an
Intel x86 architecture machine. Our tests show that use
of the optimizer of the compiler is a major factor in the
size of both XCB and XCL. The numbers that follow
for XCB and XCL are produced by analyzing the output
of “gcc -O2”: the unoptimized output is nearly 50%
larger.

82% of the 79 object files currently comprising XCL
have text sections smaller than 512 bytes. The total text
section size of XCL is 28kB. XCB adds another 27kB,
for a total of 55kB.

Xlib, compiled from 417 source files, has a text section
size of 658kB. (According to Jim Gettys [Get01], much
of this is data used as lookup tables for internationaliza-
tion.) The subset of Xlib providing roughly the same
functionality as XCL has about 115kB of text. This is
more than twice the size of XCL combined with all of
XCB. In addition, it would be quite difficult to build a
shared library version of Xlib containing just this func-
tionality.

5.3.2 Performance

The XCL version of rxvt currently seems to have text
display performance comparable to that of the Xlib ver-
sion. Executing “cat /usr/share/dict/words”
on a 1GHz Mobile Pentium III running Linux yields
runtimes of about 1.3 seconds for rxvt 2.7.8 when
linked with either Xlib or XCL. Results are similar on
a 700MHz Athlon, although XCL consistently exhibits
about a 5% speed advantage on this platform for this
benchmark.

It is notable that, at about 30,000 scrolled lines per sec-
ond, rxvt is more than acceptably fast for any reason-
able use. Indeed, this is the normal case for X appli-



cations on modern hardware: it is extremely unusual to
find an application whose performance is limited by in-
teraction with an X server on the same host. In addition,
Xlib is believed to provide near-optimal performance
in most situations. For these reasons, performance en-
hancement is not a primary goal of XCL.

6 Related Work

We know of no other efforts to design X protocol client
libraries in C. There have been some independent efforts
to write such libraries for a variety of other languages in-
cluding Java [O’N02, Tse01], Common Lisp [SOC+89],
Smalltalk [Byr], and ML [GR93], as well as more ex-
otic languages such as Python, Erlang, and Ruby. These
efforts have concentrated largely on providing natural
bindings for their target language, with performance,
size, and compatibility with the Xlib API being at most
secondary targets.

The Nano-X [Hae01] GUI environment has some in-
teresting parallels to XCL. Nano-X is targeted at
lightweight and embedded systems, and provides an API
roughly comparable to that of Xlib. However, Nano-X
supports a variety of underlying rendering systems, only
one of which is the X core protocol. The X protocol sup-
port of Nano-X is intended primarily for development
and debugging, and is not intended as a principal API
for normal application use.

Over the years, Jim Gettys and others have put a sig-
nificant amount of effort into improvements to the Xlib
implementation. Much of this work has been to increase
Xlib functionality. More recently, Gettys has put some
effort into reducing the size of Xlib for use with Linux
on the Compaq iPaq hand-held computer.

The authors’ work on XCL was inspired to some extent
by an award-winning program from the 1991 Interna-
tional Obfuscated C Code Contest [NCSB02]. This re-
markable 1676 character C program by David Apple-
gate and Guy Jacobson runs Conway’s “Game of Life”
cellular automaton on an X root window. Its small size
and remarkable performance provided a powerful hint of
what is possible with clever coding.

7 Status and Future Work

The XCL implementation is well underway: as noted
in the previous section, a useful test application (rxvt)
links with and runs on XCL. When all Xlib proto-
col wrapper functions have been implemented in XCL,
many more applications are expected to run without
modification.

XCL is dependent on the XCB library implementation,
which is nearly complete. In its current form, it provides
the majority of the functionality needed for the XCL im-
plementation. Some work remains. For example, acces-
sors need to be constructed for variable-element-length
lists such as those sent from the X server on connec-
tion setup, and XCB error handling needs further explo-
ration.

Allowing a wider variety of applications to run on XCL
is the immediate focus as the project continues. One
way to quickly support a large number of applications is
to support one or more GUI toolkits: preliminary results
for GTK+ and Gnome are promising, and we plan to fur-
ther research this possibility in the near future. As dis-
cussed in section 3.3.5, migrating toolkits to XCL may
be a good first step in eventually migrating them to XCB.

8 Conclusions

XCL, in conjunction with XCB, represents the first real
alternative to Xlib since Xlib’s inception more than 15
years ago. As both are open source, the X development
community can examine both for their merits and pro-
duce software that is useful for a wide variety of plat-
forms and applications.

Much of the hype surrounding the development of
freely-available UNIX software in recent years springs
from the idea that open development and the use
of freely-available source materials can produce high-
quality software products that can then be used to boot-
strap future development in this style. XCL provides a
nice example of this phenomenon, as well as being a
useful tool in its own right. In the immortal words of
Hannibal Smith, “I love it when a plan comes together.”

Availability

Current implementations of XCL and XCB are freely
available under an MIT-style license at http://xcb.
cs.pdx.edu/.

Acknowledgements

The authors gratefully acknowledge the advice and as-
sistance of Keith Packard, Jim Gettys, and other X con-
tributors in the design and analysis leading up to XCL.
Andy Howe has played a major part in the implementa-
tion and testing of XCL. Finally, Chris Demetriou was
invaluable throughout the tough task of shepherding this
paper.



References

[AS90] Paul J. Asente and Ralph R. Swick. X
Window System Toolkit: The Complete Pro-
grammer’s Guide and Specification. Digital
Press, Bedford, MA, 1990.

[Ber95] David T. Berry. Integrating a color manage-
ment system with a Unix and X11 environ-
ment. The X Resource, 13(1):179–180, Jan-
uary 1995.

[Byr] Steve Byrne. GNU Smalltalk Version
1.1.1 User’s Guide. Web document. URL
http://www.cs.utah.edu/dept/
old/texinfo/mst/mst_toc.html
accessed April 3, 2002 09:12 UTC.

[Dal01] Matthias Kalle Dalheimer. Programming
with Qt. O’Reilly & Associates, Inc., sec-
ond edition, 2001.

[Get01] Jim Gettys, 2001. Personal communication.

[Gil99] Graeme Gill. Icc file I/O, 1999. Web Doc-
ument. URL http://web.access.
net.au/argyll/color.html ac-
cessed April 11, 2002 09:25 UTC.

[GR93] Emden R. Gansner and John H. Reppy. A
multi-threaded higher-order user interface
toolkit. In Bass and Dewan, editors, User
Interface Software, volume 1, pages 61–80.
John Wiley & Sons, 1993.

[Hae01] Greg Haerr. Nano-X Reference Manual,
January 2001. Web document. URL
ftp://microwindows.org/pub/
microwindows/nano-X-docs.pdf
accessed April 3, 2002 21:00 UTC.

[KR77] Brian W. Kerninghan and Dennis M.
Ritchie. The M4 Macro Processor. AT&T
Bell Laboratories, 1977. Unix Program-
mer’s Manual Volume 2, 7th Edition.

[lcm] Little CMS. Web Document. URL
http://www.littlecms.com/
accessed April 11, 2002 09:23 UTC.

[MS01] Bart Massey and Jamey Sharp. XCB: An X
protocol C binding. In Proceedings of the
2001 XFree86 Technical Conference, Oak-
land, CA, November 2001. USENIX.

[NCSB02] Landon Curt Noll, Simon Cooper, Peter See-
bach, and Leonid A. Broukhis. International
Obfuscated C Code Contest, 2002. Web
document. URL http://www.ioccc.
org/ accessed April 8, 2002 05:58 UTC.

[O’N02] Eugene O’Neil. XTC: the X Tool Col-
lection, April 2002. Web document.
URL http://www.cs.umb.edu/
˜eugene/XTC/ accessed April 3,
2002 07:33 UTC.

[Pac01a] Keith Packard. Design and Implementation
of the X Rendering Extension. In FREENIX
Track, 2001 Usenix Annual Technical Con-
ference, Boston, MA, June 2001. USENIX.

[Pac01b] Keith Packard. The Xft font library: Ar-
chitecture and users guide. In Proceedings
of the 2001 XFree86 Technical Conference,
Oakland, CA, November 2001. USENIX.

[Pen99] Havoc Pennington. GTK+/Gnome Applica-
tion Development. New Riders Publishing,
1999.

[Ros] David Rosenthal. Inter-Client Communica-
tion Conventions Manual. In [SGFR92].

[rxv] RXVT. Web document. URL
http://sourceforge.net/
projects/rxvt/ accessed April 8,
2002 5:56 UTC.

[SG86] Robert W. Scheifler and Jim Gettys. The
X Window System. ACM Transactions on
Graphics, 5(2):79–109, April 1986.

[SGFR92] Robert W. Scheifler, James Gettys, Jim
Flowers, and David Rosenthal. X Window
System: The Complete Reference to Xlib, X
Protocol, ICCCM, and XLFD. Digital Press,
third edition, 1992.

[SOC+89] Robert W. Scheifler, LaMott Oren, Keith
Cessna, Kerry Kimbrough, Mike Myjak,
and Dan Stenger. CLX Common Lisp X In-
terface, 1989.

[Tse01] Stephen Tse. Escher: Java X11 li-
brary, 2001. Web document. URL
http://sourceforge.net/
projects/escher accessed April
3, 2002 20:58 UTC.

[xfr] The XFree86 project. Web document.
URL http://www.xfree86.org ac-
cessed April 8, 2002 05:54 UTC.


