
USENIX Association

Proceedings of the
FREENIX Track:

2002 USENIX Annual Technical
Conference

Monterey, California, USA
June 10-15, 2002

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



Simple Memory Protection for

Embedded Operating System Kernels

Frank W. Miller ∗

Department of Computer Science & Electrical Engineering
University of Maryland, Baltimore County

Abstract

This work describes the design and implemen-
tation of memory protection in the Roadrun-
ner operating system. The design is portable
between various CPUs that provide page-level
protection using Memory-Management Unit
(MMU) hardware. The approach overlays pro-
tection domains on regions of physical memory
that are in use by application processes and the
operating system kernel. An analysis of code
size shows that this design and implementation
can be executed with an order of magnitude
less code than that of implementations provid-
ing separate address spaces.

1 Introduction

This work presents the design and implementa-
tion of a memory protection subsystem for an
operating system kernel. It may be useful for
systems that do not or cannot utilize paging
and/or swapping of memory to secondary stor-
age. The types of computer systems in use today
that have such a requirement are generally em-
bedded. The primary goals of the design and im-
plementation are simplicity and small code size.

There are a variety of commercial and academic
embedded operating system kernels available to-
day. Many do not implement memory protec-
tion of any kind. This work presents a general,

∗Author’s current address: sentitO Networks,
Inc., 2096 Gaither Road, Rockville, Maryland 20850
Email:fwmiller@cornfed.com

page-based mechanism that can be used to add
memory protection to these kernels. The ini-
tial design and implementation was performed
in the Roadrunner operating system kernel, an
embedded kernel similar to the VxWorks and
pSOS kernels.

Virtually all modern operating system kernels
that make use of MMU hardware utilize the ad-
dress translation mechanism to implement vir-
tual addressing and separate address spaces.
The notable exceptions have been embedded
operating system kernels. Bypassing address
translation and making use strictly of the mem-
ory protection mechanisms provided by MMU
hardware yields a simple memory protection de-
sign that can be implemented with an order of
magnitude less code than designs that provide
separate virtual address spaces. This code re-
duction is achieved even when a comparision is
done excluding the code for paging and swap-
ping.

The design uses page-based memory protection
to 1) limit access by one process to the memory
regions of other processes and 2) limit access by
user processes to kernel memory. It does not
utilize separate virtual address spaces or pro-
vide the illusion that physical memory is larger
than it really is by using demand-paging and/or
swapping.

The design provides protection portably. It can
be implemented on a variety of different MMU
hardware devices and the design implications as-
sociated with several MMUs are discussed.

The remainder of this work is organized as fol-



lows. Section 2 provides an introduction to the
Roadrunner operating system in which the new
memory protection mechanism is implemented.
Section 3 provides the specifics of the design and
implementation of the memory protection sub-
system. Section 4 discusses the design points
surrounding MMU designs found in three popu-
lar CPUs. Section 5 presents a set of measure-
ments yielded by the initial implementation of
this protection scheme in the Roadrunner oper-
ating system. Section 6 provides a brief survey
of related work and Section 7 draws the work to
its conclusion.

2 Roadrunner Design

There are three basic Roadrunner abstractions:

Processes: The basic unit of execution is the process.
The Roadrunner kernel provides a POSIX-like pro-
cess model for concurrency.

Files: A variety of I/O operations, including inter-
process communications and device access are im-
plemented using a multi-layered file system design.

Sockets: An implementation of the Internet protocols
is available through a BSD Sockets interface.

These abstractions have an Application Pro-
gramming Interface (API) that is exported
through the kernel system call interface.

An important distinction between this design
approach and that of separate address spaces
is that user code must either be position-
independent or have relocations performed at
load time. The Roadrunner implementation
performs relocation by default so position-
independent code (PIC) is not required.

Memory Protection Operations

This work describes the design and implemen-
tation of the memory protection subsystem
present in the Roadrunner operating system ker-
nel [2, 4]. The basic design principle is that logi-
cal (or virtual) addresses are mapped one-to-one

to physical addresses. This means that the value
of logical address is the same as its correspond-
ing physical address and that all processes reside
in the same logical as well as physical address
space. One-to-one mapping simplifies the mem-
ory management subsystem design dramatically.
In addition, when the indirection represented by
address translation is removed, the programmer
can reason about the actual logical addresses as
physical addresses and that can be useful for
dealing with memory-mapped elements.

Protection is based on domains. A domain is a
set of memory pages that are mapped using a
set of page tables. In addition, a set of mem-
ory pages associated with the operating system
kernel called the kernel map is kept. The kernel
map is mapped into all domains but is accessible
only in supervisor mode.

No address translation is performed. Only the
protections attributes associated with page ta-
ble entries are used. The basic operations that
can be performed are listed as:

• Insert the mapping of a page into a domain

• Remove the mapping of a page from a domain

• Insert the mapping of a page into the kernel map

• Remove the mapping of a page from the kernel map

• Update a domain to reflect the current mappings
in the kernel map

Table 1 lists the routines in the Roadrunner ker-
nel that implement these basic operations.

3 The Roadrunner Implementation
of Memory Protection

There are three basic memory management data
structures used in Roadrunner:

1. Region Table: an array of regions that track the
allocations of all the physical memory in the system

2. Page Tables: each process belongs to a protection
domain that is defined by the page tables that are
associated with that process

3. Kernel Map: a list of mappings that are entered
into all the page tables in the system but are ac-
cessible only when the CPU is in supervisor mode



Table 1: Page table management routines

vm map(pt, page, attr)

Map a single page into a set of page tables
vm map range(pt, start, len, attr)

Map a sequence of contigous pages into a set
of page tables

vm unmap(pt, page)

Remove the mapping for a single page
from a set of page tables

vm unmap range(pt, start, len)

Remove the mapping for a contiguous
sequence of pages from a set of page tables

vm kmap insert(entry)

Insert a sequence of pages into the kernel map
vm kmap remove(entry)

Remove a sequence of pages from the kernel
map

vm kmap(pt)

Update specified page tables to reflect the
current mappings in the kernel map

These three data structures are used in conjunc-
tion by the kernel memory management routines
that are exported for use by the rest of the ker-
nel subsystems and by user applications through
the system call interface.

Regions

The basic unit of memory allocation is the re-
gion. A region is defined as a page-aligned, con-
tiguous sequence of addressable locations that
are tracked by a starting address and a length
that must be a multiple of the page size. The
entire physical memory on a given machine is
managed using a boundary-tag heap implemen-
tation in Roadrunner. Figure 1 illustrates the
basic data structure used to track the alloca-
tions of memory regions. Each region is tracked
using its starting address, start, and length,
len. Each region is owned by the process that
allocated it originally, or by a process to which
ownership has been transferred after allocation.
The proc field tracks which process currently
owns the region. Two double-linked lists of re-
gion data structures are maintained, using the
prev and next fields, each in ascending order of
starting address. The first is the free list, those
regions that are not allocated to any process.

The second is the allocated list, those regions
that are being used by some process.

len

prev

next

start

len

proc

region{}

Figure 1: A region on one of the heap lists

Table 2 lists the routines used to manage the
heap. The valid region() routine provides a
check for whether a pointer, specified by the
start parameter, corresponds to the starting
address of some region. It also serves as a gen-
eral lookup routine for locating a region data
structure given a starting address. The rest
of the routines take a pointer to a region data
structure like the one illustrated in Figure 1 as
their first parameter. The region clear() rou-
tine sets the fields of a region data structure to
initialized values. The region insert() rou-
tine inserts a region in ascending starting ad-
dress order into a double-linked region list, spec-
ified by the list parameter. This routine is
used to insert a region into either the free or al-
located region lists. The region remove() rou-
tine removes a region from the specified list.
The region split() routine takes one region
and splits it into two regions. The size param-
eter specifies the offset from the beginning of the
original region where the split is to occur.

Page Tables

The kernel keeps track of the page tables present
in the system by maintaining a list of page ta-
ble records. Figure 2 illustrates the page table
record data structure and the associated page
tables. The page table records are kept in a
single-linked list using the next field. If multiple
threads are executed within a single protection



Table 2: Region management routines

valid region(start)

Check whether pointer corresponds to the
starting address of a region

region clear(region)

Initialize a region data structure
region insert(region, list)

Insert a region into a double-linked region list
region remove(region, list)

Remove a region from a region list
region split(region, size)

Split a region into two regions

domain, the refcnt field tracks the total num-
ber of threads within the domain. The pd field
points to the actual page table data structures.
Note that there is a single pointer to the page
tables themselves. This design implies that the
page tables are arranged contiguously in mem-
ory. An assessment of current MMU implemen-
tations in several popular CPU architectures in-
dicates that this is a reasonable assumption.
More details on the page table structures of sev-
eral popular processor architectures are given in
Section 4.

pt_rec{}

next

refcnt

pd
page tables

Figure 2: A page table record and its associated
page tables

The first four routines in Table 1 implement the
basic protection mechanism. They enter and re-
move address mappings to and from page tables,
respectively. All four of these routines operate
on a set of page tables specified by their first pa-
rameter, pt. The vm map() routine provides the
fundamental operation of inserting a mapping
for a single page into a set of page tables. The
page found at the location specified by the start

parameter is inserted with the protection at-
tributes specified by the attr parameter into the
specified page tables. vm map range() is pro-
vided for convenience as a front-end to vm map()
to allow mapping a sequence of contiguous pages
with a single call. The start parameter spec-
ifies the address of the first of a contiguous se-
quence of pages. The len parameter specifies
the length, in bytes, of the page sequence. The
initial implementation or the vm map range()
routine makes calls to vm map() for each page
in the specified range. This implementation is
obviously ripe for optimization.

The vm unmap() routine balances vm map() by
providing the removal of a single page mapping
from a page table. The page parameter speci-
fies the starting address of the page that is to
be unmapped. vm unmap range() is provided
as a front-end to vm unmap() to allow removal
of a sequence of contiguous entries with a sin-
gle call. start specifies the starting address
of the page sequence and len gives the byte
length of the page sequence to be unmapped.
The vm unmap range() routine also make indi-
vidual calls to vm unmap() for each page in the
specified range and can also be optimized.

The Kernel Map

In some virtual memory system designs that
provide separate address spaces, the kernel has
been maintained in its own address space. In the
Roadrunner system, the memory used to hold
the kernel and its associated data structures are
mapped into all the page tables in the system.
Kernel memory protection is provided by mak-
ing these pages accessible only when the CPU
has entered supervisor mode and that happens
only when an interrupt occurs or a system call
is made. The result is that system calls require
only a transition from user to supervisor mode
rather than a full context switch.

The kernel map is an array of kernel map entries
where each entry represents a region that is en-
tered in the kernel map. Figure 3 illustrates the
structure of one of these kernel map entries and
the region of memory that it represents. The



start and len fields track the starting address
and length of the region. The attr field stores
the attributes that are associated with the pages
in the region. This information is used when the
pages are entered into a set of page tables by the
vm kmap() routine.

start

len

attr

vm_kmap_entry{}

len

Figure 3: A kernel map entry and its associated
memory region

The last three routines in Table 1 provide
the API for managing the kernel map. The
vm kmap insert() routine enters a kernel map
entry, specified by the entry parameter, into
the kernel map. The vm kmap remove() routine
removes a previously entered kernel map entry,
also specified by the entry parameter, from the
kernel map. The vm kmap() routine causes a set
of page tables, specified by the pt parameter, to
be updated with the current kernel map entries.

Page Faults

The most important function of page faults in
a system using separate virtual address spaces
is demand paging. Demand paging of user code
can also be done using this approach under two
additional conditions. First, all of the physical
memory required to hold the program must be
allocated when the program is started. Second,
code relocation needs to be performed on-the-
fly when sections of the program were loaded
on-demand.

If demand paging of user code is implemented,
page fault handling is similar to systems where
separate virtual address spaces are used. When

a page fault occurs, the appropriate kernel ser-
vice determines whether the fault occured due
to a code reference and if so, it loads the appro-
priated section of code and restarts the faulting
process.

The initial Roadrunner implementation does not
currently support demand paging of program
code. As such, page fault handling is trivial,
resulting in the termination of the process that
caused the fault.

Kernel Memory Managment

Table 3 lists the routines that are used by kernel
subsystems and by applications through the sys-
tem call interface to allocate and free memory
from the global heap.

Table 3: Kernel memory management routines

malloc(size)

Allocate a region of memory in the calling
process’s protection domain

free(start)

Free a region of memory previously allocated
to the calling process

kmalloc(size)

Allocate a region of memory for the kernel
kfree(start)

Free a region of memory previously allocated
to the kernel

The malloc() routine performs an allocation
on behalf of a process by performing a first-fit
search of the free list. When a region is found
that is at least as large as a request specified by
the size parameter, it is removed from the free
list using the region remove() routine. The
remainder is split off using the region split()
routine and returned to the free list using the
region insert() routine. The region satisfy-
ing the request is then mapped into the pro-
tection domain of the calling process using the
vm map range() routine.

The free() routine returns a previously allo-
cated region to the heap. After obtaining the
region corresponding to the specified start pa-
rameter using the valid region() lookup, the



region insert() routine is used to enter the
region into the free list. The inserted region is
then merged with its neighbors, both previous
and next if they are adjacent. Adjacency means
that the two regions together form a contiguous
sequence of pages. Merging is done to reduce
fragmentation.

The kmalloc() routine allocates some memory
on behalf of the kernel. After obtaining a re-
gion from the heap in a manner similar to the
malloc() routine based on the specified size
request, an entry is placed into the kernel map
using the vm kmap insert() routine. This ac-
tion records the new region as an element of the
kernel map. Subsequent calls to vm kmap() will
cause the new region to be accessible as part of
the kernel when a process is running in supervi-
sor mode.

The kfree() routine first removes the kernel
mapping for the region specified by the start
parameter using vm kmap remove(). The re-
gion is then placed back on the free list using
region insert().

4 Assessing Various Memory
Management Architectures

The Roadrunner memory protection system is
designed to be portable. It makes few assump-
tions about the underlying hardware and can be
ported to a variety of architectures. In this sec-
tion, some of the details encountered when im-
plementing this memory protection mechanism
on several processors are presented. The initial
implementation effort has focused on the IA-32
architecture but some design elements necessary
for two other CPU architectures are also dis-
cussed.

These details are hidden by the interface given in
Table 1. The interface to the memory protection
subsystem remains the same when Roadrunner
runs on different processors but the underlying
implementation of the interface is different.

Intel IA-32

The initial implementation effort has been fo-
cused on the Intel IA-32 (or x86) Instruction Set
Architecture (ISA) [3]. This architecture pro-
vides hardware support for both segmentation
and paging. The segmentation features are by-
passed completely. This is done by initializing
all the segment registers to address the entire 4
Gbyte address space.

The hardware has a fixed page size of 4 Kbytes
and a two-level hierarchical page table structure
is used. The first level is a single page called the
page directory. Each entry in the page directory
contain a pointer to a second-level page table.
Each entry in the page table contains a pointer
to a target physical page.

Since the Roadrunner memory protection mech-
anism maps logical addresses one-to-one to
physical addresses, the kernel need only main-
tain in the worst case, the page directory and
enough pages to cover the physical memory in
the machine. As an example, each second-level
page table addresses 4 Mbytes of physical mem-
ory so a machine with 64 Mbytes of main mem-
ory requires 1 page for the page directory and
16 pages (or 64 Kbytes) for second-level page
tables or a total of 17 total pages for each set of
page tables.

The current implementation allocates page ta-
bles statically using this worst-case formulation.
Future enhancements will provide demand-
allocation of second-level page table pages.
Demand-allocation occurs when a vm map() op-
eration is executed and the page directory indi-
cates that no second-level page table has been
allocated to handle the address range in which
the specified address to be mapped falls.

Motorola PowerPC

The Motorola PowerPC CPU [5] is a Reduced-
Instruction Set Computer (RISC) ISA that is
popular in the embedded world. This archi-
tecture provides three hardware mechanisms for



memory protection, segmentation, Block Ad-
dress Translation (BAT), and paging. Segmen-
tation is bypassed in a manner similar to that
of the IA-32 ISA. BAT is intended to provide
address translations for ranges that are larger
than a single page. This mechanism, included
to allow addressing of hardware elements such
as frame buffers and memory-mapped I/O de-
vices, is also bypassed by initializing the BAT
array such that no logical addresses match any
array element.

The PowerPC also uses a 4 Kbyte page size but
instead of a two-level hierarchy, implements a
hashed page table organization. Some bits of
the logical address are hashed to determine the
page table entry that contains the correspond-
ing physical address. Page Table Entries (PTEs)
are organized into Page Table Entry Groups
(PTEGs). There are two hashing functions, pri-
mary and secondary, that are used to determine
which PTEG a logical address resides in. The
primary hash function is applied first and the re-
sulting PTEG is searched for the matching PTE.
If the search fails, the secondary function is ap-
plied and a second PTEG is searched. If either
search succeeds, the resulting PTE yields the
corresponding physical address. If both searches
fail, a page fault occurs.

Since the implementation of the page tables is
irrelavent behind the generic interface, this or-
ganization does not provide any functional dif-
ference to that of the IA-32 two-level hierarchy.
However, it does have implications for physical
memory usage. For the hardware to locate a
PTEG in main memory, all pages in the page
tables must be laid out contiguously in physi-
cal memory. This constraint does not exist in
the IA-32 design, i.e. the location of second-
level page table pages can be arbitrarily placed
in physical memory.

For separate, demand-paged, virtual address
spaces, the hash table organization has the ad-
vantage of allowing the overall size of the page
tables to be varied with respect to the desired
hit and collision rates. Table 7-21 in [5] dis-
cusses the recommended minimums for page ta-
ble sizes. In general, these sizes are larger than
those required for the IA-32 CPU, e.g. 512

Kbytes of page table is recommended for a main
memory size of 64 Mbytes. Note however, that
these recommendations are tailored to providing
a separate 32-bit logical address space to each
process.

In the Roadrunner mechanism, a different calcu-
lation is required. For a given amount of main
memory, the page table should be given a max-
imum size that allows all of the physical mem-
ory pages can be mapped simultaneously. This
value is the same as the size quoted for the IA-
32 implementation. In a manner analogous to
demand-allocation of second-level page tables,
the size of the hashed page table can be tai-
lored dynamically to focus on the actual amount
of memory allocated to a given process, rather
than the entire physical memory.

MIPS

Another popular RISC ISA is the MIPS core
[8]. There are a number of CPUs that are based
on the MIPS ISA but they fall into two broad
categories, based on either the MIPS R3000
and R4000 cores. There are variations on the
specifics of the PTEs for these two cores but the
basic principles are the same in both.

While the IA-32 and PowerPC architectures
provide hardware mechanisms for loading a PTE
into a Translation Lookaside Buffer (TLB) entry
when a page fault occurs, the MIPS architecture
requires the operating system kernel software to
perform this function. If an address is asserted
and a corresponding TLB entry is present, the
physical address is aquired and used to access
memory. If no matching TLB entry is present,
a page fault is signaled to the operating system
kernel.

The MIPS PTE is divided into three basic el-
ements, the Address Space Identifier (ASID),
the Virtual Page Number (VPN), and the offset
within the page. In Roadrunner, the ASID can
be used to reference the protection domain, the
VPN references a page within the domain and
the offset completes the physical address refer-
ence. The VPN is the upper bits of the logical



address and it is used as a key to lookup the
corresponding physical page address in the page
tables.

The MIPS architecture places no requirements
on the page table structure in main memory.
The operating system developer can tailor the
page table structure as desired. In Roadrunner,
a system targeted at resource-constrained appli-
cations, the goal is to minimize main memory
usage.

Management of the TLB is explicit and since do-
mains contain unique addresses, identifying en-
tries to be discarded when the TLB is updated
due to a context switch is made easier.

5 Measuring Memory Protection
Performance

The major advantage of the memory pro-
tection design presented in this work is its
simplicity. The Roadrunner design requires
roughly an order of magnitude less code to
implement the same function. The mem-
ory management code in the 2.2.14 Linux
kernel consists of approximately 6689 lines
of C found in the /usr/src/linux/mm and
/usr/src/linux/arch/i386/mm directories as
shipped with the Redhat 6.2 distribution [9].
The count for the Linux implementation ex-
plicitly excludes code that performs swap-
ping. The Roadrunner memory protection
implementation consists of 658 lines of C
source code in a set of files found in the
the roadrunner/sys/src/kern directory and
74 lines of IA-32 assembly found in the
roadrunner/sys/src/kern/asm.S source file.

The advantage of this approach would be unim-
portant if the performance of the design was
unacceptable. A series of measurements pre-
sented in Table 4 demonstrate that this ap-
proach presents extremely good performance.
The set of measurements was obtained using an
Intel motherboard with a 1.7 GHz Pentium 4
CPU, 512 Kbytes of second-level cache, and 256
Mbytes of RDRAM. All measurements are the

average of a large number of samples taken us-
ing the Pentium timestamp counter, which runs
at the resolution of the processor clock.

Table 4: Performance of Roadrunner Memory
Protection Operations

Average
Execution

Operation Time (µsec)

vm map() 0.15
vm map range() 4.22
vm unmap() 0.11
vm unmap range() 0.41
vm kmap insert() 1.27
vm kmap() 123.0
malloc() 1.45
free() 0.91
kmalloc() 3.24
exec() 1710.0
Context switch 1.71

The basic memory management routines pre-
sented in Table 1 provide the building blocks
for other routines and as such, need to oper-
ate very quickly. The all-important vm map()
and vm unmap() both exhibit execution times
between 100 and 150 nanoseconds. Even with
the naive implementation of vm map range()
where each page table entry requires a call to
vm map(), an average of 256 pages (for these
measurements) can be mapped in an average
time of approximately four microseconds. Clear-
ing page table entries is faster. Setting up
entries requires several logic operations to set
appropriate permissions bits. Clearing simply
zeros entries yielding the approximately 410
nanoseconds to to clear the entries for an av-
erage of 196 pages (for these measurements).

The kernel memory management routines pre-
sented in Table 3 fall into two categories.
malloc() and free() are called very often on
behalf of applications. These routines need to
perform better than the corresponding kernel
routines, kmalloc() and kfree(), which are
only used within the kernel to allocate data ar-
eas for kernel subsystems. All the routines have
latencies between 1 and 2 microseconds except
for kmalloc(). This operation is expensive since
it requires a call to vm kmap insert().



The latencies associated with vm kmap() and
exec() represent the most expensive operations
presented here. The prior operations represents
approximately 40 calls to vm unmap range().
The latter operation is a hybrid system call rep-
resenting a combination of the semantics associ-
ated with fork and execve in typical UNIX-like
systems. exec() loads a program and starts it
running as a new process in its own protection
domain. This operations requires a variety of
initializations in addition to setting up the pro-
tection domain. The value measured here ex-
cludes the load time of the program code.

6 Related Work

The design of the Roadrunner memory protec-
tion subsystem and the structure of this paper
were influenced most heavily by Rashid, et. al.
in [7]. However, the Mach VM system provides
separate, demand-paged, virtual address spaces
as compared to the single address space in Road-
runner. Also, the Roadrunner design does away
with the address map abstraction. The single
address space allows the use of the generic in-
terface given in Table 1, which is closer to the
Mach pmap interface, to be substituted for the
hardware-independent address map data struc-
ture and routines.

There is a significant body of work in the
area of Single-Address-Space Operating Systems
(SASOS) that is typified by the Opal system
developed at the University of Washington [1].
These systems generally seek to provide a single
virtual address space, that is, they still perform
a translation between the logical and physical
address.

The EMERALDS micro-kernel developed at the
University of Michigan [10] is an example of
a kernel designed specifically for the resource-
constrained environments in small-to-medium
sized embedded systems. The kernel includes
a traditional multi-threaded, process-oriented
concurrency model. The system maps the pages
associated with the operating system kernel into
the page tables of every process and uses the

user/supervisor transition to implement system
calls in a manner that is analogous to the use of
the kernel map in the Roadrunner design.

The Mythos microkernel [6] was developed as
a threads based system to support the GNAT
(Gnu Ada 9X translator) project. The kernel
provided a Pthreads-based interface for concur-
rency to applications through the kernel API in
a manner similar to the Roadrunner kernel. The
system did not provide memory protection how-
ever.

7 Conclusion

This work has presented the design and imple-
mentation of a new memory protection mech-
anism that provides traditional levels of pro-
tection using significantly less code than de-
signs that perform address translations. This
design can be added to existing embedded oper-
ating system kernels that do not currently pro-
vide memory protection easily due to its small
implementation effort. In addition, the design
is portable among CPU architectures, which
makes it even more attractive for use in these
kernels, since they tend to be available for sev-
eral different processors.

The Roadrunner operating system, in which the
first implementation was performed, is free soft-
ware, available under the GNU General Pub-
lic License (GPL), on the World-Wide Web at
http://www.cornfed.com.

References

[1] Chase, J., et. al., “Sharing and Protection in
a Single-Address-Space Operating System”, ACM
Transactions on Computer Systems, 12, 4, 1994,
pp. 271-307.

[2] Cornfed Systems, Inc., The Roadrunner Operating
System, 2000.

[3] Intel Corp., 80386 Programmer’s Reference Man-
ual, 1986.

[4] Miller, F. W., “pk: A POSIX Threads Kernel”,
FREENIX track, 1999 USENIX Annual Technical
Conference, 1999.



[5] Motorola Inc., PowerPC Microprocessor Family:
The Programming Environments for 32-Bit Micro-
processors, 1997.

[6] Mueller, F., Rustagi, V., and Baker, T., Mythos – a
micro-kernel threads opertating system, TR 94-11,
Dept. of Computer Science, Florida State Univer-
sity, 1994.

[7] Rashid, R., et. al., “Machine-Independent Vir-
tual Memory Management for Paged Uniproces-
sor and Multiprocessor Architectures”, Proc. of the
2nd Symposium on Architectural Support for Pro-
gramming Languages and Operating Systems (AS-
PLOS), ACM, 1987.

[8] Sweetman, D., See MIPS Run, Morgan Kaufmann
Publishers, Inc., 1999.

[9] Redhat, Inc., Redhat Linux 6.2.

[10] Zuberi, K. M., Pillai, P., and Shin, K. G., “EMER-
ALDS: a small-memory real-time microkernel”,
17th ACM Symposium on Operating System Prin-
ciples (SOSP99), 1999.


