
USENIX Association

Proceedings of the
FREENIX Track:

2002 USENIX Annual Technical
Conference

Monterey, California, USA
June 10-15, 2002

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



The Future is Coming: Where the X Window System Should Go

Jim Gettys
Cambridge Research Laboratory, Compaq Computer Corporation.

Jim.Gettys@Compaq.com

Abstract

The X Window System was developed as a desktop win-
dow system, in a large (for its time) campus scale net-
work environment. In the last few years, it has escaped
the desktop and appeared in laptop, handheld and other
mobile network devices. X from its inception has been
a network transparent window system, and should thrive
in this environment. Mobility forces a set of issues to
surface that were only partially foreseen in X’s design.
For one reason or other, the hopes for the design were
not entirely realized.

Our original view of X’s use included highly mobile
individuals (students moving between classes), and a
hope, never generally realized for X, was the migration
of applications between X servers. Toolkit implementers
typically did not understand and share this poorly enun-
ciated vision and were primarily driven by pressing im-
mediate needs, and X’s design and implementation made
migration or replication difficult to implement as an af-
terthought. As a result, migration (and replication) was
seldom implemented, and early toolkits such as Xt made
it very difficult. Emacs is about the only widespread ap-
plication capable of both migration and replication, and
it avoided using any toolkit.

You should be able to travel between work and home or
between systems running X at work and retrieve your
running applications (with suitable authentication and
authorization). You should be able to log out and “park”
your applications somewhere until you retrieve them
later, either on the same display, or somewhere else.
You should be able to migrate your application’s display
from a handheld to a wall projector (for example, your
presentation), and back again. Applications should be
able to easily survive the loss of the X server (most com-
monly caused by the loss of the underlying TCP connec-
tion, when running remotely).

There are challenges not fully foreseen: applications
must be able to adapt between highly variable display

architectures. Changes to the X infrastructure in recent
work make this retrofit into modern toolkits appear fea-
sible, enabling a much more dynamic view of applica-
tions. Also, applications must be able to adapt between
very different resolution displays (more than an order of
magnitude) and differing pointing devices.

I cover the changes and infrastructure required to realize
this vision, and hope to demonstrate a compelling part of
this vision in action. This vision provides a much more
compelling vision of what it means for applications to
work in your network. With the advent of high speed
metropolitan and wide area networks, and PDA’s with
high speed wireless networks, this vision will provide a
key element of the coming pervasive computing system.

1 Introduction

The X Window System [SG92] architecture lay fal-
low for at least five years, roughly the period from
1995 to 2000, though many of the extensions defined
after the base X11 architecture were questionable at
best [Get00]. The good news is that the original X ar-
chitecture enabled the development of desktop systems
such as Gnome [dI99] and KDE [Dal99]. But to again
match and then exceed other systems such as Microsoft
Windows and Apple’s Aqua [App] in all areas, serious
further work is necessary. This paper attempts to out-
line areas where base window system work is required
to again make X competitive with other current com-
mercial systems, specifically in the current large scale
network environment.

I believe that migration and replication of running X ap-
plications is key to the near term future environment. A
number of issues made replication and/or migration dif-
ficult. These include (and some of which are discussed
in detail in [GP01]):

� Fonts have been server side objects, and there is



no guarantee the fonts available on one server are
available on the other (slightly mitigated by the ex-
istence of font servers).

� Graphics operations in X can be made to drawables
(windows or off screen memory, called “pixmaps”).
The X protocol only guarantees 1 bit deep draw-
ables. Displays of different depths might share no
other depth. Futhermore, early toolkits typically
did not handle image rendering at all, exposing this
disparity of displays completely to applications.

� Resource ID’s (for windows, pixmaps, fonts, etc)
and Atoms are per server identifiers, and have to be
remapped. These were typically exposed directly to
applications, though sometimes with some abstrac-
tion (for example, partially hidden in a widget data
structure).

� Pseudocolor displays again presented toolkits, ap-
plications, or pseudoservers major headaches: there
would be no guarantee the color resources would
be available when needed. It took longer for pseu-
docolor to become unimportant than expected due
to the not fully understood economics that drove
displays down market at the same functionality.
Thankfully, monochrome (1 bit) and pseudocolor
displays are now a thing of the past, for all intents
and purposes.

2 Client Side Fonts

While server side fonts clearly provide major headaches
for migration and replication (since there is no guarantee
that the fonts the application needs are available on the
X servers being used), client side fonts are needed on
general architectural grounds. This section lays out why.

2.1 Large Scale Distributed Systems Deploy-
ment

In large scale commercial systems, applications are often
run remotely from the X server to a desktop system or
X terminal, and therefore applications won’t be deploy-
able until both ends of the communications have been
updated. The X Window System, due to its network
transparency, presents the problems of large scale dis-
tributed systems. It is infeasible to update all X servers
to support new font technology.

The X extension mechanism is at best only a partial so-
lution, since if an application relies on an extension’s
existence, it cannot be deployed until the X server has
been upgraded. Many older systems can never be up-
dated with new X extensions. Application developers
won’t use a new feature if it badly restricts the market
for their software.

Applications that will work (even if somewhat slowly)
always trump applications that won’t run at all, from the
point of view of an ISV (who wants to sell product), or
an open source developer who wants their application
used widely.

2.2 Historical Observation about Opaque
Server side fonts

From the beginning, X’s minimalist font abstraction has
presented challenges to applications interested in serious
typography. Due to X’s inadequacies, serious applica-
tions from the very beginning of X’s history have had to
work around X’s fonts, and coordinating X’s fonts with
those required for printing has been a 15 year long mi-
graine headache.

Applications need sufficient information for either X’s
use, or for printing use (something we ignored in the de-
sign of the X protocol). Therefoer, to be useful to appli-
cations on systems, any access to fonts must be able to
access any information in the font files, since they will
continue to evolve.

There have already been four generations of font formats
over X’s history:

� Bitmap 1983-1990

� Speedo 1991

� Type1 1992

� TrueType 1997

OpenType, in the short term future, represents a fifth for-
mat. Approximately every 5 years, there is likely to be
a new generation of and format for font files, with in-
creasing quality (along some dimension, whether it be
typographic, or character set, . . . ). Any server side font
solution, therefore, will always be difficult to deploy in
this distributed environment and will end up chasing a
moving target.



As each new font technology has deployed, applications
have needed to access the new data contained in the font
files for the new information. X itself has not evolved to
do more than rendering the bits on the screen, and has
made it difficult or impossible for applications to share
this information.

Over this period, fonts themselves have become much
larger. When X was designed, fonts typically had fewer
than 128 glyphs (ASCII), and the number of fonts were
small, and, since the fonts were bitmap fonts, the metrics
were static. The number of round trips to retrieve font
metrics were small, and the size of the metrics them-
selves were small. This situation contrasts greatly with
the present.

Many modern fonts have thousands of glyphs and com-
mon desktop systems may have hundreds or even thou-
sands of fonts. Searching among these fonts for correct
style and code point coverage requires applications to
retrieve (typically at startup) very large amounts of met-
ric data, and, to add insult to injury, it is insufficient for
most printing applications. Due to this growth in the
number and size of fonts, transporting even X’s mini-
mal font metrics from the X server to clients now usu-
ally swamps transporting the glyph images actually used
to the X server from applications. Furthermore, for X
to use a scalable font (now the dominant form of fonts
used), it must render the font at the specified size, often
incurring large startup delays for many applications, be-
fore font metrics can be returned to applications, even if
few or no glyphs are used (if the font is unsuitable).

The new fontconfig [Pac02] library provids a mechanism
for finding the fonts required to fulfill an application’s
needs, which in concert with Freetype [TT00] allows ac-
cess directly to the font files the application needs to find
the glyphs it needs to render. Round trips to the X server
usually dominate performance. Xft [Pac01b] uses the
Render extension [Pac01a] when present to cache and
render glyphs from the fonts at the X server, avoiding
round trips. The Xft2 library now uses only core pro-
tocol image transfers if Render is not available, making
client-side antialiased fonts (with subpixel decimation)
deployable universally. This allows application writers
to rely on the new font rendering technology immedi-
ately.

Client side fonts therefore have many benefits:

� lower total bandwidth required for modern applica-
tions with modern fonts,

� many fewer server round trips,

� incremental behavior: no long startup delays for
font rendering,

� as a result, much faster startup time,

� applications can directly access font files to enable
printing,

� future font formats can be added without
client/server deployment interdependencies,

� an application is guaranteed that the fonts it needs
will be usable on any X server in the network, eas-
ing migration and replication of applications.

2.3 Remaining work

Some data from modern applications show these ben-
efits [Pac00a] at current screen resolutions (typically
100DPI); more data on a wider selection of applications
is needed to confirm this early data.

Worth further investigation is the scaling of glyph data as
a function of screen resolution. While sending outlines
is certainly possible, this suffers from the deployment
problems noted above as this information has changed
in each font generation. Naı̈vely, you might think that
the glyph image data would scale as the square of the
display resolution, but this is not the case. Even a sim-
ple LZW compression algorithm reduces the glyph data
to less than linear as a function of resolution; investiga-
tion of two dimensional compression techniques is still
needed [Clo02].

Further work will be needed therefore to choose a com-
pression technique to ensure that as screen resolution in-
creases, the glyph transport remains efficient. Use of a
stripped down PNG [Bea97] like algorithm (to remove
redundant header information) is a likely candidate.

Sharing fonts using standard network file systems is
much simpler than the current font server situation. This
approach can take advantage of the full file sharing /
replication / authentication / administration infrastruc-
ture being developed for distributed file systems. Using
existing infrastructure to enable central administration
of fonts is easier than building extensions to the current
custom X font service protocol. Applications can get
the font information they want and need, and it lever-
ages the full caching/replication protocol work going on
in network file system design.

Updating the shared libraries (e.g. Xt, Xaw, Motif, etc)
to support AA text is as simple a way to make anti-



aliased text universal than updating the X server and is
planned for later in 2002. Modern toolkits such as GTK
and Qt have already been updated to support client side
fonts, and deployment will be widespread by the end of
2002 on Linux systems.

3 Non-Uniformity of X servers

X servers have varied greatly. The core protocol only
guarantees one bit per pixel in addition to the native
depth of the screen. This provides a great challenge to
applications that might want to migrate or replicate be-
tween displays. Further complicating this issue is that
historically, toolkits have not provided facilities for ren-
dering of images, relying on applications that need to
render images to adapt to the screen correctly (a poor
assumption). This means that the visual resources of
X servers typically using Xt based toolkits become em-
bedded directly into the applications code, not even ab-
stracted by a toolkit. Pseudocolor displays further com-
plicated the challenge: the color resources required to
render an image might or might not be available when
needed on an X server

A number of developments over the last four years miti-
gate this situation.

� The most common X server, XFree86, now uses a
new frame buffer package FB, so that all depths are
available on all X servers.

� GTK 2.0, and Qt, fully abstract screen resources in
ways that completely hide the details of the screen
from applications, and provide image abstractions
to applications. Applications have to go out of their
way to discover information that would make them
dependent on the details of rendering of the screen.

� Pseudocolor displays are becoming rare, at long
last. So this source of allocation headaches between
screens is becoming moot.

� The RandR extension potentially provides the abil-
ity to render different depth displays onto a frame
buffer, while allowing toolkits to select acceler-
ated visual types and rerender when appropriate.
Further work to complete the implementation of
RandR is needed, however.

4 Non-Uniformity of Screen size

Screens now vary greatly in size and capability. On the
lowest end, the IBM watch provides a 100 by 100 pixel
screen. PDA screens are now commonly 320x240 reso-
lution, of small physical size. More conventionally desk-
top displays are in the 1400x1000 pixel size, with flat
panel resolutions increasing. On the high end, within
the next two years, some organizations are building large
display walls or “caves” with up to 8000x8000 resolu-
tion. This very wide disparity of displays provide seri-
ous challenges to applications.

Previous attempts to provide migration and replication
were often implemented using X servers [GWY94a] that
would talk to additional X servers and provide migration
and replication services. This model clearly failes across
such disparity of screen sizes.

A significant fraction of applications, however, are use-
ful at several display sizes. Personal information man-
agement applications are a good example: you want to
use these on PDA screens, your desktop, and poten-
tially in a conference room environment on a very large
screen. It is unlikely that a single user interface can span
this range of display sizes and uses, or deal well with the
diversity of pointing devices. GUI builders are a solution
for many applications.

The early generation of GUI builders for X were all pro-
prietary, and not universally available, and depended on
Motif, which has also not been universally available.
Few applications were built using these builders as a re-
sult.

The Familiar project has had significant success using
Glade [Cha01] and GTK, for example, to provide user
interfaces tuned for either portrait or landscape mode on
the iPAQ PDA running Familiar Linux. I believe this
approach is most suitable to enable many/most applica-
tions to be usable across this diversity of screen capabil-
ities. In our examples, the user interface is defined using
an XML description built using Glade, and reloaded at
run time when the characteristics of the screen changes
(in this case, when the screen rotation is changed). I be-
lieve this approach is most likely to succeed in avoiding
always having to develop applications from scratch for
different screen sizes.

Scalable fonts are now widespread, though we must con-
tinue to promote their use in existing applications. Some
thought, however, needs to be completed on what the
abstract size of fonts actually means. X provides the



physical dimensions of the screen, and the number of
pixels; it does not, however, provide the typical viewing
distance required to allow applications to “do the right
thing” with the size of objects to be displayed. In prac-
tice, most people’s gut feeling is that a 10 point font is
a small, but readable size independent of viewing dis-
tance and pixel size; most applications don’t care about
the true physical size of the display. We need some con-
vention here to match users’ intuitions.

Notification of the exact characteristics of different X
servers will be provided using the RandR extension. A
convention to notify applications to migrate or replicate
themselves is needed.

5 Resource ID’s

Resource IDs in X are values that only have meaning to
a given X server, and are used to identify resources being
stored at the X server, such as windows, pixmaps, server
side fonts, etc.

Resource IDs are visible in old toolkits, but are gener-
ally buried in widgets. In principle, the process of un-
mapping/mapping/realizing of widgets provides a mech-
anism for migration. Unfortunately, almost any sort of
drawing beyond basic text was left to applications in Xt;
therefore real Xt based applications will likely be dif-
ficult to adapt to server migration. Modern toolkits no
longer expose resource IDs, visual types or other X re-
sources directly to applications, and since they provide
image abstractions, very few applications now have any
need to access server dependent X resources directly.
This is paying off: patches now exist to allow GTK 2 ap-
plications to migrate between dissimilar screens on the
same X server; this is much of the work required for
migration between X servers. Completion of migration
support in GTK and/or Qt is pressing.

6 Connection Failure

TCP connections on wireless networks are more fragile
than wired networks, due to signal strength, multipath,
and interference, not to mention roaming of the users
between networks.

Roaming can be handled via MobileIP [Per95], and X
does not pose any special issues here. IPv6, however,

will require some additions in a few areas. While the X
core protocol does not have any length dependencies on
addresses, some of the ancillary protocols built on top
were not built with such foresight and will require some
tweaks.

Failure of TCP connections, however, are much more
common in the wireless environment. Ideally, applica-
tions should be able to survive such losses, and work in
toolkits described above should provide most of the re-
quired mechanisms. The X library itself, however, needs
a small amount of work in this area, to inform toolk-
its that their connection to the X server has been lost,
and allow reclaim of resources. Toolkits could then re-
connect themselves to a pseudo X server to allow later
retrieval by the user.

There is one possibly significant issue to resolve: in the
X protocol, while it is perfectly acceptable (and com-
mon) for the X server to send Expose events to clients
to request redraw of windows, the core protocol has no
such mechanism for pixmaps. In the migration case
without connection failure, pixmaps can be retrieved and
migrated to the new server. But if the connection has
failed, those pixmaps have almost certainly been de-
stroyed, and the client would have to regenerate them.
I do not know if this poses an issue to current toolkits or
not, since they have taken a higher level of abstraction
than Xt based toolkits did, and they may not have prob-
lems similar to Xt. Experimentation here is in order,
though there have been successful application-specific
implementations done in the past [Pac].

7 Replication

Replication poses issues to toolkits, particularly if you
would like an application to present different user in-
terfaces on different size screens. This may be hopeless
with Xt based toolkits, but may work with modern toolk-
its.

Pseudo server approaches are likely to work well so long
as screen sizes are roughly comparable, given the lack
of pseudocolor, the new uniformity of X servers, and
the RandR extension. I believe approaches such as HP’s
SharedX server [GWY94b] will be useful where toolkit
retrofitting is not feasible. Migration will allow sharing
via a pseudoserver without a priori arrangement, as ap-
plications can migrate to a sharing server. Again, first
hand experience is needed.



8 Transparency

Apple’s Aqua system for OS X provides full use of al-
pha blended transparency. The Render extension for
X provides part of the equivalent capability for X, by
providing alpha blended text and graphics. It does not,
however, provide for alpha blended windows, and work
here is needed [Pac00b]. That will require significant re-
implementation of the device independent part of the X
server (which, thankfully, is only a few 10s of thousands
of lines of code).

This work is also needed for full implementation of the
RandR protocol, to enable rendering to windows that are
a different depth than the frame buffer.

9 Authentication and Authorization

Migrating applications presents a serious security prob-
lem. You would not want an attacker to be able to hi-
jack your applications, running as you, on your machine.
Strong authentication will therefore be required for mi-
gration or replication to become widespread.

Support for Kerberos 5 is already in the X library; and
SSH provides public key facilities. I do not yet know
which may be most appropriate. SSH also provides en-
cryption, which is less urgent (though sometimes vital)
than strong authentication. Either or both may be appro-
priate, and work here is clearly needed, though clearly
there are existing facilities than can be exploited to pro-
vide the required authentication.

Authorization is another piece of the puzzle, and thought
is needed here to understand what is required.

10 Putting the Pieces together

So far, we’ve discussed the solutions to the individual
problems. Here is a sketch of how this might work in
practice, to pull the pieces together.

1. A user interface of some sort (whether it be via ac-
celerometer, as discussed in the RandR paper, or
something more conventional), would connect to
the X server where the application is running, au-
thenticated as you.

2. This application would send a message to the ap-
propriate client(s) to migrate to a destination.

3. The application’s toolkit would receive this mes-
sage, and authenticate that it is from the user.

4. The toolkit opens a new connection to the new X
server. If it fails, it would indicate so via some sort
of ICCCM message to the user interface, to provide
feedback to the user the migration was not possible.

5. The toolkit copies any pixmaps it needs from the
original X server to the new one, or creates and
rerenders those pixmaps from data it has on hand
(probably better, if at all possible). Since all depths
are available, the toolkit is guaranteed to be able to
copy the bits if needed. This copy phase should oc-
cur first, to minimize the likelihood of failure due
to inadequate server resources.

6. The toolkit unrealizes itself from the original
screen, and realizes itself on the destination screen.
If the size of the destination screen is significantly
different than the origin screen, the toolkit might
reload its user interface definition at this time to
provide a more usable user interface. The RandR
extension can be used both to provide informa-
tion on which visual types have acceleration (and
a clever toolkit might reconfigure itself to use one
of those accelerated visuals). RandR’s full imple-
mentation also enables rendering to a depth screen
different than the actual framebuffer, if the toolkit
cannot adapt.

7. At completion, the toolkit would signal its com-
pletion on the origin server of the migration it has
migrated successfully. A similar sequence should
work for connection failures, taking the loss of the
TCP connection as a signal the application should
attempt to migrate to a home server for later re-
trieval. Clearly some timeout should be imposed to
reap applications after frequent failures. As noted
above, there may be some unforeseen problems
found in handling connection failure.

11 Plea for help

There are all sorts of projects of various sizes associated
with the vision laid out here. I believe that most or all
of this vision is achievable. I would like to take this
opportunity to solicit others to help realize this vision,
which I believe is compelling and should be a lot of fun.



Acknowledgements

The author would like to thank Keith Packard for con-
spiring on this architecture over the last several years.
Additional thanks go to Chris Demetriou for his help in
the publication of this manuscript.

References

[Ano01] Anonymous. Errata: Izzet Agoren’s Ker-
nel Corner, May 2001, Mitch Chapman’s
“Create User Interfaces with Glade” (July
2001). Linux Journal, 89:6–6, September
2001. See [Cha01].

[App] Apple Computer, Inc. AQUA - the mac OS
X user experience. http://www.apple.com/-
macosx/technologies/aqua.html.

[Bea97] T. Boutell et al. RFC2083: PNG (portable
network graphics) specification. March
1997. http://www.ietf.org/rfc/rfc2083.txt.

[Cha01] Mitch Chapman. Create user interfaces
with Glade. Linux Journal, 87:88, 90–92,
94, July 2001. See erratum [Ano01].

[Clo02] James H. Cloos, Jr. Glyph image compres-
sion techniques. Technical report, XFree86,
2002.

[Dal99] Kalle Dalheimer. KDE: The highway
ahead. Linux Journal, 58:??–??, February
1999.

[dI99] Miguel de Icaza. The GNOME project.
Linux Journal, 58:??–??, February 1999.

[Get00] James Gettys. Lessons learned about
open source. In Usenix Annual
Technical Conference, 2000. http://-
www.usenix.org/publications/library/-
proceedings/usenix2000/invitedtalks/-
gettys html/Talk.htm.

[GP01] Jim Gettys and Keith Packard. The X Re-
size And Rotate Extension - RandR. In
FREENIX Track, 2001 Usenix Annual Tech-
nical Conference, pages 235–244, Boston,
MA, June 2001. USENIX.

[GWY94a] Daniel Garfinkel, Bruce C. Welti, and
Thomas W. Yip. HP SharedX: A tool

for real-time collaboration. Hewlett-Pack-
ard Journal: technical information from the
laboratories of Hewlett-Packard Company,
45(2):23–36, April 1994.

[GWY94b] Daniel Garfinkel, Bruce C. Welti, and
Thomas W. Yip. HP SharedX: A Tool
for Real-Time Collaboration. HP Journal,
April 1994.

[Pac] Keith Packard. NCD’s WinCenterPro:
Networking NT applications using X.
http://www.xfree86.org/ keithp/talks/-
wincen.html.

[Pac00a] Keith Packard. An LBX postmortem. Tech-
nical report, XFree86 Core Team and SuSE,
Inc, 2000.

[Pac00b] Keith Packard. Translucent windows in x.
In Fourth Annual Linux Showcase & Con-
ference, pages 39–46, Atlanta, GA, October
2000. USENIX.

[Pac01a] Keith Packard. Design and Implementation
of the X Rendering Extension. In FREENIX
Track, 2001 Usenix Annual Technical Con-
ference, pages 213–224, Boston, MA, June
2001. USENIX.

[Pac01b] Keith Packard. The xft font library: Archi-
tecture and users guide. In Conference Pro-
ceedings. XFree86 Technical Conference,
November 2001.

[Pac02] Keith Packard. Fontconfig - a shared font
configuration mechanism. In Conference
Proceedings. GNOME Users And Devel-
oper European Conference, April 2002.

[Per95] Charles Perkins. IP mobility support.
Technical Report Internet Draft, IETF
Mobile IP Group, January 1995. ftp://-
software.watson.ibm.com/pub/mobile-ip/-
draft-ietf-mobileip-protocol-08.txt.

[SG92] Robert W. Scheifler and James Gettys. X
Window System. Digital Press, third edition,
1992.

[TT00] David Turner and The FreeType Develop-
ment Team. The design of FreeType 2,
2000. http://www.freetype.org/freetype2/-
docs/design/.


