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Abstract

The IEEE 802.1x standard defines a link-layer level authentication protocol for local area networks. While originally

designed to authenticate users in a switched Ethernet environment, it looks like the most important need for 802.1x

lies in wireless networks, especially IEEE 802.11b based Wireless LANs. Furthermore, due to the flexibility of the

Extensible Authentication Protocol (EAP), the heart of 802.1x, it looks like 802.1x could be used for many purposes

its original designers have not foreseen.

In this paper, we describe an FreeBSD-based open source 802.1x implementation, and show how it can be used to

implement different authorization and charging systems for public WLANs, including a pre-paid, pay-per-use charg-

ing system and another one based on community membership. The implementation is based on the netgraph facility,

resulting in a surprisingly flexible and simple implementation. 

1  Introduction

With the advent of 802.11 based Wireless Local Area

Networks (WLANs) and the proliferation of laptops and

PDAs, the usage of Ethernet networks is changing. What

once was meant to statically connect computers belong-

ing to a single organization, is now increasingly being

used to provide Internet connectivity for mobile profes-

sionals. This change is very visible at certain high pro-

file telecommunication and computer science confer-

ences, including IETF meetings, where an increasing

number of people are utilizing the wireless networks

provided by the organizers.

The changing usage patterns brings forth new security

problems. From the network point of view, the most

prominent problem is that of access control. The net-

work must somehow decide if and how to allow a net-

work node to utilize the resources provided by the

network. The IEEE 802.1x standard [1] is designed to

provide a solution framework for this problem.

The 802.1x standard defines a method to run the

Extensible Authentication Protocol (EAP) [2] in raw

(non-IP) Ethernet frames. The resulting protocol is

called EAP over LAN (EAPOL). The EAP protocol was

originally designed as a flexible authentication solution

for modem connections using the Point-to-Point

Protocol (PPP). Now 802.1x is extending the same

architecture to LANs, both wireline and wireless.

At the basic level, the 802.1x architecture, properly

augmented with the RADIUS [3], allows the existing

PPP based authentication, authorization and accounting

infrastructure to be used to control LAN access in addi-

tion to PPP access. The solution works well in current

environments, where the network providers and network

users have an existing, pre-established relationship.

However, if we consider public WLAN offerings at air-

ports, hotels, cafes, and even offices and homes, it

becomes more common than before that the prospective

network user has no relationship with the provider.

Thus, something new must be introduced, something

that allows such a relationship to be build on the fly.

In this paper, we show how it is possible to set up a

public WLAN environment that supports various kinds

of authorization and charging schemes, including com-

munity membership based and pre-paid, pay-per-use

accounts. The new schemes allow more flexible user–

provider relationship management than the existing

ones. The implementation is based on IEEE 802.1x, and

the prototype runs under FreeBSD. The architecture is

geared to small service providers, eventually scaling

down to the level of individuals offering WLAN based

Internet access through their xDSL or cable modem.



       
The rest of this paper is organized as follows. In

Section 2, we briefly describe the IEEE 802.1x standard

and the FreeBSD netgraph facility. After that, in

Section 3, we describe our 802.1x implementation in

broad terms, and in Section 4 we cover the implementa-

tion details. In Section 5 we describe how the imple-

mentation can be configured to support different usage

scenarios, including pre-paid pay-per-usage accounts

and community membership based accounts, and

Section 6 includes our initial performance measure-

ments. In Section 7, we discuss a number of open issues

and future possibilities related to this ongoing work.

Finally, Section 8 includes our conclusions that we have

been able to achieve so far.

2  Background

Our work is mostly based on existing technologies, inte-

grating them in a novel way. The only significant piece

of new software that we have written is the base 802.1x

EAPOL protocol [1], which is implemented as a pair of

FreeBSD netgraph [4] nodes. Since we cannot assume

that all readers are familiar with the IEEE 802.1x stan-

dard and the netgraph facility, we introduce them briefly

in this section. Additionally, we discuss related work.

2.1 IEEE 802.1x

IEEE 802.1x [1] is a forthcoming standard for authenti-

cating and authorizing users in Ethernet like local area

network (LAN) environments. It is primarily meant to

secure switched Ethernet wireline networks and IEEE

802.11 based WLANs. In the typical usage scenarios,

the network requires user authentication before any

other traffic is allowed, i.e., even before the client com-

puter is assigned an IP address. This allows corporations

to strictly control access to their networks.

The 802.1x overall architecture is depicted in

Figure 1. The central point of the architecture is an

Ethernet switch or WLAN access point. Now, instead of

directly connecting clients to the network, the access

points contains additional controls, basically preventing

the clients from communicating before they have posi-

tively authenticated themselves. The authentication

takes place between an EAPOL supplicant, running on

the client, and a background authenticator server. This is

denoted with the thick, dashed arrow line. The authenti-

cation protocol can be any supported by the Extensible

Authentication Protocol (EAP) standard [2]. 

Even though the actual authentication protocol is run

between the supplicant client and the authentication

server, the protocol is mediated by an EAPOL authenti-

cator function located at the access point. The EAPOL

authenticator takes care of two functions. First, it medi-

ates the EAP packets between RADIUS, used towards

the authentication server, and EAPOL, used towards the

client. Second, it contains a state machine that “snoops”

the EAP protocol, learning whether the authentication

server was able to authenticate the user identity or not. If

the user was authenticated, it permits the client to freely

communicate; otherwise the client is denied access from

the network. In the figure, this latter function is depicted

with the on/off switch within the access point.

It is important to note that 802.1x implements only

authentication and MAC address based access control.

Since MAC spoofing is fairly easy, the resulting system,

as such, might not be secure enough. The need for addi-

tional security measures depends on the usage scenario;

see Section 7.1 for the details.

2.2 EAPOL

The EAPOL protocol is run between the EAPOL suppli-

cant, running on the client, and the EAPOL authentica-

tor, running on the access point. It is a fairly simple pro-

tocol, consisting of a packet structure and state

machines running on both the supplicant and the authen-

ticator. The packets are based on raw Ethernet frames

with little additional structure, as depicted in Figure 2,

on the next page.

The protocol is typically initiated by the authenticator

as soon as it detects that a new client has been connected
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Figure 1: Basic IEEE 802.1x architecture
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to an switched Ethernet port or that a new client has

joined to a WLAN access point. However, the protocol

can also be triggered by the client by sending an

EAPOL start packet.

A typical protocol run is depicted in Figure 3, below.

The first message is an EAP identity request, sent by the

EAPOL authenticator. The supplicant replies with an

EAP identity response, which is passed to the authenti-

cator server. The authenticator server replies by running

one of the possible EAP subprotocols within EAP

request and response frames. Once the authentication

phase has been completed, the authentication server

sends an EAP success (or failure), indicating that the

user identity was verified (or could not be verified). The

EAPOL authenticator notices this message, and allows

(or disallows) the client to communicate.

In addition to the base authentication, EAPOL also

allows periodic re-authentication and logout by the cli-

ent. These are most useful in a setting where connection

time is used as a basis for accounting.

 

2.3 Netgraph

 

Netgraph [4] is a flexible network protocol architecture

implemented in the FreeBSD kernel. Currently, it allows

different link-layer protocols to be stacked between the

device drivers and the network layer protocols, i.e., IP.

Its basic benefit is flexibility; it makes it easy to add new

link-layer subprotocols, and to stack different protocols,

such as HDLC, Frame Relay, and PPP, in different ways.

Furthermore, it allows intelligent filtering and pseudo-

interfaces, thereby making it possible to make a differ-

ence between LAN clients based on their MAC ad-

dresses.

From the implementor’s and administrator’s point of

view, netgraph is extremely flexible. Firstly, new proto-

col nodes are implemented as loadable kernel modules,

making development and testing fairly easy. Secondly,

the stacking order and connections between the protocol

nodes are configured with a user level program. This

makes it possible to use the same protocol nodes in

many different ways. (See the examples in Section 5.)

A simple netgraph stack is shown in Figure 4. The

stack is used to run PPP over Ethernet (PPPoE), a net-

working standard that a number of xDSL and cable

operators use today. The actual PPP signalling is per-

formed at the user level, using a separate daemon (mpd).

However, the data packets flowing between the IP proto-

col and the physical interface are completely handled at

the kernel level.

 

2.4 Related work

 

Even though there are a number of commercial 802.1x

implementations available, the only other open source

implementation that the author knows of is one by the

Open1x project at University of Maryland, College Park

[5]. Compared with our project, there are two major dif-

ferences. Firstly, Open1x is a Linux based user level im-

plementation while ours relies on netgraph. Secondly,

based on the first source code release, the Open1x

project seems to be more research oriented, trying to

Figure 2: EAPOL packet structure
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identify security problems in the specifications, while

our goal has been to produce a high quality implementa-

tion that could be used in production environments.

 

3  Software architecture

 

In this section, we describe our solution architecture in

broad terms. The details are left for the next section, and

a couple of usage scenarios are given in Section 5. In

this section, we first describe the overall structure of the

software, and then briefly describe the components. 

 

3.1 Overall structure

 

Our 802.1x implementation consist of two new net-

graph nodes, plus a number of user level programs. The

user level programs implement the individual EAP sub-

protocols. The larger of the netgraph nodes implements

the EAPOL protocol, providing a clean interface to the

user level EAP programs, while the smaller netgraph

node implements a simple MAC address filter.

A basic netgraph structure, used to implement a sim-

ple 802.1x compliant access point, is depicted in

Figure 5, above. In this configuration, the 802.1x imple-

mentation is hooked inside the Ethernet subsystem

(

 

if_ethersubr.c

 

) using suitable negraph hooks.

If we consider incoming packets, they are first routed

to the first part of the EAPOL module. If the ethertype is

 

0x888E

 

 (EAPOL) the packets are passed to the second

part of the EAPOL node. Otherwise they are passed

upward to the MAC filter. The MAC filter either passes

or drops the packet, depending on the sender’s MAC

address. The list of passed addresses is maintained by

the EAPOL module by sending events to the MAC filter.

The passed packets are simply routed back to the Ether-

net subsystem, which then passes the packets to the

upper layer protocol.

 

3.2 EAPOL netgraph node

 

The EAPOL netgraph node implements the EAPOL

protocol at the kernel level. It includes both EAPOL au-

thenticator and supplicant functionality, and is able to

run both functions in parallel. However, it handles di-

rectly only the EAP identity and notification request/re-

sponse exchanges. All actual authentication protocols

must be implemented outside the EAPOL node. The

node just includes hooks that different EAP protocol im-

plementations can attach to. Due to the flexibility of net-

graph, the protocols can either run inside the kernel, as

netgraph nodes, or at the user level.

The external interfaces of the EAPOL node are

described in Figure 6, above. The node filters received

Ethernet frames and passes non-EAPOL frames to

 

upper

 

 hook. Any packets received at the 

 

upper

 

 hook

are passed to the 

 

ether

 

 hook. The 

 

events hook

reports EAPOL related events, such as EAPOL start and

logoff frames and EAP success and failure packets.

The supp4..suppN hooks are used to connect

supplicant EAP modules to the EAPOL node. This

architecture allows different EAP subprotocols to be

implemented by different programs. For example, if one

wants to use EAP TLS [6] for user authentication and at

the same time EAP OTP [2][7] for client machine level

access control, it is possible. In that case, there would be

an EAP TLS program, including a GUI, which connects

to supp7, and an EAP OTP daemon program, connect-

ing to supp5. The TLS program would receive all EAP

packets containing TLS related requests, and the OTP

program those containing OTP related requests.

Figure 5: A netgraph stack implementing 
802.1x compliant access point
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We originally planned to have a similar structure at

the authenticator side, too. However, it turned out to be

hard to keep track of sent requests and received

responses so that the response packets could be deliv-

ered to the right EAP authenticator. The reason for this

is that the tracking is based on the 8 bit EAP message ID

code in the requests and matching responses. To support

several parallel authenticators, it would be necessary to

select unique message IDs to the outgoing requests, and

to replace the message IDs with the original ones as

responses are received. Since this functionality is usu-

ally not needed, the added complexity and kernel level

state just seemed unnecessary.

Consequently, the author revised the base EAPOL

module so that it supports only one authenticator hook

and delivers all received EAP response packets to this

hook. This serves very well integrated authentication

systems where there is a back-end server. It is still possi-

ble to reintroduce the original structure by implement-

ing an additional netgraph node that keeps track of

outstanding requests and performs the necessary ID

conversions.

3.3 User level EAP programs

As already discussed, the architecture allows the differ-

ent EAP authentication protocols to be implemented as

distinct user level programs. At the client (supplicant)

side, the program simply receives EAP requests from

the EAPOL netgraph node, processes them, and sends

back EAP responses. If desired, the program can easily

implement a user interface to request information from

the user.

At the server (authenticator) side the situation is

slightly more complex. Firstly, the authenticator must

keep track of outstanding requests, based on the mes-

sage IDs. Secondly, a single program usually wants to

support several different authentication protocols, for

example, since it wants to connect to a back-end authen-

tication server. Furthermore, the program may need

additional information about the client, such as the

MAC address and the physical interface through which

the packet was received. 

The first two needs are covered by the prototype sys-

tem. However, we do not currently pass information

about the interface, nor the MAC address, to the user

level. In the simple scenarios it is not needed, since the

required information is passed directly within the kernel

between the modules. On the other hand, we are plan-

ning to modify ng_socket so that it is able to pass

metadata to the user level and vice versa. Once that

facility is available, it becomes possible to pass the
MAC address and interface index in sockaddr_dl.

That would even allow future interoperability with PPP

EAP.

In the simplest case, a server side EAP program sim-

ply receives EAP responses from the EAPOL netgraph

node, converts them into RADIUS requests, and sends

them to the RADIUS server. Similarly, it receives EAP

requests within RADIUS packets from the RADIUS

server, converts them back, and sends down to the

EAPOL module. The EAP program does not need to

take care of retransmissions, since the underlying

EAPOL state machine takes care of that.

An alternative design would be to use locally authen-

tication data, such as passwords or OTP keys. In that

case, the authenticator module would receive an EAP

identity response, look up the user from the local

authentication database, create state, send an appropri-

ate EAP request, and wait for a response. Once it

receives a matching response, it would compare the

received authenticator against the expected one, and

either pass or reject the user. For an example of such a

module, see Section 4.3.

3.4 MAC filter netgraph node

In addition to supporting the EAPOL protocol, an

802.1x authenticator also needs to include the function-

ality that blocks unauthenticated clients from communi-

cating with the network behind the access point. To sup-

port this, we have implemented another netgraph node,

the MAC filter. The MAC filter allows incoming packets

to be routed to different hooks depending on the source

MAC address. If there is no matching hook, the packets

are passed to a default hook. If no other node is con-

nected to the default hook, the packets are simply

dropped. 

In addition to allowing packets to be screened by their

source MAC address, as required by base 802.1x, the

design also supports more sophisticated modes of opera-

tion. Basically, different clients can be classified in dif-

ferent categories, and handled appropriately. This allows

different service classes for different packets and direct

bridging some packets to an Ethernet-level tunnel while

other packets are allowed to reach the local IP routing

layer. One possible scenario, multioperator support, is

described in briefly in Section 5.3.



4  FreeBSD implementation

In this section we describe the implementation in detail.

Due to the space available, we mainly describe the de-

sign related to the netgraph facility. The rest of the im-

plementation is straightforward and does not really need

much comment at the implementation level. In this sec-

tion, all reported object code figures refer to code com-

piled in FreeBSD 4.5-STABLE on i386, using the sup-

plied GNU gcc 2.95.3 tool chain.

4.1 EAPOL netgraph node

The EAPOL netgraph node is a new netgraph node that

implements the EAPOL protocol as defined in IEEE

802.1x draft 11 [1]. However, since EAPOL includes a

few layering violations, the EAPOL node is forced to

have some rudimentary understanding of the protocol

above, EAP, as well. That is, an EAPOL implementation

is expected to send a few canned EAP packets (identity

request, forced success, and forced failure) as well as

understand the meaning of success and failure packets

as received from an authentication server. 

The implementation is divided into four source files

(see Table 1). ng_eapol.c implements the netgraph

related code, ng_eapol_base.c implements func-

tionality common to both authenticator and supplicant,

while ng_eapol_auth.c and ng_eapol_supp.c
the role specific functionality. We also considered sepa-

rating the authenticator and supplicant functionality into

separate netgraph modules, but given that over one third

of the code volume is spent on netgraph glue, we

decided to integrate them into a single node instead.

However, it is still possible to leave out either authenti-

cator or supplicant functionality (or both) through com-

pile-time options. This also simplifies testing.

Another design choice we faced was between a func-

tional vs. procedural programming style. In a more

functional style, the program is divided into separate

functions that have little if any side effects. Each piece

of code performs memory management separately. In a

pure functional programming language, such as Lisp or

ML, memory management is taken care by the runtime,

and side effects are virtually nonexistent. In a more pro-

cedural style, procedures act on data structures, and

memory management centers around the them.

In our case, each netgraph node is separately respon-

sible of either passing all packets received to another

node, or explicitly freeing the mbuf and meta objects

that comprise the packet. In the first version of the code,

the actual code for these operations was distributed to

the point of code where the decision was made. A sim-

plified example is shown in Figure 7, above. This led to

a situation where it was fairly hard to ensure that there

was no memory leaks, since a single function was

forced to free the mbuf and meta sometimes while

sometimes delegating this to the called functions. 

After realizing this, the code was refactored leading

to a design where the packet is either forwarded or freed

centrally at the very first function where the packet

enters the node, ng_eapol_rcvdata. This makes

sure that there are no memory leaks, but this also neces-

sitates that, instead of passing mbufs, callers pass a

pointer to the original mbuf pointer, and an output

parameter that specifies a netgraph hook. If the returned

hook is non-NULL, the packet is passed to the hook

returned. The resulting code is depicted in Figure 8, on

the next page.

In the refactored code, the metadata does not need to

be passed around any more (unless it is used, or course),

File name
Source 
lines

Object code size

ng_eapol.c 1038 3980 + 164

ng_eapol_base.c 255 1332 + 68

ng_eapol_auth.c 658 2756 + 508

ng_eapol_supp.c 552 2432 + 372

ng_eapol_macfilter.c 89 372 + 0

ng_eapol.h 77

ng_eapol_base.h 326

Total ng_eapol.ko 2995 19013 + 1220

Table 1: The EAPOL netgraph module

Figure 7: Result of functional programming style

handle_eapol(...,
    struct mbuf *m, 
    meta_p meta) {
  struct eapol_hdr *ep = mtod(...);

  switch (ep->eapol_code) {
  case EAPOL_CODE_EAP:
    return handle_eap(.., m, meta);
  case EAPOL_CODE_LOGOFF:
    eapolp->eapol_state = LOGOFF;
    NG_FREE_M(m);
    NG_FREE_META(meta);
    return 0;
  ...
  }
}



and freeing the packet is replaced by setting the next

hook output parameter nhook to NULL, thereby signal-

ling that the packet should be freed and not passed on.

Passing mbuf ** instead of mbuf * is necessitated

by some mbuf routines explicitly freeing the mbuf in the

case of mbuf shortage. By passing a pointer to the mbuf

pointer, we avoid freeing mbufs twice in those cases.

Thus, the basic lesson learned was that the functional

programming style that the author is used to use with

languages that include garbage collection just does not

work when you have to take care of memory manage-

ment yourself. It is much better to centralize the actual

code that manages memory, and use extra parameters to

signal the decision of what to do from the actual deci-

sion point to the centralized piece of code.

Other than the issues with granularity and program-

ming style, implementing the EAPOL node was pretty

straightforward translation of the standard specification

into working code.

4.2 MAC filter netgraph node

The MAC filter node, ng_macfilter, is a fairly sim-

ple mux/demux. It is build around an ordered table of

MAC addresses. Each address in the table is annotated

with the index of an upper netgraph hook. All packets

received from any of the upper hooks are passed directly

to the lower hook. On the other hand, whenever a packet

is received from the lower hook, the source MAC ad-

dress is inspected to see if it matches with any of the ad-

dresses in the table. If a match is found, the packet is

passed to the indicated upper hook. If no match is found,

the packet is passed to the default upper hook. 

4.3 User level modules

To test the netgraph modules and to implement one of

our usage scenarios, we implemented EAP OTP authen-

ticator and supplicant modules. These modules both

work on the user level, and rely on a small new library,

libeap. They also utilize the libskey library

present in FreeBSD. 

As Table 3 shows, the actual sizes of the user level

programs, as reported by size(1), are extremely

small. 

4.4 Overall experiences with netgraph

This project was the first time when the author used net-

graph, even though he had some prior experience in

working with kernel level code. In general, netgraph

turned out to be a very well designed facility that

boosted the project productivity considerably. The main

benefit was the no-hassle startup, and the ability to write

all the code as loadable kernel modules. That is, once

the author decided to use netgraph, the first null version

of the to-be EAPOL module was loaded into the kernel

within a couple of hours, most time spent on reading

netgraph documentation. The documentation was clean

and concise; the only part that the author found lacking

was the usage examples, which were somewhat hard to

understand. That led to some unnecessary work before

File name
Source 
lines

Object code size

ng_macfilter.c 792 2032 + 100

ng_macfilter.h 60

Total ng_macfilter.ko 852 4110 + 200

Table 2: The macfilter module

Figure 8: Refactored code

handle_eapol(...,
    struct mbuf **mp, 
    hook_p *nhook) {
  struct eapol_hdr *ep = mtod(...);

  switch (ep->eapol_code) {
  case EAPOL_CODE_EAP:
    return handle_eap(.., mp, nhook);
  case EAPOL_CODE_LOGOFF:
    eapolp->eapol_state = LOGOFF;
    *next_hook = NULL;
    return 0;
  ...
  }
}

File name
Source 
lines

Object code size

libeap/eap_auth.c 144 1020 + 0 + 0

libeap/eap_peer.c 165 788 + 0 + 0

eap-opie/opie.h  25

eap-opie/opie_calc.c 108 436 + 48 + 228

eap-opie/opie_auth.c 149 940 + 0 + 1536

eap-opie/opie_peer.c 112 764 + 0 + 1536

opie_auth binary 10212 bytes 5125 + 380 + 2348

opie_peer binary 9575 bytes 4553 + 368 + 2116

Total source code 703 lines

Table 3: The user level modules



really understanding how to use the ngctl program

and how the generic netgraph command messages such

as mkpeer or connect work. In general, it looks like

the netgraph facility provides an extremely good envi-

ronment for implementing and connecting together sub-

IP protocols in FreeBSD.

5  Usage scenarios

In this section, we describe three different advanced us-

age scenarios. These all go beyond those intended to be

implemented by the base IEEE 802.1x standard, which

is mainly meant to protect corporate intranets from out-

siders. In the first scenario, we outline a community

membership based authorization model, where members

of a community may use the network regardless of their

identity. In the second scenario we outline how to imple-

ment a pre-paid, pay-per-use scenario suitable for early

public WLAN adopters at airports and hotels. Finally, in

the last scenario we outline how to introduce multioper-

ator support into a WLAN access network.

The different scenarios have different threat and trust

models. We discuss the security needs of the scenarios

only briefly; more thorough treatment of the underlying

trust models is beyond the scope of this paper.

None of these scenarios have been fully implemented.

The second, pre-paid, pay-per use scenario is close to

being really implemented, but even there are bits and

pieces that are missing before it could be used in real

life. The scenarios are provided to exemplify how the

flexibility of the implementation allows it to be used as a

building block in fulfilling different needs.

5.1 Community membership

There are number of open WLAN communities, e.g. Se-

attle Wireless [8] or Electrosmog [9], where the mem-

bers of the communities are basically providing free

WLAN based Internet access to anybody passing by.

While these schemes work fine today, they are likely to

suffer from “the tragedy of the commons” phenomenon

as the number of WLAN users starts to grow. One possi-

ble way to continue the spirit of these networks while

protecting them from overuse is to limit their usage to

members, i.e., to create closed communities. 

Using 802.1x, EAP TLS [6], and certificates, it seems

to be fairly easy to create closed but decentralized com-

munities. Let us assume that there are a number of

founding members that create the community, and that

any two of the founding members can accept new mem-

bers to the community. One way of implementing such a

scheme is to use authorization certificates [10], and to

let all the founding members to sign a policy certificate

stating that any two members are eligible to introduce

new members. Thus, instead of having a single central-

ized certification authority (CA) the community would

distribute the responsibility among the founding mem-

bers.

All community access points would be connected to a

centralized repository that contains the initial policy cer-

tificates. When new users come to an access point, their

laptop would run EAP TLS and send the two certificates

signed by the founding members to the access point.

The access point would fetch the policy certificates cor-

responding to the signers of the user certificates, and

make the access decision normally using the KeyNote2

engine.

In this way, the community would limit access to its

members, while still retaining the decentralized nature

of deciding who is a member and who is not. This solu-

tion requires that KeyNote2 [10] is integrated to

OpenSSL [11], and that EAP TLS is created using the

OpenSSL library.

Compared to NoCatAuth [12][13], probably the best

known open source effort on this area, this 802.1x based

solution would be better in two ways. Firstly, the 802.1x

allows the authentication to happen without any user

intervention. Secondly, the use of authorization certifi-

cates allows the administration of group membership to

be completely decentralized.

5.2 Pre-paid, pay-per-use

As another scenario, we show how OTP [7] accounts

can be used as pre-paid pay-per-use value tokens, and

how it is possible to easily add a captive portal to the ac-

cess point. Integrating these with some kind of on-line

macropayment system, such as credit card payment, it is

possible to create a pre-paid, pay-per-use public WLAN

that is open to any users.

The first key element in this scenario is to realize the

potential of OTP accounts and re-authentication. That is,

the periodic re-authentication feature of 802.1x allows

the access point to request the next OTP token from the

user. Thus, we can establish a convention where a single

OTP token represents the value for a certain commodity,

e.g., for one minute of access time. Once the commodity

has been used up, the access point can request for the

next token in order to continue the service.

In this way, an OTP account can be used to represent

a pre-paid, pay-per-use account. The user buys such an

account with a credit card or some other means, and gets



the account name and the OTP seed value. In most cases

there is no value in requesting a password from the user,

and therefore it is possible to automate the whole pur-

chase process. For example, a small web browser plug-

in can be used to transfer the account from the shop to a

preset location at the user’s hard disk. The EAP OTP

supplicant is then able to select the next unused account

from this location.

The final step is to make it easy to buy new OTP

accounts. It must also be easy to become a user, i.e. to

buy the initial OTP account and, if necessary, download

the 802.1x and EAP OTP implementations. This can be

easily accomplished with a captive portal. As we

described in Section 3.4, our MAC filter module allows

packets arriving from unauthenticated users to be passed

on instead of being dropped. The netgraph facility

allows these packets to be passed to an pseudo-interface,

which can then pass them to IP. Using the FreeBSD IP

firewall, ipfw, it is then easy to trap HTTP all packets

arriving from the specific pseudo-interface, and use a

forwarding rule (fwd) to pass them to a transparent web

proxy such as transproxy [14]. The transparent proxy

can then tunnel the packets to a web server, which can

be located either at the access point itself or somewhere

else. 

Thus, with suitable configuration it is possible to cre-

ate a situation where the only services provided to an

unauthenticated client are DHCP and the captive portal.

This effectively leads to a situation where the client is

served an IP address, but no matter which web site the

users attempt to access, they will be redirected to the

captive portal. The captive portal web site, in turn, pro-

vides the possibility to buy OTP accounts and to down-

load all necessary software.

5.3 Multioperator support

As a final usage example, we show how the extensibility

of our implementation can be used to support a multi-

operator scenario where a single WLAN network is

shared between multiple ISPs and other service provid-

ers. In this case, we need a slightly more intelligent EAP

authenticator. This authenticator needs to be able to talk

to multiple back-end authentication servers — RADIUS

seems to be fine for that — and, more importantly, to

command the MAC filter to connect the clients to differ-

ent upstream netgraph hooks depending on the com-

mands received from the authentication servers. A possi-

ble setup is depicted in Figure 10.

The upstream hooks are all individually connected to

a subgraph that transports the packets to the ISP. In a

very simple (but unrealistic) example, each ISP would

have a separate Ethernet interface in the access point. In

that case, the hooks are simply connected to the Ethernet

interface, and the access point just bridges the packets,

selecting the outgoing interface based on the source

MAC address. In a more realistic case, there would be

some netgraph subgraph that tunnels the packets to the

ISP, using e.g. 802.1q VLAN or PPPoE. Netgraph

allows one to build such subgraphs fairly easily. As a

result, all the data packets would be handled inside the

kernel, potentially leading to fairly good performance.

Figure 9: Pre-paid, pay-per-use access point
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6  Performance measurements

To get a feeling about the real life performance of the

technology and implementation, we implemented a lim-

ited pay-per-use WLAN scenario. In the setting we as-

sumed that the laptop user already has purchased the

necessary tokens (the OTP account) and is merely con-

necting to a network where the tokens can be used. The

setting is illustrated in Figure 11, below. In the perfor-

mance test, we used an old 400 MHz PII 64 Mb laptop,

with Lucent WaveLAN silver card, an Apple Airport

(graphite) 802.11b basestation, and an old 350 MHz

Celeron 128 Mb desktop PC. The Apple Airport was

configured to be a transparent bridge.

Using the given configuration, we measured connec-

tion setup time and throughput, both without and with

our 802.1x implementation. The results are given in

Table 4. The connection setup measures the time, in sec-

onds, from inserting the Lucent WLAN card to the lap-

top to the time when the laptop received the IP address

via DHCP. The bulk transfer throughput measures the

additional overhead caused by the MAC filter in the ker-

nel, using FTP file transfer as the measurement tool. The

values are averages over five measurements. 

The results show that the overhead is negligible. The

connection setup takes 2–3 seconds longer, an increase

of roughly 10%. This is consistent with our other mea-

surements that showed the 802.1x exchange itself taking

1.1 ± 0.4 seconds on the average. The performance tests

gave slightly better performance when using 802.1x,

possibly due to interactions with 802.3 or 802.11b queu-

ing and retransmission algorithms.

7  Open issues and future work

7.1 Security shortcomings

Many people, including Mishra and Arbaugh [15], have

argued that 802.1x security is flawed since it does not

provide per-packet integrity and authenticity. Depending

on setting, that may allow session hijacking, basically

allowing an attacker to take over a MAC address that be-

longs to a legitimate and authenticated user. 

We completely agree with the basic reasoning. To be

properly secure in a shared medium environment, such

as 802.11 WLAN, 802.1x authentication should be

tightly integrated with a link-level integrity system that

would use different session keys for different clients.

However, today there are no standards for such link-

level encryption. Besides, in some of the given scenar-

ios, such as the pre-paid pay-per-use, the benefits a ses-

sion hijacker might get from its attack may be

questioned. However, the potential benefit depends on

the specific characteristics of the underlying link-layer;

if the link-layer makes it impossible for two clients to

use the same MAC address at the same time, the attacker

would have difficulties to use more than one pre-paid

time slot.

If we really want to secure the wireless link against

intruders, there are a few possible approaches. One

would be to develop further the proposed IEEE Robust

Security Network (RSN) architecture along the lines

suggested in [15]. That would involve using the Wireline

Equivalent Privacy (WEP) enhanced with changing keys

derived from keying material received via 802.1x.

Another possibility would be to use IPsec Authentica-

tion Header (AH) between the client and the access

point, deriving the AH session keys from the keying

material provided by e.g. TLS over EAP. Still a different

approach would be to use IPsec IKE instead of 802.1x in

authenticating the clients, and then use AH. However, all

such approaches are beyond the scope of this paper.

Thus, within the scope of this work we have limited

ourselves to checking the MAC addresses. We acknowl-

edge that this is not always sufficient and definitely not

the right long term solution. However, for our main sce-

nario, pre-paid pay-per-use, the achieved security level

seems appropriate for the time being. The only addi-

tional security feature that we are considering to add in

the future is to combine MAC level and IP level filter-

ing. That blocks simpler attacks where the attacker just

sends packets using the same MAC address as some

other node but a different IP address.

Measurement
Without 
802.1x

With 
802.1x

Connection setup 22 ± 2 s 24 ± 3 s

Bulk transfer throughput 830 KB/s 820 KB/s

Table 4: Performance results

Figure 11: Performance Measurement Setting
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7.2 From OTP to micropayments

From the open source and grassroots movement point of

view, the most lucrative usage scenario would be one

where the good properties of the closed community sce-

nario and the pre-paid pay-per-use scenario would be

combined. However, it is not at all clear how such a

scheme could be achieved. For example, we have con-

sidered to putting a full-fledged three-party micropay-

ment protocol over the top of EAP, and passing micro-

payment tokens from the client to the access point. That

would allow the client to pay to the access point, and the

access point owner would then be able to use the tokens

collected by the access point somewhere else. Unfortu-

nately there seems to be problems in the trust structure,

and more research is needed to figure out how such a

structure and decentralized administration could be

combined.

8  Conclusions

In this paper, we have shown that the IEEE 802.1x stan-

dard can be used to solve useful problems beyond its

original purpose. Furthermore, we have shown that the

FreeBSD netgraph facility makes it very easy to imple-

ment the protocol, and at the same time to provide a

flexible architecture that allows the same software mod-

ules to be applied to widely varying purposes. In partic-

ular, we have illustrated that, in addition to user authen-

tication, unmodified 802.1x can be used for pre-paid,

pay-per-use access. We have also shown that is fairly

easy to support multiple operators at a single Wireless

LAN using the FreeBSD netgraph facility.
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Availability
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grams, together with some scripts used for testing and
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