
USENIX Association

Proceedings of the
2002 USENIX Annual Technical

Conference

Monterey, California, USA
June 10-15, 2002

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Improving Wait-Free Algorithms for Interprocess Communication in Embedded

Real-Time Systems�

Hai Huang, Padmanabhan Pillai, and Kang G. Shin
Real-Time Computing Laboratory

Department of Electrical Engineering and Computer Science

The University of Michigan

Ann Arbor, MI 48109-2122

fhaih,pillai,kgshing@eecs.umich.edu

Abstract

Concurrency management is a basic requirement for inter-
process communication in any multitasking system. This usu-
ally takes the form of lock-based or other blocking algorithms.
In real-time and/or time-sensitive systems, the less-predictable
timing behavior of lock-based mechanisms and the additional
task-execution dependency make synchronization undesirable.
Recent research has provided non-blocking and wait-free algo-
rithms for interprocess communication, particularly in the do-
main of single-writer, multiple-reader semantics, but these al-
gorithms typically incur high costs in terms of computation or
space complexity, or both. In this paper, we propose a gen-
eral transformation mechanism that takes advantage of tempo-
ral characteristics of the system to reduce both time and space
overheads of current single-writer, multiple-reader algorithms.
We show a 17–66% execution time reduction along with a 14–
70% memory space reduction when three wait-free algorithms
are improved by applying our transformation. We present three
new algorithms for wait-free, single-writer, multiple-reader
communication along with detailed performance evaluation of
nine algorithms under various experimental conditions.

1 Introduction

A key benefit provided by operating systems is a task
or thread abstraction to manage the complexity that rapidly
evolves even in very small embedded systems. A task/thread
model mitigates the complexity growth of large monolithic pro-
grams, and simplifies the sharing of computing resources be-
tween the disparate functions of the system. However, the tasks
of a system very rarely work independently of each other, hence
needing interprocess communication (IPC) between tasks.

The simplest method of IPC is through global, shared vari-
ables. This is a very low-overhead method of communication,

�The work reported in this paper is supported in part by the U.S. Air-
force Office of Scientific Research under Grant No. F49620-01-1-0120, and
by DARPA administered under AFRL contract F30602-01-02-0527.

but has obvious flaws in concurrent accesses by multiple tasks.
Even if we restrict the domain to single-writer semantics, which
is common in embedded systems and sensor networks, data cor-
ruption can occur.

To avoid reading corrupted data from a concurrent object,
critical sections are often used to coordinate accesses from dif-
ferent tasks. The simplest approach to implementing critical
sections is to disallow task preemption inside of the critical
section. This can be done by disabling and enabling interrupts
in the CPU at the beginning and end of the critical sections,
respectively. These are privileged operations and require ker-
nel intervention. The read and write operations must be imple-
mented in the kernel, or the application must be wholly trusted,
since any task running with interrupts disabled cannot be pre-
empted and may, either maliciously or inadvertently, disrupt the
system. Moreover, disabling interrupts does not suffice to man-
age concurrency in multiprocessor systems.

The most common way to implement critical sections
is to use software locks — typically through mutexes and
semaphores. A task has to acquire the necessary locks before
it can access shared objects. If the needed lock is already held
by another task, the task blocks, and the operating system will
resume it when the resource becomes available. Using locks
serializes concurrent tasks that try to access the shared objects
simultaneously, thus preventing corruption. In a multiprocessor
environment, this reduces parallelism and decreases the utiliza-
tion of available resources.

Locks can also cause more serious problems such as unpre-
dictable blocking times and deadlocks. If a task is blocked
while still holding the lock (e.g., a page fault occurred, or it
is preempted by a higher-priority task), any other tasks waiting
for the lock are unable to make progress until the lock is sub-
sequently released. In the worst case, the task may fail while
holding the lock, or block indefinitely due to circular lock de-
pendencies, causing deadlock and blocking other tasks from
ever making progress.

Even with safeguards to avoid deadlock, locks are particu-

larly unattractive in real-time and embedded systems. Due to
blocking and switching to other tasks, using locks can incur
high and unpredictable execution time overheads, and cause
many other problems, including priority inversion, convoying
of tasks, more difficult schedulability analysis, and increased
susceptibility to faults. In real-time systems, tasks are usu-
ally assigned fixed or deadline-based priorities, according to
which they are scheduled. Priority inversion can occur when
a high-priority task is blocked waiting for a lock, but the lock
holder does not make progress due to its low priority. This is
such a serious issue that many algorithms have been developed
to limit the effects of priority inversion, including the priority
inheritance protocol, the priority ceiling protocol, and the im-
mediate priority ceiling protocol [3, 28, 29]. Furthermore, pro-
viding real-time execution guarantees becomes more difficult.
The simple, classical real-time analysis techniques [21] assume
independently-executing tasks, which is clearly violated when
locks are used. More complex analysis [29] may be used to pro-
vide real-time guarantees by accounting for worst-case block-
ing times, but this may result in poorer utilization of system
resources.

Due to the above problems associated with lock-based syn-
chronization IPC approaches, several algorithms that perform
non-blocking and wait-free1 communication with single-writer,
multiple-reader semantics have been proposed. These allow
tasks to independently access the shared message area without
locks and the problems introduced by blocking. These algo-
rithms, however, are not perfect. Although blocking is avoided,
the operations may become quite complex and can incur non-
negligible computational overheads. More importantly, the al-
gorithms all use multiple buffers to avoid corruption, so their
space overhead is high, wasting memory resources that are
severely limited in small, embedded systems.

In this paper, we present three new wait-free algorithms. We
develop a generalized transformation mechanism that can im-
prove existing wait-free algorithms by exploiting the temporal
characteristics of communicating tasks, significantly reducing
both space and execution time overheads. For some existing
algorithms, we show up to 66% reduction in execution time
and 70% reduction in memory requirements after applying our
transformation. The transformed algorithms preserve all of the
benefits of wait-free communication along with significant time
and space savings.

In the following section, we present some background infor-
mation and further motivate this work. We present our trans-
formation mechanism in Section 3, and illustrate it using some
actual IPC algorithms. Detailed evaluations are done in Section
4. We will put our work in the perspective of related work in

1A concurrent object implementation is non-blocking if at least one process
that is accessing the object can complete an operation within a finite number of
steps regardless of failures. Furthermore, it is wait-free if every process that is
accessing the object can complete an operation within a finite number of steps
[13]. Wait-free is a stronger form of non-blocking as it ensures starvation-free
access.

Sensors

Actuators

Environment

Controlled System

Control Tasks

Sensor Task

IPC

Figure 1:A schematic block diagram of a real-time system.

Section 5, before concluding in Section 6.

2 Motivation

In this paper, we are primarily concerned with communica-
tion between a single writer and multiple readers. This is a
very common scenario in embedded systems — ranging from
as complex as automotive and industrial control systems to as
simple as the controllers in kitchen appliances. Figure 1 shows
a typical real-time system. The sensors are used to acquire in-
formation from the controlled system. A sensor task reads the
data, performs any preprocessing, and distributes the informa-
tion to the various control tasks. The control tasks perform
computations and set the actuators based on this information,
so it is important that they obtain uncorrupted, most-recently
produced data from the sensor task.

Traditionally, the writer (i.e., sensor task) must pass the data
to the readers (i.e., control tasks) by means of mailboxes, one
of which is associated with each reader. However, if there is
a large disparity in the execution frequencies of the tasks, es-
pecially if the sensor read rate is higher than the actuator con-
trol output rates, as is common, data messages will queue up
in the mailboxes. The reader will obtain outdated messages,
and will either have to process these or discard them to acquire
the most current information. Generating multiple copies of
each message incurs overheads in processor cycles and mem-
ory space, both of which are scarce resources in an embedded
system. Therefore, the mailbox approach is neither appropriate
nor efficient for typical IPC needed in real-time and embedded
systems.

State messages are used to alleviate such problems. They
were proposed in the MARS project [16] and implemented in
ERCOS [25]. The state messages approach associates mail-
boxes with the writer instead of the readers, so only the writer
associated with a particular mailbox can write to it. Further-
more, each message is assumed to include all data that needs to
be communicated, so that the single, most current message con-
veys all information. Since data are time-sensitive, a new mes-
sage can simply overwrite the previous one, effectively present-
ing the readers with the most up-to-date information. However,
since the writer and readers can access the writer’s mailbox
concurrently, the readers can potentially read corrupted data if

PWPW PW PW

DW DWDWDW

C

Writer

Reader

X X X XX

R
Max

C
R

P
R

Figure 2:Reader and writer execution timelines, and each� denotes
a write operation performed by the writer.

the writer simultaneously writes new data.

There are many synchronization-based algorithms [9, 10]
designed to ensure that reader tasks will always access un-
corrupted messages. As mentioned earlier, synchronization,
particularly with locks, can cause many problems of its
own. Therefore, in this paper, we focus on wait-free, single-
writer, multiple-reader IPC algorithms [7, 8, 17, 24, 31]. How-
ever, these algorithms have higher space overheads than the
synchronization-based algorithms. Even though the worst-case
time overhead of these algorithms is significantly lower than
that of the synchronization-based ones, the execution overheads
can still be significant. Later in this paper, we present a transfor-
mation mechanism that takes advantage of the real-time prop-
erties of the communicating tasks to reduce both the time and
space overheads of this class of algorithms. First, however, we
present a brief overview of real-time systems and tasks in the
next section.

2.1 Attributes of Real-Time Tasks

Tasks in a typical real-time system are periodically in-
voked/released and executed.2 Each taskT is associated with
various attributes, including its periodP , relative deadlineD,3

and worst-case execution time (WCET)C. The task must be
run once each period, and needs to receive enough process-
ing time to complete execution by its relative deadline. The
real-time scheduler uses these attributes to decide when to run
tasks, and can guarantee that all tasks will meet their deadlines
as long as they require no more than their specified WCETs.
From high-level program flow analysis and low-level timing
information, a task’s WCET can be determined statically. Fig-
ure 2 shows the relationship between these values for a typ-
ical scenario with one reader and one writer processes. The
top timeline represents the reader’s period. For simplicity, the
reader’s relative deadline is assumed to be equal to its period in
our discussion and not shown here. In general, it is less than
or equal toPR, wherePR is the reader’s period.C denotes the
reader’s WCET, andCR is the time to perform a read opera-

2Aperiodic tasks can be handled by a periodic server [18], so the periodic
task model is not a limiting assumption.

3This equals the deadline minus the release time of the task.

tion. RMax represents the maximum time the reader can take
to perform a read operation. Note in Figure 2 that the read op-
eration is placed at the end of the reader task’s execution. It is
only drawn there to show the relationship betweenRMax, CR,
PR andC more clearly, but, in general, the read operation can
be anywhere within the reader’s execution timeC. The bottom
timeline represents 4 writer periods. The writer’s period and
relative deadline are denoted byPW andDW , respectively.

2.2 Temporal Concurrency Control

SinceRMax includes the time the reader is preempted by
higher-priority tasks, it determines the maximum time the
writer process may interfere with the reader within the reader’s
period without the reader missing its deadline.RMax is calcu-
lated as follows:

RMax = PR � (C � CR):

Assuming that all deadlines are met, Figure 2 illustrates the
worst-case scenario in terms of the maximum number of pre-
emptions of the reader by the writer task. This occurs when
the first interfering-write happens as late as possible within
the writer’s period (first vertical dotted line — just before the
writer’s deadline) and the last interfering-write happens as early
as possible within the writer’s period (second vertical dotted
line — just after the writer is released).

Let NMax denote the maximum number of times the writer
might interfere with the reader process during a read operation.
NMax can be calculated as:

NMax = max

�
2;

�
RMax � (PW �DW)

PW

�
+ 1

�
:

Therefore, if we use an (NMax + 1)-deep circular buffer in-
stead of a single message buffer, the writer can post messages
cyclically without ever interfering with the reader process, as-
suming that the real-time constraints are met. This allows the
reader and writer to access the message area independently of
each other without blocking, using only temporal characteris-
tics guaranteed by the real-time scheduling and a sufficiently-
deep circular buffer to manage concurrency. With multiple
readers, we simply choose anNMax value large enough to work
for all readers, i.e., compute it using the task with largestRMax.
Finally, we keep a pointer to the most recently written mes-
sage. This is updated by the writer, and subsequently used by
the readers to retrieve the latest message. This concept was first
introduced in [16] and later implemented in the Non-Blocking
Write (NBW) protocol [17].

This algorithm is very efficient in terms of execution time,
i.e., almost as fast as using global variables with no protection.
The only overhead associated with this algorithm is the cost of
maintaining the pointer for the most recently written message.
Therefore, it is easy to see that it has optimal timing behavior
among wait-free algorithms.

2.3 Restricting Memory Use

With a deep enough buffer, the above algorithm will always
guarantee that the readers will not acquire corrupted data. How-
ever, whenRMax is large orPW is small,NMax can get quite
large and would require a large buffer space. This is undesir-
able, especially in embedded systems where memory is usually
a scarce resource.

EMERALDS’s state message algorithm [35] improves upon
the NBW protocol. To limit memory usage, EMERALDS sim-
ply sets a static maximum buffer threshold for the state mes-
sage. The reader tasks are divided into two groups,fast and
slow readers. Tasks that haveNMax values less than this max-
imum buffer threshold are classified as fast readers, while the
others are classified as slow readers.

The fast readers execute according to the NBW protocol.
Since these readers have smallNMax values, they are both
time- and space- efficient. For slow readers, EMERALDS pro-
vides a system call mechanism that (i) disables interrupts, (ii)
copies the message from the shared buffer to the slow reader’s
local space on behalf of the reader, and (iii) re-enables inter-
rupts. The overhead of this system call is quite high; however,
according to the definition of slow readers, this call is invoked
relatively infrequently, so it was claimed not to greatly impact
the overall average-case execution time overheads.

As we will see in Section 4, the amount of overhead due to
this system call is significant enough to make its average-case
execution time much higher than the non-blocking algorithms.
We would like to have the low execution overheads of the NBW
protocol and the low memory usage achieved by the EMER-
ALDS implementation, but without resorting to locks, disabled
interrupts, or other synchronization-based concurrency control
mechanisms. The following section details how to achieve this
by transforming existing wait-free IPC mechanisms.

3 Improving Wait-Free IPC

In order to gain the benefits of wait-free IPC along with low
memory usage, and low average- and worst- case execution
times, we first generalize the concept of fast and slow read-
ers (to reduce the memory requirements) introduced in EMER-
ALDS. We then devise a transformation mechanism that can be
applied to existing wait-free algorithms, preserves all of their
inherent benefits, and simultaneously improves their perfor-
mance.

Here, fast readers are defined as those tasks for which tem-
poral concurrency control suffices to ensure uncorrupted reads
without excessive memory usage. Slow readers consist of all of
the other reader tasks, which would require too much memory
to employ temporal concurrency control alone. The actual di-
vision of tasks would depend on the requirements of the final
system, as we will see later.

We can transform IPC algorithms to use this concept of fast
and slow readers. The fast readers will basically employ the
NBW read mechanism, and will require sufficient buffers to
ensure temporal concurrency control. The slow readers will
use the existing IPC mechanism, although slight changes may
be required because of the parallel approach employed by the
fast readers. The writer requires more significant changes in
order to interact with both types of readers. The precise nature
of these changes depends on the actual algorithm transformed.

In general, we can make some predictions about the resulting
performance. First, the average-case execution time (ACET)
will decrease, since the highest-frequency readers will use the
very efficient NBW mechanism. Worst-case execution time
(WCET) is also often reduced, since for most algorithms, ex-
ecution time depends on the number of simultaneous readers
using the mechanism, which is reduced to only the slow read-
ers. With the proper division of tasks into fast and slow readers
(Section 3.4), the transformed algorithm should require much
less memory on average than the original algorithm, and in the
worst case, require no more than the original.

Our transformation mechanism can be illustrated more con-
cretely by showing how we apply it to some actual algorithms.
We first apply our transformation to the algorithm proposed by
Chenet al. in [7]. We then show how to transform the Dou-
ble Buffer algorithm, which we have developed and present in
Section 3.2. Chen’s algorithm has a relatively high execution
time overhead and low space overhead, so we expect our trans-
formation to primarily improve execution time. In contrast, the
Double Buffer algorithm has a high space overhead and low
execution time overhead. We expect this algorithm to bene-
fit primarily from memory usage reduction after transforma-
tion. The following subsections detail the improved algorithms,
which are evaluated in Section 4.

3.1 Improving Chen’s Algorithm

Chen et al. [7] proposed a single-writer, multiple-reader
wait-free algorithm using the Compare-And-Swap (CAS) in-
struction. This instruction is used to atomically modify the
states of control variables used to ensure that the writer never
writes to a buffer currently in use by some readers. The CAS
instruction is commonly used in non-blocking algorithms to co-
ordinate accesses to shared buffers and is supported on most
modern microprocessors. Even if an architecture does not sup-
port this instruction, it can be synthesized by using other system
primitives or system support [5]. The instruction CAS(A,B,C)
is defined to be equivalent to atomically executing “if A equals
B, then set A to C and return true, else return false.”

Chen’s algorithm requires (P + 2) message buffers, where
P is the number of reader tasks. There is a global variable,
Latest, that indexes to the most recently written message
buffer. Additionally, each reader has an entry in a usage ar-
ray indicating the buffer it is using. When the reader reads, it

int NSReader; # Number of slow readers
int NBuffer; # Number of buffers
int Latest; # Index to the latest message
message Buff[NBuffer]; # Message buffer
char Reading[NSReader]; # Usage count

SlowReaderi() f
1: Reading[i] = NBuffer;
2: ridx = Latest;
3: CAS(Reading[i], NBuffer, ridx);
4: ridx = Reading[i];
5: read Buff[ridx];

g
int GetBuff()f

boolean InUse[NBuffer];
6: for (i = 0; i< NBuffer; i++) InUse[i] = false;
7: InUse[Latest] = true;
8: for (i = 0; i< NSReader; i++)f
9: j = Reading[i];
10: if (j 6= NBuffer) InUse[j] = true;
11: g
12: for (i = ((Latest + 1) mod NBuffer); ;
13: i = ((i + 1) mod NBuffer))f
14: if (InUse[i] == false)
15: return i;

g
g
Writer() f

16: widx = GetBuff();
17: write Buff[widx];
18: Latest = widx;
19: for (i = 0; i< NSReader; i++)
20: CAS(Reading[i], NBuffer, widx);

g

Figure 3:Improved Chen’s Algorithm.

first clears its entry, and then uses CAS to atomically set this to
Latest if it is still cleared. It then reads back the value from
its entry, and can then safely read from the indicated buffer.
The writer has slightly more work to do. It first scans the usage
array and selects a free buffer. It performs the write, updates
Latest, and then must scan and set each reader entry that is
cleared toLatest using CAS. This has been proven to ensure
correct non-blocking IPC behavior in [7].

By taking into account the real-time properties of the com-
municating tasks, we can divide the reader set into two sets:
fast and slow reader sets. By separating the reader set, we can
reduce the space requirement fromP + 2 toM +max(2; N),
whereM is thenumber of slow readers andN is thenumber of
buffers needed by the fast readers. Section 3.4 describes how to
computeM andN in order to optimize for space. BecauseN
is chosen to be less than, or equal to, the number of fast readers
(i.e.,N � P �M), the improved algorithm requires no more
buffer space than the original algorithm. In the worst case (i.e.,
all readers are slow readers), the improved algorithm simply de-
generates to the original algorithm. Furthermore, the execution
time overheads will be greatly reduced, since fast readers use
the very efficient NBW mechanism and the writer overhead is
linear to the number of slow readers only, rather than all read-
ers. Therefore, both space and time overheads can be reduced.

The Improved Chen’s algorithm is shown in Figure 3.
NSReader is the number of slow readers.NBuffer is the
total number of message buffers.Buff[] is the array of mes-

sage buffers shared between the writer and readers.Latest is
a control variable that indexes this array, indicating the most re-
cently written message buffer.Reading[] is the usage array
associated with the slow readers such thatReading[i] indi-
cates which buffer entry theith slow reader is currently reading.

The slow readers operate identically to the readers in Chen’s
algorithm. Just before theith slow reader reads from the mes-
sage buffer,Reading[i] is set to a value between 0 and
NBuffer-1 to indicate the index of the buffer it will be read-
ing. The writer will not overwrite this buffer slot as long
as the slow reader is still using it. The slow reader first as-
signsReading[i]=NBuffer to indicate that it is preparing
to make a read operation. Then, it readsLatest, and attempts
to setReading[i] to this value atomically using CAS. If the
writer has preempted the reader and completed a buffer write
before this instruction, it would have already setReading[i]
to the newLatest value, and the reader’s CAS would fail.
In any case, by line 3,Reading[i] would have been atomi-
cally set to a buffer index that the writer will not use. So the
slow reader simply reads the index and can now read from the
indicated buffer safely.

The fast reader (not shown) is the same as in the NBW pro-
tocol. It relies only on temporal concurrency control, so it just
readsLatest and uses the indicated buffer.

The Writer() process looks just like the one in Chen’s
algorithm. It callsGetBuff() to determine which buffer slot
is safe to use next. After it writes the next message, it updates
Latest and then modifies eachReading[i] using CAS if
necessary.

The key difference lies inGetBuff() function, which is
modified to allow temporal concurrency control for fast read-
ers. First, to prevent the writer from interfering with slow read-
ers,GetBuff() picks a buffer,m, such that no slow reader is
using it (i.e., for alli, Reading[i] 6= m). To protect the fast
readers, as with the NBW protocol, we must ensure that there
are at least (N � 1) writes between two consecutive writes to
any particular buffer, whereN is the buffer depth required for
temporal concurrency control (Section 2.2).GetBuff() pre-
vents the writer from interfering with the fast readers by cycli-
cally choosing buffer entries starting fromLatest. When
NBuffer is chosen correctly (Section 3.4), even if each slow
reader is using a unique buffer, there will be enough buffers
(i.e., NBuffer � NSReader) left so that the cyclic selec-
tion will ensure sufficient time between two consecutive writes
to the same buffer, satisfying the requirements for temporal
concurrency control. Thus, the writer will not interfere with
either fast or slow readers.

Let us illustrate this using the example shown in Figure 4.
Assume that there are 20 readers, of which 3 are identified as
slow readers. Assume further that relative execution frequen-
cies of the fast readers and the writer are such that they require
a 4-deep buffer to ensure temporal concurrency control. In this

1

2

3

5

6

7

4

1

2

3

5

6

7

4

M M

Latest

N

(a)

Buff [M+N]

Latest

Buff [M+N]

N: number of buffers for fast readers
M: number of slow readers

Reading [M]

(b)

Reading [M]

Figure 4:An example for Improved Chen’s algorithm.

system, therefore, we need 7 message buffers (4 for the fast
readers, and 1 for each of the slow readers), as compared to 22
buffers needed with the original Chen’s algorithm. Figure 4(a)
shows a particular execution state of the task set withLatest
points to the4th buffer slot. SinceReading[0] andRead-
ing[2] point to the4th and5th buffer slots, the writer knows
these may be in use, and will not use these buffers. Instead,
it will cyclically select and write to the next available slot af-
ter Latest, the 6th buffer. The worst-case scenario occurs
when the last slow reader now makes a read operation. It will
now prevent the writer from using the6th buffer. Even if the
three slow readers never relinquish their buffers, the writer can
continue to write cyclically to the remaining 4 buffers, with the
repeating access patternf7, 1, 2, 3, 7, . . .g. This ensures that
no buffer is used more frequently than every fourth write, satis-
fying the conditions for the fast readers.

The biggest drawback of Chen’s algorithm lies in the com-
plexity of theGetBuff() function and the expensive CAS
instruction itself. As shown in Figure 3, there are three loops
inside of this function. The first one loopsNBuffer times,
and the second one loopsNSReader times. Finally, the last
one can potentially loopNBuffer times again. Furthermore,
the writer has a loop that executes CASNSReader times. As
the number of slow readers decreases, we expect the perfor-
mance enhancement from the Improved Chen’s algorithm, as
compared to the original Chen’s algorithm.

3.2 Double Buffer Algorithm

We have devised a new wait-free IPC mechanism that is less
computationally complex than Chen’s algorithm. It, however,
trades off time for space complexity, requiring approximately
twice the buffer space. Hence, it is called theDouble Buffer
algorithm.

The basic constructs of the Double Buffer algorithm are
shown in Figure 5, and the algorithm is summarized in Fig-
ure 6. A two-dimensional shared message buffer,Buff[][],
has (P +1) rows, whereP is the number of reader tasks. Each
row has two buffers. Associated with each rowi is a usage
count, ReaderCnt[i], representing the number of readers
currently using either buffer in the row, and a flag,Cl[i], in-
dicating which of the two buffers is more current. A variable,

1

0

0

1

0

0

0

1

1

1

P+1

CL [P+1] ReaderCnt [P+1]

2

1

0

0

0

1

0

0

3

0

P: number of readers

Latest

Buff [P+1] [2]

Figure 5:Constructs in the Double Buffer algorithm.

Latest, points to the row containing the most recently written
data. A reader task first readsLatest, and indicates it is us-
ing the row by incrementing the usage count. It then reads the
buffer indicated by the row’sCl flag, and decrements the row’s
usage count when it finishes reading. Note that the increment
and decrement operate directly on memory variables and must
be atomic. This is commonly available on modern processors,
including the x86 architecture.

The writer is fairly straightforward. It first scansReader-
Cnt[], and selects a row that is not being used by the readers.
It then writes to the buffer that was least recently written in the
selected row (i.e., opposite to the one indicated by the row’s
Cl flag). We will see why this is necessary shortly. Finally, it
updates the row’sCl flag to point to the newly-written buffer,
and setsLatest to the row that contains this buffer. In case
each reader is concurrently reading from a unique row, this al-
gorithm requires (P + 1) rows for the writer to work correctly,
whereP is the number of readers. As each row has 2 buffers,
the space required for the message buffer array is2(P + 1).

To see the correctness of the algorithm, let us consider the
possible interference scenarios. The writer can only interfere
with the reader when they both choose to use the same row.
This can only occur in two cases. The first case can occur when
a reader is interrupted after it has chosen a row (after line 1),
but before it updates the use count (before line 2). The writer
then executes, and can potentially choose the same row as the
reader. The second case occurs when the writer is interrupted
after it has chosen a row (after line 7). If this row happens to be
Latest, then the reader can also choose to read from this same
row. So, it is possible for the readers and the writer to select
the same rowi. However, the reader will read from the buffer
indicated byCl[i], while the writer will use the opposite one.
As the writer updatesCl[i] only after the complete message is
written, and the reader always increments the use count before
readingCl[i], we can guarantee that the writer and readers
cannot interfere with each other in this algorithm, even if they
happen to use the same row.

The Double Buffer algorithm is less computationally com-
plex than Chen’s algorithms, but has a space requirement twice
that of the original Chen’s algorithm. In the next section, we
use our transformation technique to improve the Double Buffer

int NReader; # Number of readers
int NRows = NReader + 1; # Number of rows in the message buffer
int Latest; # Index to the row with the latest message
message Buff[NRows][2]; # Message buffer
int ReaderCnt[NRows]; # Reader count for each row
boolean Cl[NRows]; # Column with more up-to-date message

Readeri() f
1: ridx = Latest;
2: inc ReaderCnt[ridx];
3: cl = Cl[ridx];
4: read Buff[ridx][cl];
5: dec ReaderCnt[ridx];
g
Writer() f

6: for (i = Latest; ; i++)
7: if (ReaderCnt[i mod NRows] == 0) break;
8: cl = not Cl[i];
9: write Buff[i][cl];
10: Cl[i] = cl;
11: Latest = i;
g

Figure 6:Double Buffer algorithm.

algorithm. As we will see in Section 4, the number of buffers
required by the transformed Double Buffer algorithm is usually
comparable to, if not less than, the original Chen’s algorithm.

3.3 Improved Double Buffer Algorithm

Applying the same techniques used in devising the Improved
Chen’s algorithm, we now try to improve the Double Buffer al-
gorithm. Again, we divide the reader tasks into fast and slow
readers. The fast readers need a minimum ofN buffers to
ensure temporal concurrency control, while theM slow read-
ers use the original Double Buffer scheme. The total message
buffer requirements will now be2(M+max(1;

�
N

2

�
)) buffers,

which is less than or equal to the original algorithm’s2(P +1)
buffers, assuming correct partitioning of the readers (see Sec-
tion 3.4). As before, the highest-frequency readers now use the
very low overhead NBW read mechanism, so execution times
should be improved as well.

The data structures and algorithm for Improved Double
Buffer are shown in Figures 7 and 8, respectively. The slow
readers are unmodified from the original readers. Fast read-
ers simply read from the buffer indicated byLatest and the
corresponding row’sCl entry. The writer, too, is mostly un-
modified. To ensure temporal concurrency control for the fast
readers, the writer should not reuse any particular buffer until
at leastN�1 subsequent writes have occurred. This is ensured
by changing the buffer selection loop to search starting at row
(Latest+1) mod NRows. The rows are used cyclically,
and the buffers within a row alternate on subsequent writes,
so

�
N

2

�
rows suffice to ensure temporal concurrency control

for the fast readers. Therefore, the improved algorithm needs
2(M +max(1;

�
N

2

�
)) buffers.

To illustrate overhead improvements, let us consider a sys-
tem with 20 reader tasks, of which 5 are classified as slow
readers. Assume further that based on theNMax calculations
(Section 2.2), the fast readers need 7 buffers to ensure tempo-

N
2

2
N

2
N

2
N

CL [+M] ReaderCnt [+M]

0

2

1

0

11

1

0

1

0

Buff [+M] [2]

M

Latest

M: number of slow readers
N: number of buffers needed for fast readers

Figure 7:Constructs in the Improved Double Buffer algorithm.

ral isolation from the writer. With Improved Double Buffer,
we need 18 message buffer slots, while the original needs 42,
a significant memory reduction. Moreover, the other control
variables are proportional to the number of rows, so they, too,
are reduced. With the new algorithm, the slow readers and the
writer remain virtually unchanged, but the fast readers have less
computation than the original readers, so the overall execution
overheads will decrease as well. Generally, as the number of
fast readers increases, the execution performance increases, but
this is not necessarily the case for space requirements. In the
following section, we will determine how to partition a reader
set into fast and slow readers, optimizing for space.

3.4 Identification of Fast Readers

We now present a simple algorithm for partitioning the reader
set into fast and slow readers, optimizing for minimum memory
usage. The algorithm is shown in Figure 9, and can be used
with any single-writer, multiple-reader IPC scheme improved
with our transformation by simply changing a few constants to
match the algorithm.

The algorithm initially sets all reader tasks to be slow read-
ers. It keeps the tasks sorted by non-decreasing order of
theirNMax values, computed as with the NBW protocol (Sec-
tion 2.2). It tries to move one task at a time from the slow reader
set to the fast reader set, and recomputes the number of buffers
needed, (S+ F), whereS is the requirement for the slow read-
ers, andF for the fast readers. By keeping track of the setting
with lowest memory use so far, after a single pass through all
of the tasks, we obtain theSplitpoint, which indicates the
last fast reader. All tasks with lowerNMax values are also part
of the fast reader set.

This partitioning of the reader set is optimal with respect to
the number of message buffers. This is easy to show: take
a partitioning that is space-optimal, and let taski be the fast
reader with the largestNMax value. Now, all tasks with lower
NMax values than taski must also be part of the fast reader
set (otherwise, we can move them to the fast reader set; they
will not affect the number of buffers needed for the fast read-
ers (i.e., largestNMax value), but will reduce the slow reader
set’s buffer requirements, and the optimality assumption would
be invalid). Since the above algorithm considers all partitions
in which all tasks with less than a particularNMax value are
in the fast reader set, the optimal partition will be found by the
algorithm.

int Latest; # Index to the row with the latest message
int NRows; # Number of rows in the message buffer
message Buff[NRows][2]; # Message buffer
int ReaderCnt[NRows]; # Reader count for each row
boolean Cl[NRows]; # Column with more up-to-date message

SlowReaderi() f
1: ridx = Latest;
2: inc ReaderCnt[ridx];
3: cl = Cl[ridx];
4: read Buff[ridx][cl];
5: dec ReaderCnt[ridx];
g
FastReaderi() f

6: ridx = Latest;
7: boolean cl = Cl[ridx];
8: read Buff[ridx][cl];
g
Writer() f

9: i = (Latest + 1) mod NRows;
10: for (; ; i = ((i + 1) mod NRows))
11: if (ReaderCnt[i] == 0) break;
12: cl = not Cl[i];
13: write Buff[i][cl];
14: Cl[i] = cl;
15: Latest = i;
g

Figure 8:Improved Double Buffer algorithm.

The partitioning algorithm uses certain constants that depend
on the specific IPC mechanism used. For the initialization,
Splitpoint is always set to NULL andF always set to 0,
butMinNumBuff andS are both set to the number of buffers
needed assuming that all tasks are slow readers. For the Im-
proved Chen’s algorithm, this is (P + 2), and for the Improved
Double Buffer, it is2(P + 1), whereP is the number of tasks.
Additionally, V is the number of buffers used for each addi-
tional slow reader, and is set to 1 and 2, for Chen’s and the
Double Buffer mechanisms, respectively.

We illustrate the partitioning algorithm using the sample task
set in Figure 10, which indicates the writer’s period and relative
deadline, as well as the readers’ periods (relative deadlines) and
computation times.RMax andNMax values, assumingCR is
negligible and the readers’ relative deadlines are equal to their
periods, are also shown. Assuming Double Buffer algorithm,
initially S = MinNumBuff = 16,F = 0, and all readers are
in the slow reader set. Tasks are moved one at a time accord-
ing to theirNMax values, so first, Reader 0 is moved to the
fast reader set. NowS = 14 andF = 3, so (F + S) is not
the lowest value seen, andSplitpoint is not changed. We
continue with Reader 1, resulting inS = 12 andF = 3, so
S + F � MinNumBuff holds. Splitpoint is updated to
Reader 1, andMinNumBuff is set toS + F . We repeat this
with all of the readers, in order. By the end,Splitpoint
points to Reader 4, andMinNumBuff = 10. So, with the first
five readers as fast readers, we achieve the minimum number of
buffers required for this example, a 37.5% reduction from the
original algorithm.

Order reader tasks byNMax from smallest to largest;
Note:S0 is the no. of buffers needed if all tasks are slow readers
S = S0; # no. of buffers for slow readers
F = 0; # no. of buffers for fast readers
MinNumBuff = S0;
Splitpoint = NULL;

For each reader taskTR (ordered byNMax)
MoveTR from the slow reader set to the fast reader set;
S = V� sizeof(slow reader set);
F = TR ’s (NMax + 1);
if (S + F � MinNumBuff)

Splitpoint =TR ;
MinNumBuff = S + F ;

Figure 9: Algorithm to find space-optimal division of fast and slow
readers and the amount space required.

Process PW DW

Writer 10 7
PR C RMax NMax

Reader 0 8 4 4 2
Reader 1 12 7 5 2
Reader 2 23 14 9 2
Reader 3 22 9 14 3
Reader 4 50 30 20 3
Reader 5 150 25 125 14
Reader 6 500 25 475 49

Figure 10:Task set with one writer and seven reader processes.

3.5 Transformation Mechanism

We have shown here how two different single-writer,
multiple-reader wait-free IPC mechanisms can be modified to
take into account real-time characteristics of tasks to reduce
both memory and execution time overheads. In general, we
can apply our transformation to other such IPC algorithms with
the following steps.

Step 1. Identify fast and slow readers for a particular system:
simply apply the algorithm in Section 3.4. This will min-
imize the number of message buffers needed, while still
ensuring temporal isolation between the writer and the fast
readers.

Step 2. Fine-tune reader sets: we may not always want to opti-
mize for space, so we can adjust the partitioning obtained
in Step 1 if needed.

Step 3. Convert reader code to slow reader code: Typically,
there are no modifications needed for slow readers, so this
is just a renaming step.

Step 4. Introduce fast reader code: The fast readers are triv-
ially implemented — they just read the pointer indicating
the most recently written message buffer, and then read
from that buffer.

Step 5. Modify writer code to ensure temporal isolation with
fast readers: this is the most significant change required.

Since most algorithms have some code for selecting a
buffer to write, this step usually only requires modifying
the selector to ensure that the same buffer is not reused
within N consecutive writes. Sometimes, this can simply
be done by using the available buffers in a cyclic fashion,
and having enough total buffers.

Applying these steps, we can modify existing wait-free
single-writer, multiple-reader algorithms to use real-time char-
acteristics of the tasks and reduce processing and memory
costs.

4 Performance Evaluation

The goal of our transformation mechanism is to reduce
the time and space overheads when applied to single-writer,
multiple-reader algorithms. We now evaluate how much im-
provement we can achieve with the proposed transformation.
Specifically, we will compare a total of 9 different IPC mecha-
nisms, including Chen’s, Improved Chen’s, Double Buffer, and
Improved Double Buffer algorithms.

We also consider another wait-free, single-writer, multiple-
reader IPC mechanism, Peterson’s algorithm, as well as our
transformed version of it. In Peterson’s algorithm [24], the
reader determines if its read is corrupted, and may have to per-
form the read up to 3 times. The writer may also have to write a
message up to (P +2) times, whereP is the number of readers.
The mechanism has been revised [34] such that readers read a
message at most 2 times, and the writer writes a message at
most (P + 1) times to avoid corruption. We only consider the
revised version here. We derive the Improved Peterson’s algo-
rithm by applying our general transformation as described in
Section 3.5.

For the purpose of comparison, we also evaluate the NBW
protocol and the EMERALDS variant of this. As discussed
earlier, NBW is the most efficient algorithm in terms execution
time, but may induce high space overheads. The EMERALDS
IPC mechanism tries to limit memory use at some cost to per-
formance. Finally, we also include a very efficient implementa-
tion of synchronization-based IPC, using a lock algorithm that
relies on the atomic Test-And-Set instruction, to show the trade-
offs between synchronization-based and synchronization-free
mechanisms.

To make fair and comprehensive comparisons between these
algorithms, we have considered various parameters trying to
answer the following questions.

� How much does the transformation reduce the average-
case and worst-case execution times?

� How much does the transformation reduce the buffer space
requirement?

� Is the transformation applicable in both uniprocessor and
multiprocessor environments? How do they differ?

Class Subclass Percentage Relative Frequency to the
within Class Writer Process

Fast Fastest 15–25% twice as frequent
Fast 75–85% 1–15 times less frequent

Slow Slow 75–85% 15–50 times less frequent
Slowest 15–25% 50–100 times less frequent

Figure 11:Reader task set distribution.

� Will different message sizes affect the results?

� Will the size of the reader set affect the results?

We evaluate the algorithms for memory usage and execu-
tion time overheads, in both average and worst cases, and for
both uniprocessor and symmetric multiprocessor (SMP) envi-
ronments. The only exception is for the EMERALDS IPC
mechanism, which is evaluated only for uniprocessors. Be-
cause it assumes that operations are atomic if interrupts are dis-
abled, it will not work correctly with SMP architectures where
this assumption does not hold.

4.1 Experiment Setup

The algorithms we evaluate in this section are imple-
mented and executed under EMERALDS OS [35] running on
a Pentium-III 500Mhz processor. The experiments use a syn-
thetic reader task set, which is divided into two sets — fast
readers and slow readers, where ‘fast’ and ‘slow’ are defined
relative to the writer’s period. In a real system, there are usu-
ally tasks that are executed very frequently, and tasks that run
very infrequently. To model this behavior, we further divide
the fast and slow reader sets into finer-grained categories, as
shown in Figure 11. By making approximately 20% of fast and
slow readers either very fast or very slow, the resulting task set
represents realistic range of task periods that may occur in a
real-time embedded system. A random reader task set is gen-
erated for each experiment according to the desired division of
readers into the four categories.

4.2 Average vs. Worst-case Execution Time

The average-case (ACET) and worst-case execution times
(WCET) to perform an IPC read/write operation are both im-
portant factors in the performance of an IPC algorithm. A low
ACET would indicate that the algorithm generally incurs low
computation overheads. However, to provide timeliness guar-
antees in embedded real-time systems, the scheduler must ac-
count for the WCET. An algorithm with low ACET but high
WCET may result in poor system utilization.

The ACET and WCET of the SMP versions of the eight eval-
uated algorithms are shown on the top and bottom rows, re-
spectively, in Figure 12. The SMP versions of the algorithms
include bus-lock operations to ensure the atomic operation of
the critical CAS and TAS instructions with multiple proces-
sors. The message size is 8 bytes, and the task set consists

Double Buffer Improved Double Buffer Chen Improved Chen Peterson Improved Peterson NBW Lock-Based

0.00

0.10

0.20

0.30

0.40

0.50

E
x
e
c
u

ti
o

n
 t

im
e
 (

u
s
e
c
)

0.00

0.10

0.20

0.30

0.40

0.50

E
x

e
c

u
ti

o
n

 t
im

e
 (

u
s

e
c

)

0.00

0.10

0.20

0.30

0.40

0.50

E
x
e
c
u

ti
o

n
 t

im
e
 (

u
s
e
c
)

0.00

0.10

0.20

0.30

0.40

0.50

E
x

e
c

u
ti

o
n

 t
im

e
 (

u
s

e
c

)

(a) 16 slow, 4 fast readers (b) 12 slow, 8 fast readers (c) 8 slow, 12 fast readers (d) 4 slow, 16 fast readers

6.97

0.00

0.50

1.00

1.50

2.00

2.50

E
x
e
c
u

ti
o

n
 t

im
e
 (

u
s
e
c
)

6.97

0.00

0.50

1.00

1.50

2.00

2.50

E
x

e
c

u
ti

o
n

 t
im

e
 (

u
s

e
c

)

6.97

0.00

0.50

1.00

1.50

2.00

2.50

E
x

e
c

u
ti

o
n

 t
im

e
 (

u
s

e
c

)

6.97

0.00

0.50

1.00

1.50

2.00

2.50

E
x

e
c

u
ti

o
n

 t
im

e
 (

u
s

e
c

)

(e) 16 slow, 4 fast readers (f) 12 slow, 8 fast readers (g) 8 slow, 12 fast readers (h) 4 slow, 16 fast readers

Figure 12: The top and bottom rows show the average-case and worst-case execution times, respectively, of the SMP version of the algorithms,
to perform an IPC read / write operation with 8-byte message size.

Double Buffer Improved Double Buffer Chen Improved Chen Peterson Improved Peterson NBW EMERALDS Lock-Based

0.41

0.00

0.05

0.10

0.15

0.20

E
x
e
c
u

ti
o

n
 t

im
e
 (

u
s
e
c
)

0.23

0.00

0.05

0.10

0.15

0.20

E
x
e
c
u

ti
o

n
 t

im
e
 (

u
s
e
c
)

0.00

0.05

0.10

0.15

0.20

E
x
e
c
u

ti
o

n
 t

im
e
 (

u
s
e
c
)

0.00

0.05

0.10

0.15

0.20
E

x
e
c
u

ti
o

n
 t

im
e
 (

u
s
e
c
)

(a) 16 slow, 4 fast readers (b) 12 slow, 8 fast readers (c) 8 slow, 12 fast readers (d) 4 slow, 16 fast readers

6.79

0.00

0.50

1.00

1.50

2.00

E
x

e
c

u
ti

o
n

 t
im

e
 (

u
s

e
c

)

6.79

0.00

0.50

1.00

1.50

2.00

E
x

e
c

u
ti

o
n

 t
im

e
 (

u
s

e
c

)

6.79

0.00

0.50

1.00

1.50

2.00

E
x

e
c

u
ti

o
n

 t
im

e
 (

u
s

e
c

)

6.79

0.00

0.50

1.00

1.50

2.00

E
x

e
c

u
ti

o
n

 t
im

e
 (

u
s

e
c

)

(e) 16 slow, 4 fast readers (f) 12 slow, 8 fast readers (g) 8 slow, 12 fast readers (h) 4 slow, 16 fast readers

Figure 13: The top and bottom rows show the average-case and worst-case execution times, respectively, of the uniprocessor version of the
algorithms, to perform an IPC read / write operation with 8-byte message size.

Double Buffer Improved Double Buffer Chen Improved Chen Peterson Improved Peterson NBW EMERALDS Lock-Based

748

0

100

200

300

400

B
u

ff
e
r

re
q

u
ir

e
m

e
n

t
(b

y
te

)

748

0

100

200

300

400

B
u

ff
e
r

re
q

u
ir

e
m

e
n

t
(b

y
te

)

748

0

100

200

300

400

B
u

ff
e
r

re
q

u
ir

e
m

e
n

t
(b

y
te

)

748

0

100

200

300

400

B
u

ff
e

r
re

q
u

ir
e

m
e

n
t

(b
y

te
)

(a) 16 slow, 4 fast readers (b) 12 slow, 8 fast readers (c) 8 slow, 12 fast readers (d) 4 slow, 16 fast readers
Figure 14: These graphs show the space requirements for different algorithms with 8-byte messages (note that the space requirement is
architecture-independent).

of 1 writer and 20 readers, of which a varying fraction are
fast readers. Specifically, we evaluated these algorithms when
the reader set contains 20%, 40%, 60% and 80% fast readers.
The first three pairs of columns on the graphs are for the three
single-writer, multiple-reader algorithms and their correspond-
ing transformed algorithms. We can see significant reductions
in both the ACET and WCET from comparison of the trans-
formed algorithms with the original ones. As the number of fast
readers in the reader set increases, the reduction in computa-
tion time for the transformed algorithms gets more pronounced.
ACETs for Double Buffer and Chen’s algorithms improve by as
much as 66%, and for Peterson’s algorithm by as much as 38%.
This trend is shown in Figure 15(a).

Although the amount of improvement is a non-decreasing
function of the percentage of fast readers in the reader set, the
magnitude of this improvement depends on the particular algo-
rithm. In these experiments, all of the transformed algorithms
perform better than the original versions except for the WCET
of the Double Buffer algorithm. This can be attributed to the
fact that the WCET for the Double Buffer algorithm occurs in
the slow readers. As this time is not affected by the number of
slow readers in the system, the WCET does not improve. For
the other algorithms, the WCETs occur in the writers, whose
overheads are functions of the number of slow readers, and,
therefore, improve greatly.

It is interesting to note that even though the ACET of the
lock-based algorithm is only up to 4 times larger than those of
the transformed wait-free algorithms, its WCET is much higher
— 4 to 30 times higher. This is in fact an underestimate of the
true overhead of the lock-based mechanism, since we assume
no blocking time here. In actual systems, unless the system
employs mechanisms to limit blocking times, the lock-based
execution time may be unbounded.

4.3 Uniprocessor vs. SMP

The correctness of some asynchronous algorithms rely on the
fact that certain instructions will be executed atomically. For

example, Chen’s algorithm requires that the CAS instruction
be performed atomically. For SMP architectures, this requires
that expensive bus-locking (e.g., by using the LOCK prefix in
the x86 architecture) be performed to ensure an atomic read-
modify-write of memory. Under uniprocessor environments,
however, such measures are generally not needed. In most ar-
chitectures, including x86, these instructions are already guar-
anteed to be atomic with respect to uniprocessor systems with-
out incurring any additional overheads. As a result, we can
reduce the costs of CAS for Chen’s algorithm, atomic inc and
dec for Double Buffer, and TAS for the lock-based mechanism.
We now repeat the above experiments, but using code restricted
to uniprocessor machines. The results, including evaluations of
the EMERALDS IPC mechanism, are shown in Figure 13.

As expected, the ACET and WCET of these algorithms are
lower than their counterparts for SMP. Even in this case, we
can still save a significant percentage of execution time over-
heads. It is worth noting how close the ACETs of the trans-
formed algorithms are to the optimal NBW protocol execution
time. WCET improvements after transformation are even more
pronounced than for ACET, except with the Double Buffer al-
gorithm. This anomaly is due to the complexity we have intro-
duced in the writer to handle both kinds of readers. Nonethe-
less, the WCET of the Double Buffer algorithm is still very
close to that of NBW.

We summarize the reduction in ACET as the percentage of
fast readers changes in Figure 15(b). Compared to the SMP re-
sults in Figure 15(a), the ACET reduction in uniprocessor envi-
ronments is less pronounced. Nonetheless, our transformation
still reduces a good amount in execution time.

4.4 Savings in Space

Thus far, we have shown that our transformation mechanism
enhances the performance of algorithms in terms of the ACET
and the WCET in both SMP and uniprocessor environments.
Here, we present results to support our claim that the trans-
formation mechanism not only reduces the time overheads but

0%

20%

40%

60%

80%

0% 20% 40% 60% 80% 100%

Percentage of fast readers

P
e
rc

e
n

ta
g

e
 o

f
s
a
v
in

g
s

Double Buffer
Chen
Peterson

0%

20%

40%

60%

80%

0% 20% 40% 60% 80% 100%

Percentage of fast readers

P
e
rc

e
n

ta
g

e
 o

f
s
a
v
in

g
s

Double Buffer
Chen
Peterson

0%

20%

40%

60%

80%

0% 20% 40% 60% 80% 100%

Percentage of fast readers

P
e
rc

e
n

ta
g

e
 o

f
s
a
v
in

g
s

Double Buffer
Chen
Peterson

(a) Savings in ACET (SMP) (b) Savings in ACET (UP) (c) Savings in space required

Figure 15: Varying the percentage of fast readers in the reader set, (a) and (b) show the percentage of savings in ACET for SMP and
uniprocessor versions of the algorithms, respectively. (c) shows the percentage of savings in space.

also the space overheads of the algorithms. This is shown in
Figure 14. Again, we varied the percentage of fast readers in
the reader set. As expected, the amount of improvement in-
creases as the number of fast readers increases. Moreover, the
synchronization-based algorithm requires the least space, since
it only needs a single shared message buffer. The NBW proto-
col and lock-based IPC, therefore, represent the extreme cases
for the tradeoff between space requirements and WCET. The
non-blocking IPC mechanisms, especially with our transforma-
tion, provide a good compromise, balancing WCET and mem-
ory usage.

Interestingly, the percentage of space reduction for all three
transformed algorithms is the same, as shown in Figure 15(c).
This does make sense since the memory requirements of the
three original algorithms are all proportional to the number of
readers in the reader set. So, the memory used by the trans-
formed algorithms decreases proportionally to the number of
slow readers. The slight variations in Figure 15(c) are due to
some of the control variables that do not scale with the num-
ber of reader tasks. Overall, we achieve a reduction in memory
usage that ranges from 14 to 70%.

4.5 Effects of Message and Reader Set Size

The experiments in the previous sections all use 8-byte mes-
sages. To see how varying the message size affects the savings
in time and space, we have performed the same set of experi-
ments with larger messages (64 bytes). The measurements fol-
low a similar trend, but the percentage reduction in execution
time is less than when using 8-byte messages. This is because
the execution overhead of the actual message buffer read/write
operation, which cannot be reduced, becomes a more dominant
part of the total execution overheads. The percentage reduc-
tions in space overheads are the same, or slightly better than for
the 8-byte message case, since the constant overheads of some
of the control variables are less apparent. Due to the substan-
tially similar results, the 64-byte message measurements are not
presented here.

We have also conducted experiments while varying the total

size of the reader set. Running the previous experiments with
10 reader tasks resulted in nearly identical relative performance
improvements with our transformation mechanism. Of course,
with fewer readers, any complexity increase in the writer task
has greater weight in the average execution time, but this is off-
set by the performance gains in the fast readers. Space reduc-
tion, as before, is basically linear to the percentage reduction
in the number of slow readers. Again, due to their substantially
similar results, the data for the 10 readers case are omitted here.

5 Related Work

Some earlier work [17, 20] on lock-free objects was done us-
ing read-and-check loops. The reader is required to check if
its reading was interfered with by the writer, in which case it
performs the read operation again until it succeeds. Optimiza-
tion techniques to reduce the number of loops were proposed
in [15], using an exponential backoff policy. Kopetz et al. [17]
and Anderson et al. [2] later demonstrated how to bound the
number of retries by either increasing the buffer size or through
judicious scheduling.

To reduce the time overheads associated with read-and-check
loops, algorithms that make space and time tradeoffs were later
proposed [6–8, 17, 24, 31, 35]. These algorithms provide a good
middle-ground between the purely lock-based approach (high
WCET) and the purely buffer-based approach (large buffer re-
quirement). The benefit of these algorithms is that less time
is wasted in read-and-check loops and the timing behavior is
more predictable, improving schedulability of task sets as well
as system utilization. Although the timing behavior is more
predictable, the computational complexity of these algorithms
is still high. Moreover, they may still incur a large buffer space
requirement, and may be difficult to use in small-memory em-
bedded systems. This difficulty can be overcome by our trans-
formation mechanism, which makes significant reductions in
both time and space overheads.

Most non-blocking algorithms rely on the availability of
some form of atomic memory update instructions, such

as Compare-And-Swap or Load-Linked/Store-Conditional in
hardware. A few modern hardware platforms, however, do
not implement some of these instructions. The author of [23]
demonstrated how to emulate these instructions by synthesiz-
ing more commonly-implemented instructions to close the gap
between the primitives that the algorithm designers rely upon,
and the primitives provided by the hardware. Bershad [5] pro-
posed how to implement CAS instruction in software by using
operating system support, and Greenwald et al. [12] general-
ized this technique to implement Double-Word CAS and Multi-
Word CAS instructions. Similar work was done in Synthesis
[22] and Cache kernel [12]. Our transformation mechanism
does not use such operations, so it is not directly affected by
whether the atomic operations used by the original IPC algo-
rithms are supported by the hardware or are emulated. How-
ever, the degree of performance improvement will be different.
All of the algorithms we evaluated use atomic update instruc-
tions supported natively by the x86 architecture. We expect an
even greater improvement with our transformation if these in-
structions are emulated since the overheads for emulation will
most likely be higher.

Herlihy [13] proposed the first general methodology to trans-
form sequential data objects to the equivalent non-blocking
structures. Alemany et al. [1] and LaMarca [19] proposed tech-
niques to reduce the inefficiencies in applying this methodology
to large objects at the cost of more communication between the
application process and the operating system. Other methods to
improve this were proposed in [4, 32]. Prakash et al. [26] and
Turek et al. [32] presented techniques to transform multiple-
lock concurrent objects into lock-free objects. However, it was
shown that their transformed algorithms are less efficient than
the corresponding lock-based algorithms [15, 19, 30]. These
authors are concerned with transforming sequential objects to
non-blocking objects, and the related performance issues. We
take the next logical step by transforming non-blocking ob-
jects, in particular, those with single-writer, multiple-reader se-
mantics, to better-performing and less space-consuming non-
blocking objects.

Some interesting work [14, 15, 27] has also been done in the
construction of more complex concurrent objects. Concurrent
non-blocking array-based stacks, FIFO queues and multiple
lists were implemented using Double-Compare-And-Swap in
[12]. Valois introduced non-blocking algorithms for queues,
linked-lists, and arrays in [33]. Eliot et al. [11] proposed non-
blocking algorithms for garbage collection. We do not look at
these complex structures, but focus instead on the more com-
mon, single-writer, multiple-reader state message construct,
used for IPC in embedded systems.

6 Conclusions

In this paper, we have argued for efficient IPC mechanisms,
particularly for memory- and processing-power- constrained

embedded real-time systems. Traditional and synchronization-
based IPC methods incur too much time overhead and follow
incorrect semantics for most of such systems. Instead, we
considered wait-free, single-writer, multiple-reader IPC algo-
rithms, which are more appropriate for these systems, but still
can incur substantial overheads.

By taking advantage of the temporal characteristics of the
tasks in these systems, we have proposed a general transfor-
mation mechanism that can significantly reduce both space and
time overheads of the wait-free IPC algorithms. This allows
the most frequently-executing reader tasks to use very low-
overhead operations, while reducing the total number of buffers
needed to ensure corruption-free message passing. We have
demonstrated our transformation on the existing Chen’s algo-
rithm and the new Double Buffer algorithm that we have intro-
duced here.

Our extensive experiments show a 17–66% reduction in
ACET, and a 14–70% reduction in memory requirements for
the IPC algorithms improved with our transformation. For al-
gorithms with relatively high WCETs, these are shown to be
improved greatly as well. The experiments also demonstrate
the tradeoff between time and space in IPC mechanisms: the
NBW protocol is time-optimal, but requires large buffers, while
a lock-based approach requires just a single message buffer, but
suffers from very high worst-case execution overheads. Over-
all, the single-writer, multiple-reader non-blocking algorithms
are good intermediate solutions, balancing WCET and space
requirements. With our transformation, we can do even better,
reducing both time and space requirements of these algorithms.

This transformation mechanism can be applied to other non-
blocking IPC algorithms that are not considered here, and make
them better optimized for systems with real-time characteris-
tics. In the future, we would like to extend our methodology
to reduce synchronization overheads in more general IPC al-
gorithms with multiple-writer semantics and to extend this to
more general communication channels as well.

7 Acknowledgments

We would like to thank our shepherd, Carla Ellis, and the
anonymous reviewers for their excellent feedback. We also like
to thank John Reumann for some helpful discussions earlier in
this work.

References

[1] J. Alemany and W. Felten. Performance issues in non-blocking
synchronization on shared-memory multiprocessors. In Proceed-
ings of the 11th ACM Symposium on Principles of Distributed
Computing, pages 125–134, 1992.

[2] J. Anderson, S. Ramamurthy, and K. Jeffay. Real-time comput-
ing with lock-free shared objects. In Proceedings of the 16th
IEEE Real-Time Systems Symposium, pages 28–37, Dec 1995.

[3] T. P. Baker. Stack-based scheduling of realtime processes. RT-
SYSTS: Real-Time Systems, 3, 1991.

[4] Greg Barnes. A method for implementing lock-free data struc-
tures. In 5th Annual ACM Symposium on Parallel Algorithms
and Architectures (SPAA 93), 1993.

[5] B. Bershad. Practical considerations for non-blocking concur-
rent objects. In IEEE International Conference on Distributed
Computing Systems, pages 264–273, 1993.

[6] James E. Burns and Gary L. Peterson. Constructing multi-reader
atomic values from non-atomic values. In ACM Symposium on
Principles of Distributed Computing, pages 222–231, 1987.

[7] J. Chen and A. Burns. A fully asynchronous reader/writer mech-
anism for multiprocessor real-time systems. Technical Report
YCS-288, Department of Computer Science, University of York,
1997.

[8] J. Chen and A. Burns. A three-slot asynchronous reader/writer
mechanism for multiprocessor real-time systems. Technical Re-
port YCS-186, Department of Computer Science, University of
York, 1997.

[9] P. Courtois, F. Heymans, and D. Parnas. Concurrent control with
readers and writers. Communications of the Association of Com-
puting Machinery, 14(10):667–668, 1971.

[10] E. Dijkstra. Solution of a problem in concurrent programming
control. Communications of the Association of Computing Ma-
chinery, 8(9):569, 1965.

[11] J. Eliot and B. Moss. Lock-free garbage collection for multipro-
cessors. In Parallel Algorithms and Architectures, 1991.

[12] M. Greenwald and D. Cheriton. The synergy between non-
blocking synchronization and operating system structure. In
Operating Systems Design and Implementation, pages 123–136,
1996.

[13] M. Herlihy. A methodology for implementing highly concurrent
data structure. Proceeding of the 2nd ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, pages 197–
206, 1989.

[14] M. Herlihy. Wait-free synchronization. ACM Transactions on
Programming Languages and Systems, 13(1):124–149, January
1991.

[15] M. Herlihy. A methodology for implementing highly concurrent
data objects. ACM Transactions on Programming Languages
and Systems, 15(5):745–770, November 1993.

[16] H. Kopetz and et al. Distributed fault-tolerant real-time systems:
the Mars approach. IEEE Micro, 9(1):25–40, 1989.

[17] H. Kopetz and J. Reisinger. The non-blocking write protocol
NBW: A solution to a real-time synchronisation problem. In
IEEE Real-Time Systems Symposium, pages 131–137, 1993.

[18] C. M. Krishna and K. G. Shin. Real-Time Systems. McGraw-
Hill, 1997.

[19] Anthony LaMarca. A performance evaluation of lock-free syn-
chronization protocols. In ACM Symposium on Principles of Dis-
tributed Computing, pages 130–140, 1994.

[20] L. Lamport. Concurrent reading and writing. Communications
of ACM, 20(11):806–811, Nov 1977.

[21] C. L. Liu and James W. Layland. Scheduling algorithms for mul-
tiprogramming in a hard-real-time environment. Journal of the
ACM, 20(1):46–61, 1973.

[22] H. Massalin and C. Pu. A lock-free multiprocessor os kernel.
Technical Report CUCS-005-91, Department of Computer Sci-
ence, Columbia University, 1991.

[23] M. Moir. Practical implementations of non-blocking synchro-
nization primitives. In ACM Symposium on Principles of Dis-
tributed Computing, pages 219–228, 1997.

[24] G. Peterson. Concurrent reading while writing. ACM Trans-
actions on Programming Languages and Systems, 5(1):46–55,
1983.

[25] S. Poledna, T. Mocken, and J. Schiemann. Ercos: an operating
system for automotive applications. Technical Report 960623,
Society of Automotive Engineers Technical Paper Series, 1996.

[26] S. Prakash, Y.-H. Lee, and T. Johnson. Non-blocking algorithms
for concurrent data structures. Technical Report 91–002, Depart-
ment of Computer Science, University of California, Los Ange-
les, 1991.

[27] S. Prakash, Y.-H. Lee, and T. Johnson. A non-blocking algorithm
for shared queues using compare-and-swap. IEEE Transactions
on Computers, 43(5):548–559, 1994.

[28] R. Rajkumar. Synchronization in real-time systems - a priority
inheritance approach. Kluwer Academic Publishers, 1991.

[29] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance pro-
tocols: An approach to real-time synchronization. IEEE Trans-
actions on Computers, 39(9):1175–1185, 1990.

[30] Nir Shavit and Dan Touitou. Software transactional memory. In
ACM Symposium on Principles of Distributed Computing, pages
204–213, 1995.

[31] H. R. Simpson. Four-slot fully asynchronous communication
mechanism. In IEEE Proceedings, 1990.

[32] John Turek, Dennis Shasha, and Sundeep Prakash. Locking
without blocking: making lock based concurrent data structure
algorithms nonblocking. In ACM Proceedings of the Principles
of Database Systems, pages 212–222, 1992.

[33] J. D. Valois. Implementing lock-free queues. In Proceedings of
the Seventh International Conference on Parallel and Distributed
Computing Systems, pages 64–69, Las Vegas, NV, 1994.

[34] K. Vidyasankar. Concurrent reading while writing revisited. Dis-
tributed Computing, 4(2):81–86, 1990.

[35] K. Zuberi, P. Pillai, and K. G. Shin. EMERALDS: a small-
memory real-time microkernel. In ACM Symposium on Oper-
ating Systems Principles, volume 34, pages 277–299, 1999.

