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Abstract
The Linux kernel is unique in that it supports a wide variety of high-quality filesystems.  For server systems, the
most commonly used are Ext2, Ext3, ReiserFS, XFS and JFS.  This paper compares the performance of these
filesystems using Linux 2.4.17 and three benchmarks:  pgmeter, an open source implementation of the Intel Iometer
benchmark; filemark (a version of postmark); and AIM Benchmark Suite VII.  The benchmarks were run on three
different systems ranging in size from a contemporary single-user workstation to a 28-processor ccNUMA machine.
Although the best-performing filesystem varies depending on the benchmark and system used, some larger trends
are evident in the data.  On the smaller systems, the best-performing file system is often Ext2, Ext3 or ReiserFS.  For
the larger systems and higher loads, XFS can provide the best overall performance.

1 Introduction
One of the advantages of open source software is the
tremendous number of choices available to users of
such software.  For example, the filesystem menu of the
configuration page for the Linux 2.4.17 kernel includes
28 entries, and this does not include the network file-
systems.  Although a number of these filesystems are
special purpose or for compatibility with other operat-
ing systems, the fact remains that there are a wide vari-
ety of filesystems available for use with Linux.

Given this large list of filesystems, a Linux user might
ask the reasonable question:  “Which filesystem should
I use?”  In many cases the answer to this question de-
pends on functional or ease-of-use issues; in other cases
performance is a deciding factor.  The goal of this paper
is to provide a partial answer to this question by com-
paring the performance of five of the more popular file-
systems available under Linux: Ext2, Ext3, ReiserFS,
XFS, and JFS.

As is the case with any benchmark study, we must
emphasize that the performance results reported here
reflect measurements taken at a particular point in time,
with a particular set of machines, with a particular
Linux kernel (in our case 2.4.17), using a particular set
of benchmarks and parameters, and only truly compare
filesystem performance under these restrictive
circumstances.  Over time, we expect each filesystem
discussed herein to continue to be developed, and we
expect that the relative orderings of filesystem
performance discussed here will change.

Nevertheless, we believe that our benchmarking study
does have value in that trends that are identified here
can provide broad guidance to individuals who know

the characteristics of their system’s workloads and who
have the ability to choose which filesystem to deploy.
It is also possible that these studies may uncover per-
formance problem areas that the filesystem developers
can focus on to improve the performance of their file-
systems, thus helping to advance Linux kernel devel-
opment.

We are aware of no other filesystem benchmarking
study with as large a scope and rigor as the one we
present in this paper.  The best other results we are
aware of are the benchmark pages at the ReiserFS site
[ReiserFS] and von Hagen’s benchmark studies
[vonHagen].  However, those studies are only for small,
uniprocessor systems.  This paper is the only one we
are aware of that also examines larger systems.

In the remainder of this paper, we first provide a brief
overview of the filesystems we are testing.  We then
describe the benchmarks we will use in this study.
Next, we describe the machines we used to run the
benchmarks and the rules that defined how the bench-
marks were run.  Finally, we present the results of our
experiments and discuss the implications and trends
these experiments have demonstrated.

2 Filesystem Descriptions
In this section we provide a brief overview and history
of the filesystems tested in this paper.  Further details
about these file systems can be found elsewhere
[vonHagen, Galli].

We assume that the reader is familiar with basic con-
cepts of Linux filesystems such as the filesystem buffer
cache and journaling filesystems [Bovet, vonHagen].



Version information for the filesystems and supporting
tools used in this paper are given in the Appendix.

2.1 Ext2

Designed by Wayne Davidson (with Stephen Tweedie
and Theodore Ts’o) as an enhancement of the ext
filesystem from Remy Card, Ext2 [Ext2] is the standard
Linux filesystem.  We include Ext2 in our tests because
it provides a baseline of performance that is familiar to
many users.

2.2 Ext3

An enhancement of Ext2 developed by Stephen
Tweedie [Tweedie], Ext3 uses the same disk format and
data structures as Ext2, but in addition supports
journaling. This makes conversion from Ext2 to Ext3
extremely easy— no data migration or filesystem
reformatting is required.  All that one needs to do is to
install an Ext3-capable kernel, use the tune2fs program
to create a journal, and remount the file system.

Ext3 is the default filesystem for Red Hat 7.2 [Ext3RH]
and has been included in the standard Linux kernel
since 2.4.13.  It is available with many Linux
distributions.

Ext3 is block based, with sequential filename directory
search.  Ext3 supports three journaling modes to allow
the user to tradeoff performance and integrity
guarantees.  The default journaling mode, data=
ordered, guarantees consistent writing of the metadata,
descriptor and header blocks and provides good
performance; data=writeback provides a somewhat
lower data-integrity guarantee in favor of better
performance (old data can be present in a file after a
crash); and data=journal provides both metadata and
data journaling.

Which of these modes has the best performance varies
according to workload [Tso].  One would normally ex-
pect that the data=journal mode would perform signifi-
cantly slower that the other modes due to the additional
overhead of logging data changes.  However, certain
workloads have been found to run faster with
data=journal (especially when reads and writes are to
and from the same disks), but the reasons for this are
not yet fully understood [Robbins].    

In this paper, we report results for data=writeback and
data=ordered.  We have not included results with
data=journal since this is a specialized mode that is not
supported by the other journaling filesystems tested
here.

2.3 ReiserFS

Developed by Hans Reiser, ReiserFS [ReiserFS] has
been part of the standard Linux kernel since 2.4.1 and it
is available with many Linux distributions.  ReiserFS
supports metadata journaling, and it is especially noted
for its excellent small-file performance.   ReiserFS uses
B* Balanced Trees to organize directories, files, and
data.  This provides fast directory lookups and fast de-
lete operations.  Other performance features include
support for sparse files and dynamic disk inode alloca-
tion.

ReiserFS supports a space-saving option called tail-
packing that packs small files into the leaves of the
B* Tree. However, this option has a performance cost
and most benchmarks are run with this feature disabled.
In this paper, we follow this practice and report only
results with notail.

2.4 XFS

Based on SGI’s Irix XFS filesystem technology
[XFSirix], the XFS port to Linux, version 1.0, was
released May, 2001 [XFS].  A large number of support
tools are also distributed with XFS [vonHagen, p. 165-
167].

XFS is a journaling filesystem that supports metadata
journaling.  XFS uses allocation groups and extent-
based allocations to improve locality of data on disk.
This results in improved performance, particularly for
large sequential transfers.  Performance features include
asynchronous write ahead logging (similar to Ext2 with
data=writeback), using balanced binary trees for most
filesystem metadata, delayed allocation [XFS2000],
dynamic disk inode allocation, support for sparse files,
space preallocation, and coalescing on deletion.  One
shortcoming can be the poor file deletion performance,
which is constrained by synchronous disk writes1.

For this paper, we followed the recommendations of the
FAQ [XFS] and mounted XFS filesystems using the
options -o logbufs=8,osyncisdsync; logbufs specifies
the number of log buffers kept in memory, which could
improve performance2; osyncisdsync specifies that

                                                       
1 Asynchronous deletes have been added to more recent
versions of XFS (beginning with Linux 2.4.18); however, that
version was not used in this paper, since 2.4.18 was not
available on all of the systems used in our tests.
2 We ran the benchmarks on the “large” system (Section 4)
with and without logbufs=8, with no discernable performance
differences.



O_SYNC is treated as O_DSYNC (data-sync only), the
default behavior on Ext2  [XFS].

At the present time XFS is not part of the standard
Linux kernel; patchsets for recent kernels are available
[XFS], and it has been included in recent versions of
the Mandrake distribution [Mandrake].

2.5 JFS

IBM’s JFS [JFS], which originated on AIX, was then
ported to OS/2, then back to AIX and from there was
ported to Linux [vonHagen, p. 106]. It has the advan-
tage that the code has undergone extensive testing un-
der other operating systems.  JFS technical features
include extent-based storage allocation, variable block
sizes (although only 4096 byte blocks are currently
supported under Linux), dynamic disk inode allocation,
and sparse and dense file support.   JFS is a journaling
filesystem that supports metadata logging.

JFS is not currently supported on systems where the
page size exceeds the filesystem block size, so JFS was
not included in our “large”-system benchmarks since
the default 16 KB page size on IA64 exceeds the 4 KB
JFS block size [Best].  (See Section 4 for description of
our “large” system.)

Although JFS is not part of the standard Linux kernel,
patchsets for recent kernels are available [JFS], and JFS
has been incorporated into recent Mandrake distribu-
tions [Mandrake].

3 Benchmark Descriptions
The benchmarks we have chosen for this paper are
pgmeter, filemark, and the AIM Benchmark Suite VII.

In a previous paper [Pgmeter], we evaluated many of
the other filesystem benchmarks commonly in use on
Linux today.  These included Bonnie [Bonnie], dbench
[Dbench], and the ever-popular kernel-compile
benchmark as well as several others.  The advantages of
the benchmarks used in this paper over these other
benchmarks are that they:

1) Support a wide variety of workloads instead of the
specific workload implemented by Bonnie.

2) Are not trace driven, (unlike dbench) so that they
are readily scalable from small to very large
systems.

3) Produce significant load on underlying filesystems,
unlike the kernel-compile workload that is more
often than not CPU bound.

We selected the benchmarks for this paper based in part
on our previous work and because we believe these
benchmarks represent three interesting and illuminating
facets of filesystem performance: I/O throughput, file

accesses, and overall system performance; they scale
well on larger multiprocessor platforms; and they report
accurate, repeatable results.

3.1 Pgmeter

Pgmeter is a file-I/O benchmark that measures the rate
at which data can be transferred to/from an existing file
according to flexible, synthetic workload description.
Pgmeter is patterned after the Intel Iometer benchmark
[Iometer]. In previous work we demonstrated that
pgmeter creates workloads that have the same perform-
ance characteristics as those of Iometer [Pgmeter].

The workload descriptions used here are based on those
distributed with Iometer:

• Sequential read and write tests with fixed record
sizes.

• The Web Server workload, which is a mixture of
512 byte to 512 KB transfers. All transfers in this
workload are read operations; each transfer begins
at a randomly selected point in the data file.

• The File Server workload, which is a mixture of
512 byte to 64 KB transfers.   Of these transfers,
80% are read operations and 20% are write
operations.  Each operation begins at a randomly
selected point in the file.

• An 8K OLTP workload, defined as 8 KB transfers
of which 67% are reads and 33% are writes.  Each
transfer begins at a randomly selected point in the
file.  This workload is intended to represent an
online transaction processing workload.

Additional details of the Web Server and File Server
workloads are provided in the Appendix.

We selected these workloads with a goal of covering a
broad range of representative workloads while keeping
the total number of tests small.  For example, we did
not include a purely random, read-only, fixed-record
size workload, since the Web Server workload is also a
random, read-only workload; we felt that many of the
characteristics of the purely random workload would
show up in the Web Server tests.  Similarly, we be-
lieved that the fixed record size, random access bench-
mark would be covered (in part) by the 8K OLTP
workload.

The key statistics reported by pgmeter are the filesys-
tem I/O bandwidth, measured in MB/s, and the filesys-
tem operations count, measured in ops/s.  In this paper
we report only the ops/s statistic; the MB/s results show
similar results to those presented here.



Pgmeter includes the following features to increase the
accuracy of the test results:

1) Each test begins by unmounting and remounting
the target filesystem as a method to flush the file-
system buffer cache.  Thus at the start of each test,
the filesystem buffer cache is empty.

2) A warm-up period can be configured to run at the
start of each test.  During the warm-up period the
full benchmark is run, but statistics collection does
not begin until the end of the warm-up period.

The purpose of the warm-up period is to exclude meas-
urement of transient startup effects.  An example of this
would be the abnormally high write-rate that occurs in a
sequential write test until the filesystem buffer cache
fills up and the filesystem has to actually start writing
data to disk.

3.2 Filemark

Filemark is our version of the Postmark benchmark
[PostMark].  Postmark is a filesystem-operation–inten-
sive benchmark.  Postmark execution consists of three
phases:

1) Creation Phase.  During this phase, postmark cre-
ates a specified number of files (See Section 5,
“Benchmark Run Rules” for details). These files
are randomly distributed among a number of subdi-
rectories of the target directory.

2) Transaction Phase.  During this phase, postmark
executes a number of “transactions” against the set
of files created in the Creation Phase.  Each trans-
action consists of the following two steps:
(i) Choose a file at random, then according to a
second random choice, either read the entire file or
append to the file.  (ii) According to a random
choice either create a new file or delete an existing
file.

3) Deletion Phase.  During this phase, the files re-
maining in the file set are deleted.

Our version of postmark, which we call filemark, in-
cludes the following six enhancements to postmark 1.5:

1) Filemark is multithreaded whereas postmark 1.5 is
single-threaded.3  This allows us to scale up the
filemark workload to provide a heavier and more
realistic load on the server machines we are testing.

                                                       
3 While writing this paper, we became aware of a
multithreaded version of postmark, version 1.99. [Katcher].
Due to time constraints we have continued to use filemark in
this paper rather than convert to this new version of postmark.

2) Filemark uses higher precision timing services than
does postmark.  Filemark uses gettimeofday()
instead of time().  The former is nominally accurate
to the nearest microsecond while the latter is
accurate only to the nearest second.

3) Filemark supports repeated Transaction Phases
following a single Creation Phase.  This was in-
corporated to significantly reduce the amount of
time required to get multiple repeated trials suitable
for confidence interval generation.  Although each
transaction phase uses basically the same set of
created files, the transaction rate was assumed not
to depend that much on the particular set of files
created. Each transaction phase begins with its own
warm-up period and ends by unmounting and re-
mounting the filesystem containing the target di-
rectory.  In this way, each transaction phase is as
much of an independent trial as possible, and stan-
dard techniques for confidence interval calculation
should apply.

4) Postmark only allows the bias read and bias create
probabilities (these are the probability of choosing
read over append, or create over delete, in steps
(2)(i) and (2)(ii) above) to be specified to the near-
est 10 percent; filemark allows these probabilities
to be specified to the nearest 1 percent.

5) Code has been added to filemark to allow the user
to request that the Deletion Phase not be run at all.
This was included to speed the execution time of
the entire test.  Our experience is that the file Dele-
tion Rate as reported by filemark (or by postmark)
has such high variation as to be almost meaning-
less.  Also, for our run rules (see Section 5), we
always rebuilt (reformatted) the filesystem after a
filemark run, so we did not need to run the Deletion
Phase.

3.3 AIM7

The AIM Benchmark Suite VII, referred to here as
AIM7, has been widely used for more than a decade by
many Unix computer system vendors.  AIM Technol-
ogy, Inc. originally developed and licensed the AIM
Benchmark suites.  Caldera International, Inc., has ac-
quired the AIM Benchmark license and has recently
released the sources for Suite VII and Suite IX under the
GPL [AIM7].

AIM7 is a C-language program that forks multiple
processes (called tasks in AIM7), each of which
concurrently executes a common, randomly-ordered set
of subtests called jobs. Each of the 53 kinds of jobs
exercises a particular facet of system functionality, such
as disk-file operations, process creation, user virtual
memory operations, pipe I/O, and compute-bound



arithmetic loops.  AIM7 includes disk subtests for
sequential reads, sequential writes, random reads,
random writes, and random mixed reads and writes.

An AIM7 run consists of a series of subruns with the
number of tasks, N, being increased after the end of
each subrun.  Each subrun continues until each task
completes the common set of jobs.  The performance
metric, “Jobs completed per minute”, is reported for
each subrun.  The result of the entire AIM7 run is a
table showing the performance metric versus the
number of tasks, N.

Typically, as N increases, the jobs per minute metric
increases to a peak value as CPU idle time gets used for
real work and as economies of scale continue to
succeed; thereafter it declines due to software and
hardware bottlenecks.  This peak throughput value
provides the primary metric of interest. We report the
peak throughput achieved with each filesystem tested as
our AIM7 statistic for that filesystem.

3.4 Benchmark Summary

To reiterate, pgmeter measures the rate at which data
can be transferred to or from an existing file.  It is in-
tended to model the behavior of large applications as
they read and update their associated disk files.
Filemark is intended to model the kind of operations
that a file server or mail server might execute against a
filesystem.  By choosing these two benchmarks, we
have thus chosen opposite ends of the spectrum of pos-
sible filesystem workloads.  Whereas pgmeter measures
the filesystem’s ability to transfer data under a wide
variety of workloads, filemark measures the filesys-
tem’s ability to create and update a number of small
files.  We feel that real-user applications lie somewhere
between these two extremes and that our benchmarks
should therefore encompass the actual workloads of
many real-user programs.

AIM7 serves as a multifaceted system-level benchmark
that exercises more than just filesystem activity.   We
make no claim that an AIM7 workload represents a
“real world” job mix.  Rather, we claim that AIM7 im-
poses a workload that shows how a particular Unix
system scales under the stress of an ever-increasing
load.  We believe that since the AIM7 workload in-
cludes a mix of both CPU-bound and I/O-bound jobs,
that AIM7 provides an estimate of overall system
throughput that is not provided by pgmeter or filemark.

4 Experimental Testbeds
In this paper we have executed our benchmarks using
three systems:

1) The small system.  This is a single-processor 1.7
GHZ Pentium 4 with 512MB of memory and an 80
GB IDE disk.  For the experiments of this paper,
this machine was booted with either 128MB or
512MB of RAM.

2) The medium system.  This is a 4-CPU 700 MHZ
Pentium III Xeon system with 5 SCSI disks, 8 GB
each. For the experiments of this paper, this system
was booted with 900 MB of RAM.

3) The large system.  This is an SGI prototype of a
ccNUMA machine using the Intel IPF processor.
Currently based on the Itanium and a system
interconnect similar to that of the SGI Origin 3000
[SGIorigin], this machine allows us to run a
modified Linux 2.4.17 kernel with up to 28
processors, 16 GB of main memory, and 10 Fibre
Channel controllers attached to a total of 120 disk
drives.

The above set of machines provides a sampling from a
wide variety of machines used to run Linux today.  Al-
though it may still be that Linux is most commonly run
on uniprocessor machines, the 4-CPU system represents
a “sweet spot” for Linux mid-range servers and thus is
an important system to include. Similarly, while the 28-
processor SGI machine reflects a class of system that is
rarely found in the Linux world today, we believe that
such systems will be more commonplace in the next
few years.  Moreover, benchmarking on such machines
tends to exaggerate and thus more clearly expose per-
formance problems that are less apparent on smaller
hardware configurations.

5 Benchmark Run Rules
Filesystem benchmarking requires careful setup [Tang].
An issue one must often contend with is how to defeat
the effects of the filesystem buffer cache.  Without
careful experimental design, all of the filesystem re-
quests could be satisfied in the cache and no disk activ-
ity would occur.  A common way to avoid this problem
is to use a total file size that exceeds the amount of
main memory available on the system.

Another approach is to use a file-access mode that by-
passes the filesystem buffer cache, such as O_DIRECT.
We chose to not use O_DIRECT for this paper in order
to focus on the default filesystem behavior that most
users will encounter.

The second issue that one must address is estimating
the accuracy of the results of the test.  In our experi-
ence, filesystem benchmarks are notorious for being



nonrepeatable, bimodal, and full of hysteresis effects,
making it a challenge to get consistent results.

In this paper, we estimate the accuracy of the tests
using 95% confidence intervals calculated using a
Student’s-T statistic.  Such statistics usually require 10
or more independent trials to get a reasonably tight
confidence interval.  However, the large number of
filesystems examined in this paper, the number of tests
per filesystem and the running times of the experiments
meant that running the test multiple times was not
feasible. Our solution was to use intermediate test
results to create quasi-independent observations of the
test statistics, and then to generate confidence intervals
based on these observations.

Finally, one must be aware of internal bottlenecks
within the hardware I/O subsystem that can otherwise
skew results.  For example, we run all of our bench-
marks (except for the ones on the small system) using
multiple physical disks.  We do this because this im-
proves parallelism and allows higher I/O rates to be
achieved; this results in a higher load being placed on
the filesystem that we are testing. Additionally, this is
sometimes necessary to avoid excessive disk-head
movement that would otherwise invalidate the test.  For
example, if multiple sequential read tests are executed
at the same time on a single disk drive, the head move-
ment pattern may be nearly indistinguishable from that
of a random access workload, and the resulting transfer
rates will be much slower than otherwise might be
achieved.

5.1 Pgmeter

For the pgmeter tests, the total size of the test file(s)
used was always chosen to be significantly larger than
the main memory of the system.  For the sequential
read and write tests, this implies that each user-level I/O
request results in a disk request once the filesystem
buffer cache is filled (except for the effect of read ahead
in the Linux kernel).   We used a warm-up period of 30
seconds.  (This was based on examining the pgmeter
output when no warm-up period was specified and
making a judgment about how long it took to get the
system to steady-state behavior.) We used an experi-
ment runtime of 5 minutes for each pgmeter test case.

For the random access tests, the effect of the filesystem
cache is that certain requests will be satisfied out of
cache.  At the start of the test, the cache is empty (since
we remount the target filesystems at the start of the
test), and as the test progresses more and more of the
target file is read into memory.  Thus, the effect of the
filesystem cache in the random access tests is to cause
the filesystem data transfer rate to appear to increase as

the test continues to run.  To minimize this effect, we
chose a file size large enough that only a small fraction
of the file is read into memory during the test.  Exami-
nation of the pgmeter output also shows that the data
rate in each 10-second interval of the test was very
nearly constant in all of the random access tests con-
ducted for this paper.

On the small system, we ran pgmeter against a single
1 GB file, with the sequential read and write cases
using an I/O size of 8 KB.  We ran trials with 1, 4, 16,
and 64 outstanding I/O requests against this file.  Main
memory on the system was 512MB.

On the medium system, we ran pgmeter using 4 files,
each 2 GB in size, with each file being on a distinct
physical disk.  The I/O size for the sequential read and
write tests was 64 KB.  We ran trials with 1, 4, 16, and
64 outstanding I/O requests against each of the files.
Main memory on the system was 900MB.

On the large system, we ran pgmeter using 28 files,
each 2 GB in size, with each file being on a distinct
physical disk.  (We also report some results using 112
files.)  The I/O size for the sequential read and write
tests was 64 KB.  We ran trials with 1, 2, 4, and 8
outstanding I/O requests against each of the 28 files.
These numbers were reduced from the small and
medium cases due to the large (total) number of
processes that would otherwise be created in this case.
The main memory size was 16 GB.

We calculated confidence intervals for pgmeter as fol-
lows.  Interval statistics were recorded by pgmeter
every 10 seconds.  That is, we calculated the MB/s and
ops/s for every 10 seconds of the run.  The statistic re-
ported by the benchmark itself is the average of all of
the interval statistics over the run.  We used the interval
statistics to calculate an estimate of the mean and 95%
confidence intervals for the mean.

5.2 Filemark

We ran filemark for 1, 8, 64, and 128 threads for each
of the five filesystems available for testing on IA32.
The filesystems were recreated using mkfs at the start of
each test for each number of threads.  The system was
not rebooted either at the start of a new filesystem test
nor at the start of a new number of threads test.  As
previously discussed, only one Creation Phase was run
per case and then the repeated Transaction Phases were
run without running another Creation Phase.  No Dele-
tion Phase was run.  Instead, the filesystem was rebuilt
after each filemark run.

After the benchmark runs completed, the first transac-
tion was discarded and we used the remaining transac-



tion rates to calculate the mean transaction rate and a
95% confidence interval for the mean. Our experience
was that the first trial was often an outlier, due to
startup effects.  Additional trials were conducted for
any test where the confidence interval half-width was
larger than 10% of the mean.

It was only through this approach that we are able to
obtain meaningful statistics from the filemark bench-
mark.  Random variations between tests were otherwise
so high as to make the measured statistics meaningless.
Repeating the entire series of tests enough times to gen-
erate confidence intervals was not feasible given the
extended run times of each series of tests (16–18 hours
for a complete run over all file systems).

Of course, this approach did not allow us to calculate
confidence intervals for the Creation Rate; only by us-
ing repeated trials could we provide that data.  How-
ever, we regard the most important statistic reported by
filemark to be the Transaction Rate, since this repre-
sents the rate at which a file or mail server would be
able to process requests.  This is the statistic reported in
this paper and we do not include Creation Rate data.

Finally, it was necessary to make the file creation and
deletion probabilities equal in order to keep the number
of files nearly constant. (In filemark, this is done by
setting bias create to 50.)  Without this change, the
results of each trial were not taken from a stationary
distribution and the confidence interval calculation was
not statistically valid.

In all of our filemark runs, bias read was 75 (this is the
probability expressed as a percent of reading versus
appending to a file in part (i) of a filemark transaction)
and bias create was 50 (this is the probability of creat-
ing versus deleting a file in part (ii) of a filemark trans-
action).

For the small system, we ran filemark with the follow-
ing parameters: 1 target directory with 10 subdirecto-
ries, 10,000 total files, 30-second warm-up per
transaction phase, 2-minute transaction phases, 12
transaction phases per run.  The number of sub-
directories was chosen, in part, from input received
from the ReiserFS mailing list [ReiserFS]. Because the
file set here is relatively small, the system was booted
with only 128MB of memory (instead of 512 MB).

For the medium system, we ran filemark with 4 target
directories, each on a different physical disk, 2000
subdirectories per target directory, 100,000 total files,
30-second warm-up per transaction phase, 2-minute
transaction phases, and 6, 12, or 24 transaction phases
per run, depending on what was required to get the
confidence interval half-width to be smaller than 10%

of the mean.  As before, we discarded the first trial of
the series before the confidence intervals were
calculated.

In addition to the 10,000 and 100,000 file cases, we
tested two different file-size distributions with filemark.
In the first case, which we will refer to as the small-file
workload, file sizes were chosen uniformly between
from 512 bytes to 9.77 KB (this is the postmark default)
and the read and write I/O sizes were 512 bytes.  In
what we will refer to as the large-file workload, file
sizes ranged from 4 KB to 16 KB, and the read and
write I/O sizes were 4 KB.  Since the block size for all
of the filesystems used in this paper is also 4 KB, we
designed the large-file case to avoid filesystem read-
before-write overheads.

The total size of the file set for the small-file workload
is roughly 50 MB for the 10,000-file case and 500 MB
for the 100,000-file case.  For the big-file workload the
file set has size 100 MB in the 10,000-file case and
approximately 1 GB in the 100,000-file case.  The
large-file case is thus clearly larger than the main mem-
ory in the small system 128 MB case and the medium
system’s 900 MB case, while for the small-file case the
entire file set could fit into the filesystem buffer cache.
This was one reason for running both the small and
large-file cases.  The other reason was to examine the
effect of the request size change from 512 bytes to
4 KB.4

We did not run filemark for the large system because it
is a small-server benchmark.  Even for the medium
system, the entire file-set consists of only 500 MB of
files.  The large system has 16 GB of RAM.  We have
thus far been unable to scale up filemark sufficiently
that it would reliably generate more than 16 GB of files.

5.3 AIM7

Although AIM7 can be executed against a single disk
drive, our experience is that the filesystem jobs are
disk-transaction-rate constrained. With too few disk
drives available, the AIM7 test will be almost
completely I/O bound.  The small and medium systems
used for our tests were thus too small to run a
meaningful AIM7 test.  For our large system we have
determined that 120 disk drives is more than sufficient
to produce a compute-bound AIM7 test.

                                                       
4 We also ran the same benchmark on the small system with
larger memory (512 MB instead of 128 MB) and on the
medium system with smaller memory (512 MB instead of 900
MB) and found no significant change in the results from those
reported in Section 6.



For our AIM7 benchmark runs, we chose the AIM7
workfile.shared workload. AIM7 documentation
[AIM7] describes this job mix as a “Multiuser Shared
System Mix”.

We repeated the benchmark runs on the 28 CPU large
system with the system booted with 2, 4, 8, 16, 24 and
28 processors.  At each CPU count we executed the
AIM7 benchmark against each of the four filesystem
types (JFS is not currently available on IA64); we
recorded the maximum jobs completed per minute
statistic. We rebooted the system before each test run.
Each of the 120 disk drives used was formatted with a
single filesystem partition.

We executed only a single trial of each AIM7
benchmark for each filesystem and CPU configuration.
This is due to the length of each AIM7 run, requiring
one to ten hours to reach a peak throughput.  A single
try should be sufficient because each AIM7 run actually
consists of a number of subruns (one for each workload
level), and examination of the graph of  “jobs
completed/min” versus the number of simultaneous
runs would allows us to detect and discard anomalous
results.

6 Results
We concentrate here on where the benchmarks show
significant differences between the filesystems.  A
significant difference between filesystems is assumed to
exist if the 95%-confidence intervals for the two
filesystems do not overlap.  Additionally, we typically
require a difference of at least 10% in the mean values
for a difference to be considered significant.

6.1 Small System

On the small system, the filesystems all produced about
the same results on all of the pgmeter tests (the 95%
confidence intervals for the results overlapped).  Com-
parison of the pgmeter statistics for the sequential read
tests with those of iostat shows that each of the filesys-
tems drives the disk at nearly its maximum rate of
around 2200 I/O operations/s. (hdparm –t –T shows that
the disk can maintain 17.4 MB/s; this would correspond
to around 2227 I/O operations/s for an 8 KB request
size).  We conjecture that these pgmeter tests are all
disk-I/O limited and thus produce equivalent results for
all filesystems.

The filemark results for the small system do show sig-
nificant differences among the tested filesystems.  Fig-
ure 1 shows the results for the small file workload.  In
this figure, ReiserFS, Ext2, and Ext3 are in the upper
group and XFS and JFS are in the lower group.  Reis-
erFS scales well with increasing number of threads, and

it provides significantly better performance than Ext2
and Ext3.  Neither XFS nor JFS improve very much as
the number of threads increases, and XFS and JFS pro-
vide performance at basically the same level.  These
results are consistent with the Bonnie tests for random
seeks as reported by von Hagen [vonHagen, p. 240].

We surmise that the poor performance of XFS and JFS
in this environment is due to the large-system heritages
of these filesystems; optimizations appropriate for a
larger system may not be beneficial in a small-system
environment.

Figure 2 shows the same experiment with the big-file
workload.  In this test, Ext2 and Ext3 begin with higher
transaction rates for one thread; as the number of
threads grows, ReiserFS performance increases until it
nearly reaches the rates of Ext2 and Ext3 with
data=ordered.  Ext3 with data=writeback is signifi-
cantly slower than the other filesystems at the larger
number of threads.  These results are consistent with
those available on the ReiserFS web site [ReiserFS],
where ReiserFS performance is often the best for
smaller file sizes.

XFS and JFS still perform the slowest; but in this case
there is a clearer distinction between XFS and JFS.

The trends exposed by this set of experiments on the
small system appear to be the following:

1) For file-I/O intensive workloads on the small sys-
tem, all of the filesystems provide equivalent per-
formance.

2) For small files, where the I/O request size is less
than the filesystem block size, and using filesys-
tem-operation intensive workloads, ReiserFS may
be fastest.

3) For somewhat larger files, where the I/O request
size is equal to the filesystem block-size, and using
filesystem-operation intensive workloads, Ext2 or
Ext3 with data=ordered may be fastest.

6.2 Medium System

When we looked at the medium system results, we did
find differences among the filesystems when running
the pgmeter benchmark.  Figure 3 shows the results of
the pgmeter Sequential Read 64 KB workload on the
medium system.  This graph shows a clear performance
advantage for JFS and XFS over the other filesystems,
particularly as the number of outstanding I/O’s per file
increases.  It appears that the large-system heritage of
these filesystems starts to pay off on the medium sys-
tem.

This trend did not carry through for the other pgmeter
workloads, however, where the results for all filesys-



tems were equivalent.  In particular, all of the filesys-
tems provided nearly identical performance for the Web
Server case, indicating that for a read-only workload
with variable request sizes, all of the filesystems are
equivalent.  Figure 4 shows the results of pgmeter File
Server workload and it indicates that for a mixed read-
write workload with a variable request size, XFS and
ReiserFS provide marginally less performance than the
other filesystems.  Figure 5 shows that XFS moves back
into the upper group for a mixed read/write workload
with constant 8 KB record sizes.

Figure 6 shows the results of the filemark benchmark
for the medium system and the small-file workload.  If
we compare this figure to Figure 1 we see that in this
case XFS has moved into the upper group.  XFS, Ext2,
and ReiserFS provide equivalent levels of performance.
Examination of the 95% confidence intervals shows
that the ReiserFS 64 thread and 128 thread results in
this figure are statistically indistinguishable.  We there-
fore do not regard the peak that occurs for ReiserFS at
64 threads in Figure 6 to be significant. Both versions
of Ext3 are in the second group for 64 and 128 threads
and are equivalent to the top three filesystems for the 1
and 8 thread cases.   JFS continues to trail the perform-
ance of the other filesystems for this benchmark.

Figure 7 shows the results of the filemark benchmark
for the medium system and the large-file workload.
This graph looks basically the same as the small-file
case shown in Figure 6.  The corresponding comparison
for the small system (see Figures 1 and 2) found sig-
nificant differences between the small-file and large-file
workloads.  We have not determined precisely why
these two comparisons are different.  However, for the
small system, large-file workload case, the entire file
set fits into memory (100 MB of files and 128 MB of
memory).  In the medium system, large-file workload
case, the entire file set is too large to fit into memory
(1 GB of files and 900 MB of memory).  This may ex-
plain why the differences between Figures 1 and 2 are
not also seen between Figures 6 and 7.

The trends exposed by this set of experiments are the
following:

1) XFS and JFS appear to perform better (in relation
to the other filesystems tested) on sequential
workloads on multiple processor systems than they
did on uniprocessor systems.

2) Ext3 appears to have a scaling bottleneck not pres-
ent in Ext2 (possibly journal related) that keeps its
throughput from increasing as the number of
threads increase under the filemark benchmark.

3) In spite of good performance on the sequential read
benchmark of pgmeter, JFS did not scale well with

either multiple processors or increasing numbers of
threads under the filemark benchmark.

6.3 Large System

The differences between filesystems are clear when we
examine the output for pgmeter on the large system.
Figures 8, 9, and 10 show results of the pgmeter runs
for Sequential Read 64KB, Sequential Write 64KB, and
File Server respectively.  (Recall that JFS was not
available for the large system.) Figures 8 and 9 show
that XFS provides significantly better performance than
the other filesystems for this constant-request-size and
regular workload.  To continue the previous discussion,
we can now observe that this is where the large-system
heritage of XFS is truly beneficial.

On the other hand, Figure 6 shows that for a random
request size and 100% random access, Ext3 with
data=writeback, and ReiserFS are the best performing
filesystems.  Ext3 with data=ordered is next, and XFS
is last.  This suggests that for random access and vari-
able request size workloads, one of these other filesys-
tems might be superior to XFS.

Figure 11 shows the peak jobs-per-minute throughput
curves for the AIM7 benchmark for each tested
filesystem type at each CPU count.

Note that the jobs-per-minute y-axis values in Figure 11
are expressed as numbers for each filesystem type
relative to the baseline 2-processor-Ext2 value. This is
because the large system is a prototype system, and SGI
management requested that we not publish absolute
AIM7 performance numbers for this system.

The AIM7 benchmark indicates that the four filesystems
separate into two performance groupings, with Ext2 and
XFS performing roughly equivalently, and Ext3 and
ReiserFS performing at significantly lower levels.  Ext2
and XFS are essentially equivalent performers up to 16
processors.  Above 16 processors XFS achieves
marginally superior scaling, and at 28 processors XFS
reaches a peak throughput about 14% higher than
Ext2's peak.  Ext3 and ReiserFS perform at about 65%
of the level of Ext2 at 2 processors, and neither of these
two filesystem types gains much improvement in peak
throughput at higher processor counts.  Both Ext3 and
ReiserFS see a small decrease in peak throughput above
8 processors.  A similar small decrease is seen with
Ext2 above 16 processors, although overall Ext2 peak
throughput is substantially higher than Ext3 and
ReiserFS.

We interpret these results as indicating that both Ext3
and ReiserFS are constrained by bottlenecks that are
significantly more severe than those that affect Ext2



and XFS.  Past experience with this ccNUMA platform
leads us to believe that the bottlenecks are primarily
highly contended kernel spinlocks.

By adding Lockmeter [Lockmeter] to our 2.4.17 kernel,
we can measure spinlock contention.   Table 1   shows
the percent of all available CPU cycles that were
consumed by busy waiting for three spinlocks while
running the AIM7 benchmark with the indicated
filesystem.  (The data is for the 500 AIM7 processes
case on our large system.)  Both Ext3 and ReiserFS are
dominated by the so-called Big Kernel Lock (BKL),
with 85% to 88% of all CPU cycles being consumed by
busy waiting for that spinlock.  The BKL is still
dominant for Ext2, although the runqueue_lock
(protecting the single global CPU runqueue) now
emerges as being almost as significant.  For XFS the
BKL is even less important, and the runqueue_lock is
the primary scaling bottleneck.

Filesystem BKL runqueue_lock pagecache_lock

Ext2 30% 25% 5%

ReiserFS 88% 3% < 1%

Ext3 85% 5% < 1%

XFS 12% 35% 10%

Table 1.  Percent of Total CPU Cycles in Spin Wait
for Locks during AIM7 runs on the Large System

The effects of spinlock contention are nonlinear and
sometimes surprising.  For example, one might imagine
that a multiqueue CPU scheduler patch (e.g., the IBM-
contributed patch [IBM-MQ]) would eliminate
runqueue_lock contention and thus gain back those
cycles consumed by spinlock waits.  For XFS, where
the predominant AIM7 bottleneck in the baseline 2.4.17
kernel is the runqueue_lock, when we apply the IBM
Multiqueue Scheduler patch, the AIM7 peak at 28
processors increases to 40% (up from 14%) above the
unpatched Ext2 performance.  However, for Ext2 with
its 30% wasted CPU cycles waiting on the BKL and
25% waiting on the runqueue_lock, an unfortunate side-
effect of the IBM Multiqueue scheduler is that
contention on the BKL increases nonlinearly to a 70%
waste of CPU cycles, resulting in a 30% drop in the
AIM7 peak throughput.  The lesson here is that the
highest contending spinlocks should be attacked first.

This spinlock analysis leads us to conjecture that XFS
might perform better than the other filesystems when
CPU utilization is high. For example, for the pgmeter
sequential read and write tests, CPU utilization was

nearly 100% for all filesystems except XFS.  Our expe-
rience indicates that this is likely due to spinlock con-
tention for those other filesystems.    For the cases
where CPU utilization is lower, then XFS does not per-
form as well as the other filesystems (e.g., the File
System workload in Figure 10).  This conjecture sug-
gests that XFS should perform better on the mixed
workload cases if we could increase the load to the
point where CPU utilization becomes a limiting factor
for the other filesystems.

Figure 12 shows the result of a 112-file test case on our
large system.   This represents a four-fold increase in
system load over the previous 28-file case.  For this
case, CPU utilization is very high for all of the file sys-
tems except XFS, and XFS performs better than the
other filesystems.

The trends exposed by the experiments on the large
system are the following:

1) At the highest loads, all of the filesystems start to
become CPU bound.  XFS suffers less from this
problem than the other filesystems; hence it is able
to deliver better service at these higher loads.  A
significant part of the CPU load for the other
filesystems is due to spinlock contention that is
higher than that found in XFS.

2) In cases where the system is not quite so busy,
filesystems other than XFS can provide better
performance than XFS does.

3) Ext2 and XFS scale the best as the number of
processors increase (as measured by the AIM7
workload).  XFS is the only journaling filesystem
able to provide the same level of scaling as Ext2.

4) Ext3 appears to have internal scaling bottlenecks
associated with the Ext3 specific code since Ext2
scales well on AIM7, but Ext3 does not.

5) ReiserFS has similar scaling problems to those of
Ext3.

7 Conclusions
We stated specific conclusions for each of the small,
medium and large filesystems in Section 6.  In this
section we attempt to provide what appear to be
performance trends that are true over the entire set of
experiments:

1) In general, we found the performance of Ext2 to be
better than that of Ext3.  In most cases, we found
the performance of Ext3 with data=writeback to be
the same as with data=ordered.  In certain cases,
we found Ext3 with data=ordered to be faster; in
other cases data=writeback is faster.  On the large
system, however, we found performance of
data=writeback to be even better than that of Ext2



(See Figure 10).   It is therefore not clear to us how
Ext3 users might be able to predict which journal-
ing mode should be used for their workload.

2) For small files (5 KB average size or less) and file-
system-operation–intensive workloads, ReiserFS
can often provide the best performance.

3) For File-I/O intensive workloads like pgmeter, all
of the filesystems are equivalent on systems like
our small system.

4) When performance is of primary importance,
neither XFS nor JFS are good choices for systems
like our small system and filesystem operation-
intensive workloads like filemark.

5) On small SMP systems like our medium system,
XFS and JFS are good choices for sequential read
workloads.

6) JFS appears to have difficulty scaling with SMP or
the number of concurrent threads in a filesystem
operation-intensive workload like filemark.

7) XFS currently performs best on systems like our
large system under heavy I/O workloads.

8 Future Work
In this paper we have observed behavior without
providing a detailed analysis of why the various
filesystems perform as they do.  This is ongoing work
and we expect to provide such insight in future papers
on filesystem performance, as well as large-system
performance and scalability under the Linux operating
system.  However, this is a difficult problem, with
sometimes surprising results [Robbins].

Finally, nothing in the Linux kernel stays the same for
long.  Over time, studies such as this one will need to
be repeated in order to update the results to new
versions of Linux and its filesystems.

9 Software Availability
The pgmeter and filemark benchmarks are available
under the GPL and the Artistic License, respectively at
the SourceForge sites pgmeter.sf.net and filemark.sf.net.
AIM7 is available at Caldera’s Web site [AIM7].
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Appendix
Filesystem Versions Used

The version of Ext3 used in this paper is the default
version available in Linux Kernel 2.4.17.  The Ext3
used tools used are from e2fsprogs-1.25 and util-linux-
2.11g.

The version of ReiserFS used in this paper is 3.6.25;
this is the default version available in Linux kernel
2.4.17.  The version of ReiserFS tools used is
3.x.0k_pre11.

The version of XFS used here on our small and medium
systems is the 2.4.17 XFS patch available from SGI
[XFS] (xfs-2.4.17-all.i386.bz2).  A comparable version,
developed at SGI for our ccNUMA prototype, is used
on our large system.

The version of JFS used here is 1.0.15 for Linux Kernel
2.4.17.  The patch files are: jfs-2.4.common-1.0.15-

patch, jfs-2.4.17-1.0.15-patch, and jfsutils-1.0.15.tar.gz,
all taken from [JFS].

Web Server Workload

The Web Server workload (as distributed with Iometer
[Iometer]) is defined by the following parameters:

 Request
size in
bytes

 Percent
requests
this size

 Percent
read (vs.

write)

 Percent
random (vs.
sequential)

 512  22  100  100
 1024  15  100  100
 2048  8  100  100
 4096  23  100  100
 8192  15  100  100

 16384  2  100  100
 32768  6  100  100
 65536  7  100  100

 131072  1  100  100
 524288  1  100  100

 

File Server Workload

The File Server workload (as distributed with Iometer
[Iometer]) is defined by the following parameters:

Request
size in
bytes

Percent
requests
this size

Percent
read (vs.

write)

Percent
random (vs.
sequential)

512 10 80 100
1024 5 80 100
2048 5 80 100
4096 60 80 100
8192 2 80 100

16384 4 80 100
32768 4 80 100
65536 10 80 100



Figure 1: Filemark, Small System, Small-File Workload
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Figure 2:  Filemark, Small System,  Large-File Workload
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Figure 3: Pgmeter, Medium System, 
Sequential Read 64 KB Workload
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Figure 4: Pgmeter, Medium System, FileServer Workload
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Figure 5: Pgmeter, Medium System, 8K OLTP Workload
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Figure 6: Filemark, Medium System, Small-File Workload
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Figure 7: Filemark, Medium System, 
Large-File Workload
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Figure 8: Pgmeter, Large System, 
Sequential Read 64 KB Workload
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Figure 9: Pgmeter, Large System, 
Sequential Write 64 KB Workload
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Figure 10: Pgmeter, Large System, 
File Server Workload
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Figure 11: AIM7, Large System, 28-File Case
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Figure 12: Pgmeter, Large System, 
Web Server Workload, 112-File Case
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