
USENIX Association

Proceedings of the
2002 USENIX Annual Technical

Conference

Monterey, California, USA
June 10-15, 2002

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Bridging the Information Gap in Storage Protocol Stacks

Timothy E. Denehy, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau
Department of Computer Sciences, University of Wisconsin, Madison

{tedenehy, dusseau, remzi}@cs.wisc.edu

Abstract

The functionality and performance innovations in file sys-
tems and storage systems have proceeded largely indepen-
dently from each other over the past years. The result is an
information gap: neither has information about how the other
is designed or implemented, which can result in a high cost of
maintenance, poor performance, duplication of features, and
limitations on functionality. To bridge this gap, we introduce
and evaluate a new division of labor between the storage sys-
tem and the file system. We develop an enhanced storage layer
known as Exposed RAID (E×RAID), which reveals informa-
tion to file systems built above; specifically, E×RAID exports
the parallelism and failure-isolation boundaries of the storage
layer, and tracks performance and failure characteristics on a
fine-grained basis. To take advantage of the information made
available by E×RAID, we develop an Informed Log-Structured
File System (I·LFS). I·LFS is an extension of the standard log-
structured file system (LFS) that has been altered to take ad-
vantage of the performance and failure information exposed
by E×RAID. Experiments reveal that our prototype implemen-
tation yields benefits in the management, flexibility, reliability,
and performance of the storage system, with only a small in-
crease in file system complexity. For example, I·LFS/E×RAID
can incorporate new disks into the system on-the-fly, dynami-
cally balance workloads across the disks of the system, allow
for user control of file replication, and delay replication of files
for increased performance. Much of this functionality would
be difficult or impossible to implement with the traditional di-
vision of labor between file systems and storage.

1 Introduction

A chasm exists in the world of file storage and man-
agement. Though a hierarchical file system of directo-
ries and byte-accessible files has been the norm for al-
most 30 years [27], the internals of file systems and un-
derlying storage systems have evolved substantially, im-
proving both performance [23] and functionality [33].

In file systems, many approaches have been developed
to improve performance, including read-optimized inode
and file placement [23], logging of writes [30], improved
meta-data update methods [39], more scalable internal

data structures [41], and off-line reorganization strate-
gies [22]. However, almost all such techniques have
been developed under the assumption that the file sys-
tem will be run upon a single, traditional disk.

More recently, storage systems have also received
much attention. For example, “smart” disks can im-
prove read or write performance with block remapping
techniques [11, 13, 49]. For I/O-intensive workloads,
multiple-disk storage systems have been well studied in
the research community [26, 51], and have achieved suc-
cess in the storage industry.

These high-end storage systems provide the illusion
of a single, fast disk to unsuspecting file systems above,
but internally manage both parallelism and redundancy
to optimize for performance, capacity, or even both [51].
Analogous to file systems, storage systems are often de-
veloped with a single (FFS-like) file system in mind.

While these changes in both file systems and parallel
disk systems have been substantial, they have also been
separate, and the result is an information gap: the file
system does not understand the true nature of the stor-
age system it runs upon, and the storage system cannot
comprehend the semantic relations between the blocks it
stores. In addition, each is unaware of the state the other
tracks and the optimizations that the other performs.

This gap arose from a historical source: the hard-
ware/software boundary. File systems have traditionally
expected a block-based read/write interface to storage,
because that interface is quite similar to what a single
disk exports. With the advent of hardware-based RAID
systems [26], storage vendors took advantage of the free-
dom to innovate behind this interface, and thus devel-
oped high-performance, high-capacity systems that ap-
peared as a single, large, and fast disk to the file system.
No software modifications were required of the host op-
erating system, and file systems continued to operate
correctly, in spite of the fact that they were often opti-
mized for a single-disk system. In this case, ignorance
was bliss; the arrangement was simple and worked well.

However, the boundary between file system and stor-
age system is changing, migrating towards a software-
structuring technique rather than an interface necessi-
tated by hardware. Software RAID drivers are available
on many platforms [7], and with the advent of network-

attached storage [14], client-side striping software can
replace the need for hardware-based RAID systems en-
tirely. Such software-based RAIDs are particularly at-
tractive due to their low cost, e.g., in a Linux-based sys-
tem, one incurs only the cost of the machine and disks.

We term the arrangement of a file system layer on top
of a software storage layer a “storage protocol stack,”
akin to networking protocol stacks that are prominent
in communication networks [8]. There are some simi-
larities between the two: layering is known to simplify
system design, though potentially at the cost of perfor-
mance [47]. However, a crucial difference exists: the
layers that comprise network protocol stacks are derived
by design, with the architects carefully deciding where
each specific element should be placed. The storage pro-
tocol stack, however, has not been developed in a single,
coherent manner; the end result is not only poor perfor-
mance but also the potential for duplication in imple-
mentation and limitations on functionality.

For example, performance may suffer if the model
that the file system has of the storage layer is not
accurate; thus, layout optimizations that work well
on a single, traditional disk may not be appropriate
when the logical-block to physical-block mapping is un-
known [51]. Feature duplication is also a potential pit-
fall. For example, a log-structured file system [30] could
be layered on top of a disk array that performs log-
ging [40, 51], duplicating work and increasing system
complexity unnecessarily. Finally, functionality may be
limited, as certain pieces of information only live at one
layer of the system. For example, the storage system
does not know what blocks constitute a file and thus can-
not perform per-file operations, and it does not know that
a block is no longer live after a file deletion, and thus
cannot optimize the system in ways possible had that
knowledge been available.

Thus, we believe that the time is ripe to re-examine
the division of labor between the file system and stor-
age system layers, in an attempt to understand the best
way to structure the storage protocol stack. Specifically,
for each piece of storage functionality, we wish to un-
derstand where it is most easily and effectively imple-
mented. We believe the problem is particularly germane
at this time, with the move towards network-attached
storage (and their proposed higher-level disk interfaces)
under way [14].

In this paper, we take a first step towards our goal
by exploring a single point in the spectrum of possi-
ble designs. To bridge the file system/storage system
information gap, we develop and evaluate a new divi-
sion of labor between the file system and storage. In this
realignment, the storage layer exposes parallelism and
failure isolation boundaries in part or full to file systems
built above, and provides on-line performance and fail-

ure characteristics. We call this layer the Exposed RAID
layer (E×RAID).

To take advantage of the information provided by
E×RAID, we introduce an Informed LFS (I·LFS), an
enhancement of a log-structured file system [30, 37].
By combining the performance and failure information
presented by E×RAID along with file-system specific
knowledge, I·LFS is more flexible and manageable than
a traditional file system, and can deliver higher perfor-
mance and availability as well. For example, adding
a disk to I·LFS on-line is easily accomplished; fur-
ther, I·LFS accounts for the potential heterogeneity in-
troduced by a new disk, and dynamically balances load
across the disks of the system, whatever their rates.
I·LFS also increases the flexibility of storage by en-
abling user control over redundancy on a per-file ba-
sis, and implements lazy mirroring to defer replication
to a later time, potentially increasing performance of
the system at a slight decrease in reliability. Crucial to
I·LFS/E×RAID is the implementation of the aforemen-
tioned benefits without a significant increase in overall
complexity (and thus maintainability) of the storage pro-
tocol stack. Via careful design, all the functionality men-
tioned above is implemented with only a 19% increase
in overall code size as compared to a traditional system.

However, I·LFS/E×RAID is not a panacea. In partic-
ular, we find that managing redundancy within the file
system can be somewhat onerous, requiring the care-
ful placement of inodes and data blocks to ensure ef-
ficient operation under failure. Further, extending the
traditional file system structure to support the enhanced
functionality of I·LFS was sometimes an arduous task;
perhaps a redesign of the age-old vnode layer to support
informed file systems is warranted.

The rest of the paper is structured as follows. We be-
gin with a discussion of related work in Section 2. In
Section 3, we give an overview of our approach, and then
we describe E×RAID and I·LFS in Sections 4 and 5, re-
spectively. Then, in Section 6, we present an evaluation
of our system. We present a discussion in Section 7, fu-
ture work in Section 8, and conclude in Section 9.

2 Related Work

Part of our motivation for “informing” the file sys-
tem of the nature of the storage system is reminiscent
of work on the Berkeley Fast File System (FFS) [23].
FFS is an early demonstration of the benefits of hav-
ing a low-level understanding of disk technology; by co-
locating correlated inodes and data blocks, performance
was improved, especially as compared to the old Unix
file system. Our work has the same goal, but with multi-
disk storage systems in mind; however, we believe that

the file system should base its decisions upon reliably-
obtained information about the characteristics of stor-
age, instead of relying upon assumptions which may or
may not hold across time (e.g., that seek costs dominate
rotational costs).

Roselli et al. discuss the file system/storage system
gap in their talk on file system fingerprinting [29]. Their
solution is to enrich the interface between file systems
and storage systems, by giving the storage system more
information about which blocks are related, and which
blocks are likely to be accessed again in the near future.
Thus, their approach gives the storage system some of
the information that the file system might have collected,
and presumes that the storage layer can make good use
of such information. One potential problem with such an
approach is that it may require agreement on a particular
set of interfaces among cooperating storage vendors and
file-system implementors.

Another example of the benefits of low-level knowl-
edge of disk characteristics is found in Schindler et al.’s
recent work on track-aligned extents [36]. Therein, the
authors explore the range of performance improvements
possible when allocating and accessing data on disk-
track boundaries, thereby avoiding rotational latency and
track-crossing overheads in a single-disk setting. In con-
trast, E×RAID exposes disk boundaries of a RAID to
file systems above, and not such detailed lower-level in-
formation; in the future, it would be interesting to inves-
tigate the benefits of having lower-level knowledge of
the specifics of a RAID-based storage system.

Network Appliance pioneered some of the ideas we
discuss here in their work on file server appliances [16].
In the development of WAFL, a write-anywhere file lay-
out technique, Hitz et al. hint at how some information
normally hidden inside of the RAID layer can be taken
advantage of by a file system. For example, they ensure
that writes to the RAID-4 layer occur in full-stripe-sized
units, and thus avoid the small-write penalty that nor-
mally manifests itself on RAID-4 and RAID-5 systems.
We take this a step further by formalizing the E×RAID
layer, showing that a traditional file system can easily be
modified to take advantage of the information provided
by E×RAID, and demonstrating that a broader range of
optimizations are attainable within such a framework.

Volume managers have long been used to ease the
management of storage across multiple devices [44].
The E×RAID layer is simply a new type of volume
manager that exposes more information to file systems
(specifically, on-line performance and failure informa-
tion); further, E×RAID is built with the presupposition
that a single mounted file system will utilize multiple
“volumes” for its data, whereas most volume managers
assume that there is a one-to-one mapping between each
mounted file system and a volume. One volume manager

that is similar to E×RAID is the Pool Driver, a volume
manager for SANs that has a “sub-pool” concept which
may be used by a file system to group related data [43].
In that work, the GFS file system uses sub-pools to sep-
arate journaled meta-data and normal user data.

Exposing each disk of a storage system to the file sys-
tem is an extension of the arguments made by Engler and
Kaashoek [12]. Therein, the authors argue that software
abstractions made by operating systems are fundamen-
tally problematic, as they are often too high-level and
thus may limit power and functionality. The authors ad-
vocate a solution of exposing all hardware features to the
user. Missing from this argument for minimalism is the
observation that hardware itself often provides abstrac-
tions that users (and operating systems) cannot change.
Apropos to data storage, the abstraction put forth by
RAID systems is a particularly high-level one, which
E×RAID breaks by revealing information that is often
hidden from the file system.

Some distributed file systems such as Zebra [15] and
xFS [1] manage each disk of the system individually,
in a manner similar to I·LFS. However, both of these
systems use traditional storage management techniques
(such as RAID-5 striping) and do not take advantage of
the many potential possibilities that the E×RAID layer
makes available. In the future, we hope to extend some
of our ideas into the distributed arena, and thus allow for
a more direct comparison.

More recently, the NASD object interface has been
introduced as a higher-level data repository for SAN-
based distributed file systems [14]. This interface allows
more advanced functionality to be placed into the stor-
age layer, whereas E×RAID is designed to allow more
functionality to be placed within the file system. Earlier
work at HP on DataMesh also proposes more sophisti-
cated interfaces for network-attached storage [50].

Our informed approach is also similar to a large body
of work in parallel file systems [17, 24]. Most parallel
file systems expose disk parallelism, but they allow the
application itself, and not the file system, to manage it.
Better control over redundancy in a parallel file system
has also been proposed [9]. In that work, the compu-
tation of parity is put under user control, and in doing
so, allows the user to avoid the well-known performance
penalty of RAID-4 and RAID-5 under small writes.

3 Overview

In the next two sections, we present the design and
implementation of E×RAID and I·LFS. Our primary
goal in designing the system is to exploit the informa-
tion made available by E×RAID, thus allowing I·LFS
to implement functionality that would be difficult or im-

possible to achieve in a more traditional layering. In par-
ticular, we aim to increase: (1) the ease of storage man-
agement, (2) performance, especially when considering
multiple heterogeneous disks, and (3) functionality, so
as to meet the demands of a diverse set of applications.

Our primary goal in implementing E×RAID is to fa-
cilitate the use of the information provided by E×RAID
in the simplest possible way, and to allow non-informed
legacy file systems to be built on top of E×RAID with
no changes. Our primary goal in implementing I·LFS
is to minimize the impact of transforming the file sys-
tem to utilize the new storage interface. For example,
changes that would require a re-design of the vnode
layer were ruled out, as that would mandate that all other
file systems be changed in order to function in our sys-
tem. Thus, throughout our implementation effort, we
integrate changes into I·LFS in a highly localized and
modular fashion – the fewer lines of code that changed,
the better.

One question that must be addressed is our decision to
modify LFS and not a more traditional (or perhaps more
popular) FFS-like or journaling file system. One reason
we chose LFS is its natural flexibility in data placement;
LFS is a modern example of a “write anywhere” storage
system [16, 19]. Write-anywhere systems provide an ex-
tra level of indirection such that writes can be placed in
any location on the storage medium, and we exploit this
aspect of LFS in part of our implementation. However,
with this in mind, we do believe that a number of our
implementation techniques are general and could be ap-
plied to other file systems, and hope to investigate doing
so in the future. Those interested in general LFS file
system performance issues should consult the work of
Rosenblum and Ousterhout [30], or subsequent research
by Seltzer et al. [37, 38].

All of our software was developed within the context
of the NetBSD 1.5 operating system. E×RAID was im-
plemented as a set of hooks on the lower-level block-
driver calls, and is described in more detail in Section 4.
I·LFS was implemented by extending the NetBSD ver-
sion of LFS, which is based on the original LFS for BSD
Unix [37], and is described in detail in Section 5. We
chose the NetBSD version of LFS as it is known to be a
relatively stable and solid implementation.

4 E×RAID

We now describe the E×RAID storage interface. It
consists of two major components: a segmented address
space which exposes some or all of the parallelism of the
storage system to the file system, and functions used to
inform the file system of the dynamic state of the storage
system.

.

Mirror pairMirror pair

Linear address space of blocks

Region 0 Region 1

Figure 1: An Example E×RAID Configuration. The
diagram depicts an example E×RAID configuration in which
each of two disks is combined into a mirrored pair. Two re-
gions, each half of the size of the total address space, are pre-
sented to the client file system. Within a region, the layout
performed by the mirror is hidden from the file system.

4.1 A Segmented Address Space

A traditional RAID array presents the storage subsys-
tem to the file system as a linear array of blocks, un-
derneath of which the true complexity of the particu-
lar RAID scheme is hidden. File systems interact with
RAID systems by either reading or writing the blocks.
In keeping with our desire to minimize change and pre-
serve backwards compatibility, E×RAID also provides
a linear array of blocks which can be read or written as
the basic interface.

However, because we wish to expose information
about the storage system to the file system, the address
space is segmented; specifically, it is organized as a se-
ries of contiguous regions, each of which is mapped di-
rectly to a single disk (or set of disks), and these region
boundaries are made known to the file system above, if
it so desires. For example, in a four-disk storage system
with each disk capable of storing N blocks, the address
space E×RAID presents might be segmented as follows:
blocks 0 through N −1 map to disk 0, blocks N through
2N − 1 map to disk 1, and so forth.

By exposing this information, E×RAID enables the
file system to understand the performance and failure
boundaries of the storage system. As we shall see in
later sections, the file system can take advantage of this
to place data on a particular region more intelligently,
potentially improving performance, reliability, or other
aspects of the storage system.

Within E×RAID, a region may represent more than
just a single disk. For example, a region could be con-
figured to represent a mirrored pair of disks, or even a
RAID-5 collection. Thus, each region can be viewed
as a configurable software-based RAID, and the entire

E×RAID address space as a single representation of the
conglomeration of such RAID subsystems. In such a
scenario, some information is hidden from the file sys-
tem, but cross-region optimizations are still possible, if
more than one region exists. An example of an E×RAID
configuration over mirrored pairs is shown in Figure 1.

Allowing each region to represent more than just a
single disk has two primary benefits. First, if each re-
gion is configured as a RAID (such as a mirrored pair
of disks), the file system is not forced to manage redun-
dancy itself, though it can choose to do so if so desired.
Second, this arrangement allows for backwards compati-
bility, as E×RAID can be configured as a single striped,
mirrored, or RAID-5 region, thus allowing unmodified
file systems to use it without change.

4.2 Dynamic Information

Although the segmented address space exposes the
nature of the underlying disk system to the file system
(either in part or in full), this knowledge is often not
enough to make intelligent decisions about data place-
ment or replication. Thus, the E×RAID layer exposes
dynamic information about the state of each region to
the file system above, and it is in this way that E×RAID
distinguishes itself from traditional volume managers.

Two pieces of information are needed. First, the file
system may desire to have performance information on
a per-region basis. The E×RAID layer tracks queue
lengths and current throughput levels, and makes these
pieces of information available to the file system. His-
torical tracking of information is left to the file system.

Second, the file system may wish to know about the
resilience of each region, i.e., when failures occur, and
how many more failures a region can tolerate. Thus,
E×RAID also presents this information to the file sys-
tem. For example, in Figure 1, the file system would
know that each mirror pair could tolerate a single disk
failure, and would be informed when such a failure oc-
curs. The file system could then take action, perhaps by
directing subsequent writes to other regions, or even by
moving important data from the “bad” region into other,
more reliable portions of the E×RAID address space.

4.3 Implementation

In our current implementation, E×RAID is imple-
mented as a thin layer between the file system and the
storage system. In order to implement a striped, mir-
rored, or RAID-5 region, we simply utilize the standard
software RAID layer provided with NetBSD. However,
our prototype E×RAID layer is not completely general-
ized as of this date, and thus in its current form would re-
quire some effort to allow a file system other than I·LFS
to utilize it.

The segmented address space is built by interposing
on the vnode strategy call, which allows us to remap re-
quests from their logical block number within the virtual
address space presented by E×RAID into a physical disk
number and block offset, which can then be issued to un-
derlying disk or RAID.

Dynamic performance information is collected by
monitoring the current performance levels of reads and
writes. In the prototype, region boundaries, failure infor-
mation, and performance levels (throughput and queue
length) are tracked in the low-levels of the file system.
A more complete implementation would make the infor-
mation available through an ioctl() interface to the
E×RAID device. Also note that we focus primarily on
utilizing the performance information in this paper.

5 I·LFS

We now describe the I·LFS file system. Our current
design has four major pieces of additional functionality,
as compared to the standard LFS: on-line expandability
of the storage system, dynamic parallelism to account
for performance heterogeneity, flexible user-managed
redundancy, and lazy mirroring of writes. In sum to-
tal, these added features make the system more manage-
able (the administrator can easily add a new disk, with-
out worry of configuration), more flexible (users have
control over if replication occurs), and have higher per-
formance (I·LFS delivers the full bandwidth of the sys-
tem even in heterogeneous configurations, and flexible
mirroring avoids some of the costs of more rigid redun-
dancy schemes). For most of the discussion, we focus on
the case that most separates I·LFS/E×RAID from a tra-
ditional RAID, where the E×RAID layer exposes each
disk of the storage system as a separate region to I·LFS.

5.1 On-Line Expansion and Contraction

Design: The ability to upgrade a storage system in-
crementally is crucial. As the performance or capacity
demands of a site increase, an administrator may need
to add more disks. Ideally, such an addition should be
simple to perform (e.g., a single command issued by the
administrator, or an automatic addition when the disk is
detected by the hardware), require no down-time (thus
keeping availability of storage high), and immediately
make the extra performance and capacity of the new disk
available.

In older systems, on-line expansion is not possible.
Even if the storage system could add a new disk on-the-
fly, it is likely the case that an administrator would have
to unmount the partition, expand it (perhaps with a tool
similar to that described in [46]), and then re-mount the

file system. Worse, some systems require that a new file
system be built, forcing the administrator to restore data
from tape. More modern volume managers [48] allow
for on-line expansion, but still need file system support.

Thus, our I·LFS design includes the ability to incor-
porate new disks (really, new E×RAID regions) on-line
with a single command given to the file system. No com-
plicated support is necessitated across many layers of the
system. If the hardware supports hot-plug and detection
of new disks without a power-cycle, I·LFS can add new
disks without any down time and thus reduction in data
availability. Overall, the amount of work an administra-
tor must put forth to expand the system is quite small.

Contraction is also important, as the removal of a re-
gion should be as simple as the addition of one. There-
fore, we also incorporate the ability to remove a region
on the fly. Of course, if the file system has been config-
ured in a non-redundant manner, some data will likely be
lost. The difference between I·LFS and a traditional sys-
tem in this scenario is that I·LFS knows exactly which
files are available and can deliver them to applications.

Implementation: To allow for on-line expansion and
contraction of storage, the file system views regions that
have not yet been added as extant and yet fully utilized;
thus, when a new region is added to the system, the
blocks of that disk are made available for allocation, and
the file system will immediately begin to write data to
them. Conversely, a region that is removed is viewed as
fully allocated. This technique is general and could be
applied to other file systems, and similar ideas have been
used elsewhere [16].

More specifically, because a log-structured file sys-
tem is composed of a collection of LFS segments, it
is natural to expand capacity within I·LFS by adding
more free segments. To implement this functionality, the
newfs ilfs program creates an expanded LFS seg-
ment table for the file system. The entries in the segment
table record the current state of each segment. When
a new E×RAID region is added to the file system, the
pertinent information is added to the superblock, and
an additional portion of the segment table is activated.
This approach limits the number of regions that can be
added to a fixed number (currently, 16); for more flexi-
ble growth, the segment table could be placed in its own
file and expanded as necessary.

5.2 Dynamic Parallelism

Design: One problem introduced by the flexibility an
administrator has in growing a system is the increased
potential for performance heterogeneity in the disk sub-
system; in particular, a new disk or E×RAID segment
may have different performance characteristics than the
other disks of the system. In such a case, traditional

striping and RAID schemes do not work well, as they
all assume that disks run at identical rates [4, 10].

Traditionally, the presence of multiple disks is hidden
by the storage layer from the file system. Thus, current
systems must handle any disk performance heterogene-
ity in the storage layer – the file system does not have
enough information to do so itself. The research com-
munity has proposed schemes to deal with static disk
heterogeneity [3, 10, 32, 52], though many of these so-
lutions require careful tuning by an administrator. As
Van Jacobsen notes, “Experience shows that anything
that needs to be configured will be misconfigured” [18].

Further complicating the issue is that the delivered
performance of a device could change over time. Such
changes could result from workload imbalances, or per-
haps from the “fail-stutter” nature of modern devices,
which may present correct operation but degraded per-
formance to clients [5]. Even if more advanced hetero-
geneous data layout schemes are utilized, they will not
work well under dynamic shifts in performance.

To handle such static and dynamic performance dif-
ferences among disks, we include a dynamic segment
placement mechanism within I·LFS [4]. A segment can
logically be written to any free space in the file system;
we exploit this by writing segments to E×RAID regions
in proportion to their current rate of performance, ex-
ploiting the dynamic state presented to the file system by
E×RAID. By doing so, we can dynamically balance the
write load of the system to account for static or dynamic
heterogeneity in the disk subsystem. Note that if perfor-
mance of the disks is roughly equivalent, this dynamic
scheme will degenerate to standard RAID-0 striping of
segments across disks.

This style of dynamic placement could also be per-
formed in a more traditional storage system (e.g., Au-
toRAID has the basic mechanisms in place to do
so [51]). However, doing so unduly adds complexity into
the system, as both the file system and the storage sys-
tem have to track where blocks are placed; by pushing
dynamic segment placement into the file system, overall
complexity is reduced, as the file system already tracks
where the blocks of a file are located.

Implementation: The original version of LFS allocates
segments sequentially based on availability; in other
words, all free segments are treated equally. To better
manage parallelism among disks in I·LFS, we develop a
segment indirection technique. Specifically, we modify
the ilfs newseg() routine to invoke a data place-
ment strategy. The ilfs newseg() routine is used
to find the next free segment to write to; here, we alter
it to be “region aware”, and thus allow for a more in-
formed segment-placement decision. By choosing disks
in accordance with their performance levels (informa-
tion provided by E×RAID), the load across a set of

heterogeneously-performing regions can be balanced.
The major advantage of our decision to implement

this functionality within the ilfs newseg() routine
is that it localizes the knowledge of multiple disks to
a very small portion of the file system; the vast major-
ity of code in the file system is not aware of the region
boundaries within the disk address space, and thus re-
mains unchanged. The slight drawback is that the deci-
sion of which region to place a segment upon is made
early, before the segment has been written to; if the per-
formance level of the disk changes as the segment fills
in a significant way, the placement decision could poten-
tially be a poor one. In practice, we have not found this
to be a performance problem.

5.3 Flexible Redundancy

Design: Typically, redundancy is implemented in a
one-size-fits-all manner, as a single RAID scheme (or
two, as in AutoRAID) is applied to all the blocks of the
storage system. The file system is typically neither in-
volved nor aware of the details of data replication within
the storage layer. This traditional approach is limiting,
as much semantic information is available in the file
system as well as in smart users or applications, which
could be exploited to improve performance or better uti-
lize capacity.

Thus, in I·LFS, we explore the management of redun-
dancy strictly within the file system, as managing redun-
dancy in the file system provides greater flexibility and
control to users. In our current design, we allow users or
applications to select whether a file should be made re-
dundant (in particular, if it should be mirrored). If a file
is mirrored, users pay the cost in terms of performance
and capacity. If a file is not mirrored, performance in-
creases during writes to that file, and capacity is saved,
but the chances of losing the file are increased. Turning
off redundancy is thus well-suited for temporary files,
files that can easily be regenerated, or swap files.

Because I·LFS performs the replication, better ac-
counting is also possible, as the system knows exactly
which files (and hence which users) are using which
physical blocks. In contrast, with a traditional file sys-
tem mounted on top of an advanced storage system such
as AutoRAID [51], users are charged based on the log-
ical capacity they are using, whereas the true usage of
storage depends on access patterns and usage frequency.

Because redundancy schemes are usually imple-
mented within the RAID storage system (where no no-
tion of a file exists), our scheme would not easily be im-
plemented in a traditionally-layered system. The storage
system is wholly unaware of which blocks constitute a
file and therefore cannot receive input from a user as to
which blocks to replicate; only if both the file system

block 0block 0

inode N inode N+1

file N+1 file N

Figure 2: The “Crossed Pointer” Problem. The figure
illustrates the problem with using a separate file as a means
for redundancy; specifically, even though each element of a
file (inode, data block) has been replicated, a single lost disk
could still make it difficult to find a particular data block, due
to the extra requirement that for each block, a pointer chain to
the block must still be live. In the example, the file with inode
number N and its mirror, inode N +1, consist of a single data
block (block 0). If either disk crashes, it is not possible to find
the corresponding data block, even though a copy of it exists
on the remaining working disk.

and storage system were altered could such function-
ality be realized. In the future, it would be interesting
to investigate a range of policies on top of our redun-
dancy mechanisms that automatically apply different re-
dundancy strategies according to the class of a file, akin
to how the Elephant file system segregates files for dif-
ferent versioning techniques [33].

Implementation: To accomplish our goal of per-file
redundancy, we decided to utilize separate and unique
meta-data for original and redundant files. This ap-
proach is natural within the file system as it does not
require changes to on-disk data structures.

In our implementation, we use a straight-forward
scheme that assigns even inode numbers to original files
and odd inode numbers to their redundant copies. This
method has several advantages. Because the original
and redundant files have unique inodes, the data blocks
can be distributed arbitrarily across disks (given certain
constraints described below), thus allowing us to use re-
dundancy in combination with our other file system fea-
tures. Also, the number of LFS inodes is unlimited be-
cause they are written to the log, and the inode map is
stored in a regular file which is expanded as necessary.
The prime disadvantage of our approach is that it lim-
its redundancy to one copy, but this could easily be ex-
tended to an N -way mirroring scheme by reserving N
i-numbers per file.

One problem introduced by our decision to utilize
separate inodes to track the primary and mirrored copy
of a file is what we refer to as the “crossed pointer”
problem. Figure 2 illustrates the difficulty that can arise.

Simply requiring each component of a file (e.g., the in-
ode, indirect blocks, and data blocks) be replicated is not
sufficient to guarantee that all data can be recovered eas-
ily under a single disk failure. Instead, we must ensure
that each data block is reachable under a disk failure; a
block being reachable implies that a pointer chain to it
exists.

Consider the example in the figure: a file with inode
number N is replicated within inode number N + 1.
Inode N is located on the first disk, as is the first data
block of the mirror copy (file N + 1). Inode N + 1 is
on the other disk, as is the first data block of the primary
copy (file N). However, if either disk fails, the first data
block is not easily recovered, as the inode on the sur-
viving disk points to the data block on the failed disk.
In some file systems, this would be a fatal flaw, as the
data block would be unrecoverable. In LFS, it is only a
performance issue, as the extra information found within
segment summary blocks allows for full recovery; how-
ever, a disk crash would mandate a full scan of the disk
to recover all data blocks.

There are a number of possible remedies to the prob-
lem. For example, one could perform an explicit repli-
cation of each inode and all other pointer-carrying struc-
tures, such as indirect blocks, doubly-indirect blocks,
and so forth. However, this would require the on-disk
format to change, and would be inefficient in its usage
of disk space, as each inode and indirect block would
have four logical copies in the file system.

Instead, we take a much simpler approach of divide
and conquer. The disks of the system are divided into
two sets. When writing a redundant file to disk, I·LFS
decides which set the primary copy should be placed
within; the redundant copy is placed within the other set.
Thus, because no pointers cross from either set into the
other, we can guarantee that a single failure will cause
no harm (in fact, we can tolerate any number of failures
to disks in that set).

Finally, incorporating redundancy into I·LFS also
presents us with a difficult implementation challenge:
how should we replicate the data and inodes within the
file system, without re-writing every routine that cre-
ates or modifies data on disk? We develop and apply
recursive vnode invocation to ease the task. We em-
bellish most I·LFS vnode operations with a short re-
cursive tail; therein, the routine is invoked recursively
(with appropriate arguments) if the routine is currently
operating on an even i-number and therefore on the
primary copy of the data, and if the file is designated
for redundancy by the user. For instance, when a file
is created using ilfs create(), a recursive call to
ilfs create() is used to create a redundant file. The
recursion is broken within the call to perform the identi-
cal operation to the redundant file.

5.4 Lazy Mirroring

Design: User-controlled replication allows users to
control if replication occurs, but not when. As has been
shown in previous work, many potential benefits arise in
allowing flexible control over when redundant copies are
made or parity is updated [9]. Delaying parity updates
has been shown to be beneficial in RAID-5 schemes to
avoid the small-write problem [34], and could also re-
duce load under mirrored schemes. Implementing such
a feature at the file system level allows the user to de-
cide the window of vulnerability for each file, as losing
data in certain files may likely be more tolerable than
in others. Note that either of these enhancements would
be difficult to implement in a traditional system, as the
information required resides in both the file system and
RAID, necessitating non-trivial changes to both.

In I·LFS, we incorporate lazy mirroring into our user-
controlled replication scheme. Thus, users can desig-
nate a file as non-replicated, immediately replicated, or
lazily replicated. By choosing a lazy replica, the user is
willing to increase the chance of data loss for improved
performance. Lazy mirroring can improve performance
for one of two reasons. First, by delaying file replica-
tion, the file system may reduce load under a burst of
traffic and defer the work of replication to a later pe-
riod of lower system load. Second, if a file is written to
disk and then deleted before the replication occurs, the
cost of replication is removed entirely. As most systems
buffer files in memory for a short period of time (e.g., 30
seconds), and file lifetimes have recently been shown to
be longer than this on average [28], this second scenario
may be more common than previously thought.

Implementation: Lazy mirroring is implemented in
I·LFS as an embellishment to the file-system cleaner.
For files that are designated as lazy replicas, an extra
bit is set in the segment usage table indicating their sta-
tus. When the cleaner scans a segment and finds blocks
that need to be replicated, it simply performs the repli-
cation directly, making sure to place replicated blocks so
as to avoid the “crossed pointer” problem, and associates
them with the mirrored inode. When the replication is
complete, the bit is cleared. Currently, the file system
replicates files after a 2-minute delay, though in the fu-
ture this could be set directly by the user or application.

6 Evaluation

In this section, we present an evaluation of E×RAID
and I·LFS. Experiments are performed upon an Intel-
based PC with 128 MB of physical memory. The main
processor is a 1-GHz Intel Pentium III Xeon, and the
system houses four 10,000 RPM Seagate ST318305LC

0

10

20

30

40

50

60

70

80

90

Seq Write Seq Read Rand Write Rand Read

T
hr

ou
gh

pu
t (

M
B

/s
)

Access Pattern

Baseline Performance

Slow Disks
Fast Disks

Figure 3: Baseline Performance Comparison. The fig-
ure plots the performance of I·LFS/E×RAID under sequential
writes, sequential reads, random writes, and random reads.
The tests are run on four disks, varying whether the disks used
are the four slow disks or the four fast ones. In all cases, re-
quests generated by the tests are 8 KB in size, and the total
data-set size is 200 MB.

Cheetah 36XL disks (which we will refer to as the “fast”
disks), and four 7,200 RPM Seagate ST34572W Bar-
racuda 4XL disks (the “slow” disks). The fast disks can
deliver data at roughly 21.6 MB/s each, and the slow
disks at approximately 7.5 MB/s apiece. For all exper-
iments, we perform 30 trials and show both the average
and standard deviation.

In some experiments, we compare the performance
of I·LFS/E×RAID to standard RAID-0 striping. Stripe
sizes are chosen so as to maximize performance of the
RAID-0 given the workload at hand, making the com-
parison as fair as possible, or even slightly unfair to-
wards I·LFS/E×RAID.

6.1 Baseline Performance

In this first experiment, we demonstrate the baseline
performance of I·LFS/E×RAID on top of two different
homogeneous storage configurations, one with four slow
disks, and one with four fast disks. The experiment con-
sists of sequential write, sequential read, random write,
and random read phases (based on patterns generated
by the Bonnie [6] and IOzone [25] benchmarks). We
perform this experiment to demonstrate that there is no
unexpected overhead in our implementation, and that it
scales to higher-performance disks effectively.

As we can see in Figure 3, sequential write, sequential
read, and random writes all perform excellently, achiev-
ing high bandwidth across both disk configurations. Not
surprisingly for a log-based file system, random reads
perform much more poorly, achieving roughly 0.9 MB/s
on the four slow disks, and 1.8 MB/s on the four fast
disks, in line with what one would expect from these
disks in a typical RAID configuration.

0

10

20

30

40

50

60

70

80

90

0 128 256 384 512 640 768 896 1024

B
an

dw
id

th
 (

M
B

/s
)

Amount Written (MB)

Performance During Expansion

Disk 2 Added

Disk 3 Added

Disk 4 Added

Figure 4: Storage Expansion. The graph plots the per-
formance of I·LFS during storage expansion. The experiment
begins with I·LFS writing to a single disk. Each time 256 MB is
written, a new disk is brought on-line, and I·LFS immediately
begins writing to it for increased performance. Disk expansion
is accomplished via a simple command, which adds the disk
(or region) to the file system without down time.

6.2 On-line Expansion

We now demonstrate the performance of the system
under writes as disks are added to the system on-line. In
this experiment, the disks are already present within the
PC, and thus the expansion stresses the software infras-
tructure and not hardware capabilities.

Figure 4 plots the performance of sequential writes
over time as disks are added to the system.1 Along the
x-axis, the amount of data written to disk is shown, and
the y-axis plots the rate that the most recent 64 MB was
committed to disk. As one can see from the graph, I·LFS
immediately starts using the disks for write traffic as they
are added to the system. However, read traffic will con-
tinue to be directed to the original disks for older data.
The LFS cleaner could redistribute existing data over the
newly-added disks, either explicitly or through cleaning,
but we have not yet explored this possibility.

6.3 Dynamic Parallelism

We next explore the ability of I·LFS to place segments
dynamically in different regions based on the current
performance characteristics of the system, in order to
demonstrate the ability of I·LFS to react to static and
dynamic performance differences across devices.

There are many reasons for performance variation
among drives. For example, when new disks are added,
they can likely be faster than older ones; further, unex-
pected dynamic performance variations due to bad-block
remapping or “hot spots” in the workload are not un-
common [5], and therefore can also lead to performance

1Random writes perform similarly, due to the nature of LFS.

0

10

20

30

40

50

60

70

80

90

4:0 3:1 2:2 1:3 0:4

T
hr

ou
gh

pu
t (

M
B

/s
)

Heterogeneity Configuration (Fast Disks:Slow Disks)

Performance Under Static Heterogeneity

I.LFS/ExRAID
FFS/CCD

Figure 5: Static Storage Heterogeneity. The figure
plots the performance of I·LFS versus FFS/CCD with standard
RAID-0 striping, both under a series of disk configurations.
Along the x-axis, the number of fast and slow disks are varied
(f :s implies f fast disks and s slow ones). By adjusting where
segments are written dynamically, I·LFS/E×RAID is able to
deliver the full bandwidth of disks. In contrast, standard strip-
ing performs at the rate of the slowest disk in the system. For
each test, 200 MB is written to disk.

heterogeneity across disks. Indeed, the ability to ex-
pand the disk system on-line (as shown above) induces a
workload imbalance, as read traffic is not directed to the
newly-added disks until the cleaner has reorganized data
across all of the disks in the system.

We experiment with both static and dynamic perfor-
mance variations in this subsection. Figure 5 shows the
results of our static heterogeneity test. The sequential
write performance of I·LFS with its dynamic segment
placement scheme is plotted along with FFS on top of
the NetBSD concatenated disk driver (CCD) configured
to stripe data in a RAID-0 fashion. In all experiments,
data is written to four disks. Along the x-axis, we in-
crease the number of slow disks in the system; thus, at
the extreme left, all of the four disks are fast ones, at
the right they are all slow ones, and in the middle are
different heterogeneous configurations.

As we can see in the figure, by writing segments dy-
namically in proportion to delivered disk performance,
I·LFS/E×RAID is able to deliver the full bandwidth of
the underlying storage system to applications – overall
performance degrades gracefully as more slow disks re-
place fast ones in the storage system. RAID-0 striping
performs at the rate of the slowest disk, and thus per-
forms poorly in any heterogeneous configuration.

We also perform a “misconfiguration” test. In this ex-
periment, we configure the storage system to utilize two
partitions on the same disk, emulating a misconfigura-
tion by an administrator (similar in spirit to tests per-
formed by Brown and Patterson [7]). Thus, while the
disk system appears to contain four separate disks, it re-
ally only contains three. In this case, I·LFS/E×RAID

0

10

20

30

40

50

60

70

80

90

0 256 512 768 1024 1280 1536

T
hr

ou
gh

pu
t (

M
B

/s
)

Amount Written (MB)

Performance Under Dynamic Heterogeneity

I.LFS/ExRAID
FFS/CCD

Figure 6: Dynamic Storage Heterogeneity. The figure
plots the performance of I·LFS/E×RAID and FFS/CCD un-
der a dynamic performance variation. During the experiment,
the performance of a single disk is temporarily degraded; the
faulty disk delays requests for a fixed time, reducing through-
put of the disk from 21.6 MB/s to 5.8 MB/s. By adaptively
writing more data to the other disks, I·LFS/E×RAID with dy-
namic segment placement is better able to adjust to the imbal-
ance and deliver higher throughput.

writes data to disk at 65 MB/s, whereas standard striping
delivers only 46 MB/s. The dynamic segment striping
of I·LFS is successfully able to balance load across the
disks, in this case properly assigning less load to each
partition within the accidentally over-burdened disk.

In our final heterogeneity experiment, we introduce
an artificial “performance fault” into a storage system
consisting of four fast disks, in order to confirm that our
load balancing works well in the face of dynamic perfor-
mance variations. Figure 6 shows the performance dur-
ing a write of both I·LFS/E×RAID with dynamic seg-
ment placement and FFS/CCD using RAID-0 striping in
a case where a single disk of the four exhibits a perfor-
mance degradation. After one third of the data is written,
a kernel-based utility is used to temporarily delay com-
pleted requests from one of the disks. The delay has
the effect of reducing its throughput from 21.6 MB/s to
5.8 MB/s. The impaired disk is returned to normal oper-
ation after an additional one third of the data is written.
As we can see from the figure, I·LFS/E×RAID does a
better job of tolerating the fluctuations induced during
the second phase of the experiment, improving perfor-
mance by over a factor of two as compared to FFS/CCD.

6.4 Flexible Redundancy

In our first redundancy experiment, we verify the op-
eration of our system in the face of failure. Figure 7
plots the performance of a set of processes performing
random reads from redundant files on I·LFS. Initially,
the bandwidth of all four disks is utilized by balancing
the read load across the mirrored copies of the data. As

0

1

2

3

4

5

6

7

0 128 256 384 512 640 768

T
hr

ou
gh

pu
t (

M
B

/s
)

Amount Read (MB)

Performance During Failure

Disk 1 Failed

Disk 2 Failed

Figure 7: Storage Failure. The figure plots the random
read performance to a set of mirrored files across four disks on
I·LFS. At the labeled points in the graph, a disk is taken off-
line, and performance decreases because I·LFS can no longer
balance the read load between the replicas. Note that in this
example, I·LFS/E×RAID can survive any single disk failure;
however, after the first failure, I·LFS/E×RAID can only toler-
ate the loss of the other disk in the set.

the experiment progresses, a disk failure is simulated by
disabling reads to one of the disks. I·LFS continues pro-
viding data from the available replicas, but overall per-
formance is reduced.

Next, we demonstrate the flexibility of per-file redun-
dancy when the redundancy is managed by the file sys-
tem. A total of 20 files are written concurrently to a
system consisting of four fast disks, while the percent-
age of those files that are mirrored is increased along the
x-axis. The results are shown in Figure 8.

As expected, the net throughput of the system de-
creases linearly as more files are mirrored, and when
all are mirrored, overall throughput is roughly halved.
Thus, with per-file redundancy, users “get what they pay
for”; if users want a file to be redundant, the performance
cost of replication is paid during the write, and if not,
the performance of the write reflects the full bandwidth
of the underlying disks.

6.5 Lazy Mirroring

In our final experiment, we demonstrate some of the
performance characteristics of lazy mirroring. Figure 9
plots the write performance to a set of lazily mirrored
files. After a delay of 20 seconds, the cleaner begins
replicating data, and the normal file system traffic suf-
fers from a small decline in performance. The default
replication delay for the system is two minutes in length,
but an abbreviated delay is used here to reduce the time
of the experiments.

From the figure, we can see the potential benefits of
lazy mirroring, as well as its potential costs. If lazily
mirrored files are indeed deleted before replication be-

0

10

20

30

40

50

60

70

80

90

0% 20% 40% 60% 80% 100%

T
hr

ou
gh

pu
t (

M
B

/s
)

Percent of Files Written Redundantly

The Cost of Redundancy

Figure 8: Per-file Redundancy. The figure plots the
performance of writes to 20 separate files as the percent of
those files that are mirrored increases. As more files are mir-
rored, the net bandwidth of the system drops to roughly half
of its peak rate, as expected. The peak bandwidth achieved
is lower than the previous experiments due to the increased
number of files and subsequent meta-data operations. In each
experiment, 200 MB is written out to disk.

gins, the full throughput of the storage layer will be re-
alized. However, if many or all lazily mirrored files are
not deleted before replication, the system incurs an extra
penalty, as those files must be read back from disk and
then replicated, which will affect subsequent file system
traffic. Therefore, lazy mirroring should be used care-
fully, either in systems with highly bursty traffic (i.e.,
idle time for the lazy replicas to be created), or with files
that are easily distinguishable as short-lived.

7 Discussion

In implementing I·LFS/E×RAID, we were concerned
that by pushing more functionality into the file system,
the code would become unmanageably complex. Thus,
one of our primary goals is to minimize code complex-
ity. We believe we achieve this goal, integrating the three
major pieces of functionality with only an additional
1,500 lines of code, a 19% increase over the original
size of the LFS implementation. Of this additional code,
roughly half is due to the redundancy management.

From the design standpoint, we find that managing
redundancy within the file system has many benefits,
but also causes many difficulties. For example, to solve
the crossed-pointer problem, we applied a divide-and-
conquer technique. By placing the primary copy of a
file into one of two sets, and its mirror in the other, we
enable fast operation under failure. However, our so-
lution limits data placement flexibility, in that once a
file is assigned to a set, any subsequent writes to that
file must be written to that set. This limitation affects
performance, particularly under heterogeneous configu-

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80

T
hr

ou
gh

pu
t (

M
B

/s
)

Time (s)

Performance with Lazy Redundancy

I.LFS/ExRAID
Cleaner

Figure 9: Lazy Mirroring. The figure plots the write
performance to a set of lazy redundant files on I·LFS with a
replication delay of 20 seconds. Peak performance is achieved
during the initial portion of the test, but performance is re-
duced slightly as the cleaner begins replicating data. After the
write test completes, the cleaner continues to replicate data in
the background.

rations where one set has significantly different perfor-
mance characteristics than the other. Though we can re-
lax these placement restrictions, e.g., by choosing which
disks constitute a set on a per-file basis, the problem is
fundamental to our approach to file-system management
of redundancy.

From the implementation standpoint, file-system
managed redundancy is also problematic, in that the vn-
ode layer is designed with a single underlying disk in
mind. Though our recursive invocation technique was
successful, it stretched the limits of what was possible in
the current framework, and new additions or modifica-
tions to the code are not always straightforward to imple-
ment. To truly support file-system managed redundancy,
a redesign of the vnode layer may be beneficial [31].

8 Future Work

A number of possible avenues exist for future re-
search. Most generally, we believe more organiza-
tions of the storage protocol stack need to be explored.
Which pieces of functionality should be implemented
where, and what are the trade-offs? One natural follow-
on is to incorporate more lower-level information into
E×RAID; the main challenge when exposing new in-
formation to the file system is to find useful pieces of
information that the file system can readily exploit.

Of course, most file service today spans client and
server machines. Thus, we believe it is important to con-
sider how functionality should be split across machines.
Which portion of the traditional storage protocol stack
should reside on clients, and which portion should reside
on the servers? Researchers in distributed file systems

have taken opposing points of view on this, with systems
such as Zebra [15] and xFS [1] letting clients do most
of the work, whereas the Frangipani/Petal system places
most functionality within the storage servers [21, 45].

We also believe cooperative approaches between the
file system and storage system may be useful. For ex-
ample, we found that implementing redundancy in the
file system was sometimes vexing; perhaps an approach
that shared the responsibility of redundancy across both
file system and storage layer would be an improvement.
For example, the storage layer could tell the file system
which block to use as a mirror of another block, but the
file system could decide when to perform the replication.

Even if we decide upon a new storage interface, it
may be difficult to convince storage vendors to move
away from the tried-and-true standard SCSI interface to
storage. Thus, a more pragmatic approach may be to
treat the RAID layer as a gray box, inferring its charac-
teristics and then exploiting them in the file system, all
without modification of the underlying RAID layer [2].
Tools that automatically extract low-level information
from disk drives, such as DIXtrac [35] and SKIPPY [42],
are first steps towards this goal, with extensions needed
to understand the parallel aspects of storage systems.

Finally, we envision many more possible optimiza-
tions in our new arrangement of the storage protocol
stack. For example, we are currently exploring the no-
tion of intelligent reconstruction. The basic idea is sim-
ple: if a disk (or region) fails, and I·LFS has duplicated
the data upon that disk, I·LFS can begin the reconstruc-
tion process itself. The key difference is that I·LFS will
only reconstruct live data from that disk, and not the en-
tire disk blindly, as a storage system would, substantially
lowering the time to perform the operation. A fringe
benefit of intelligent reconstruction is that I·LFS should
be able to give preference to certain files over others, re-
constructing higher-priority files first and thus increasing
the availability of those files under failure.

We also imagine that many optimizations are possible
with the LFS cleaner. For example, as data is laid out
on disk according to current performance characteristics
and access patterns, it may not meet the needs of subse-
quent potentially non-sequential reads from other appli-
cations. Similarly, as new disks are added, the cleaner
may want to run in order to lay out older data across
the new disks. Thus, the cleaner could be used to re-
organize data across drives for better read performance
in the presence of heterogeneity and new drives, similar
to the work of Neefe et al., but generalized to operate in
a heterogeneous multi-disk setting [22].

9 Conclusions

In terms of abstractions, block-level storage systems
such as SCSI have been quite successful: disks hide
low-level details from file systems such as the exact me-
chanics of arm movement and head positioning, but still
export a simple performance model upon which file sys-
tems could optimize. As Lampson said: “[...] an inter-
face can combine simplicity, flexibility, and high perfor-
mance together by solving one problem and leaving the
rest to the client” [20]. In early single-disk systems, this
balance was struck nearly perfectly.

As storage systems evolved from a single drive into a
RAID with multiple disks, the interface remained sim-
ple, but the RAID itself did not. The result is a system
full of misinformation: the file system no longer has an
accurate model of disk behavior, and the now-complex
storage system does not have a good understanding of
what to expect from the file system.

E×RAID and I·LFS bridge this information gap by
design: the presence of multiple regions is exposed di-
rectly to the file system, enabling new functionality.
In this paper, we have explored the implementation of
on-line expansion, dynamic parallelism, flexible redun-
dancy, and lazy mirroring in I·LFS. All were imple-
mented in a relatively straight-forward manner within
the file system, increasing system manageability, perfor-
mance, and functionality, while maintaining a reason-
able level of overall system complexity. Some of these
aspects of I·LFS would be difficult if not impossible to
build in the traditional storage protocol stack, highlight-
ing the importance of implementing functionality in the
correct layer of the system.

Though we have chosen a single point in the design
space of storage protocol stacks, other arrangements are
possible and perhaps even preferable; we hope that they
will be explored. Whatever the conclusion of research
on the division of labor between file and storage sys-
tems, we believe that the proper division should be ar-
rived upon via design, implementation, and thorough ex-
perimentation, not via historical artifact.

10 Acknowledgements

We would like to thank our shepherd, Elizabeth
Shriver, as well as John Bent, Nathan Burnett, Brian
Forney, Florentina Popovici, Muthian Sivathanu, and the
anonymous reviewers for their excellent feedback.

This work is sponsored by NSF CCR-0092840,
CCR-0098274, NGS-0103670, CCR-0133456, ITR-
0086044, and the Wisconsin Alumni Research Founda-
tion. Timothy E. Denehy is sponsored by an NDSEG
Fellowship from the Department of Defense.

References

[1] T. Anderson, M. Dahlin, J. Neefe, D. Patterson, and R. Wang.
Serverless Network File Systems. In Proceedings of the 15th
ACM Symposium on Operating Systems Principles (SOSP ’95),
pages 109–26, Copper Mountain Resort, CO, December 1995.

[2] A. C. Arpaci-Dusseau and R. H. Arpaci-Dusseau. Information
and Control in Gray-Box Systems. In Proceedings of the 18th
ACM Symposium on Operating Systems Principles (SOSP ’01),
pages 43–56, Banff, Canada, October 2001.

[3] A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, D. E. Culler, J. M.
Hellerstein, and D. Patterson. High-Performance Sorting on Net-
works of Workstations. In Proceedings of the 1997 ACM SIG-
MOD Conference on the Management of Data (SIGMOD ’97),
pages 243–254, Tucson, AZ, May 1997.

[4] R. H. Arpaci-Dusseau, E. Anderson, N. Treuhaft, D. E. Culler,
J. M. Hellerstein, D. Patterson, and K. Yelick. Cluster I/O with
River: Making the Fast Case Common. In The 1999 Workshop
on Input/Output in Parallel and Distributed Systems (IOPADS
’99), Atlanta, GA, May 1999.

[5] R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau. Fail-Stutter
Fault Tolerance. In The Eighth Workshop on Hot Topics in Oper-
ating Systems (HotOS VIII), pages 33–40, Schloss Elmau, Ger-
many, May 2001.

[6] T. Bray. The Bonnie File System Benchmark.
http://www.textuality.com/bonnie/.

[7] A. Brown and D. A. Patterson. Towards Maintainability, Avail-
ability, and Growth Benchmarks: A Case Study of Software
RAID Systems. In Proceedings of the 2000 USENIX Annual
Technical Conference, pages 263–276, San Diego, CA, June
2000.

[8] D. Comer. Internetworking with TCP/IP Vol. 1: Principles, Pro-
tocols and Architecture. Prentice Hall, London, 2 edition, 1991.

[9] T. H. Cormen and D. Kotz. Integrating Theory And Practice
In Parallel File Systems. In Proceedings of the 1993 DAGS/PC
Symposium (The Dartmouth Institute for Advanced Graduate
Studies), pages 64–74, Hanover, NH, June 1993.

[10] T. Cortes and J. Labarta. Extending Heterogeneity to RAID level
5. In Proceedings of the 2001 USENIX Annual Technical Con-
ference, Boston, MA, June 2001.

[11] W. de Jonge, M. F. Kaashoek, and W. C. Hsieh. The Logical
Disk: A New Approach to Improving File Systems. In Proceed-
ings of the 14th ACM Symposium on Operating Systems Princi-
ples (SOSP ’93), pages 15–28, Asheville, NC, December 1993.

[12] D. R. Engler and M. F. Kaashoek. Exterminate All Operating
System Abstractions. In The Fifth Workshop on Hot Topics in
Operating Systems (HotOS V), Orcas Island, WA, May 1995.

[13] R. M. English and A. A. Stepanov. Loge: A Self-Organizing
Disk Controller. In Proceedings of the USENIX Winter 1992
Technical Conference, pages 237–252, San Francisco, CA, Jan-
uary 1992.

[14] G. A. Gibson, D. F. Nagle, K. Amiri, F. W. Chang, E. M. Fein-
berg, H. Gobioff, C. Lee, B. Ozceri, E. Riedel, D. Rochberg, and
J. Zelenka. File Server Scaling with Network-Attached Secure
Disks. In Proceedings of the 1997 ACM SIGMETRICS Interna-
tional Conference on Measurement and Modeling of Computer
Systems, pages 272–284, Seattle, WA, June 1997.

[15] J. Hartman and J. Ousterhout. The Zebra Striped Network File
System. In Proceedings of the 14th ACM Symposium on Operat-
ing Systems Principles (SOSP ’93), pages 29–43, Asheville, NC,
December 1993.

[16] D. Hitz, J. Lau, and M. Malcolm. File System Design for an
NFS File Server Appliance. In Proceedings of the 1994 USENIX
Winter Technical Conference, Berkeley, CA, January 1994.

[17] J. Huber, C. L. Elford, D. A. Reed, A. A. Chien, and D. S. Blu-
menthal. PPFS: A High Performance Portable Parallel File Sys-
tem. In Proceedings of the 9th ACM International Conference on
Supercomputing, pages 385–394, Barcelona, Spain, July 1995.

[18] V. Jacobson. How to Kill the Internet.
ftp://ftp.ee.lbl.gov/talks/vj-webflame.ps.Z, 1995.

[19] T. Kilburn, D. B. G. Edwards, M. J. Lanigan, and F. H. Sum-
mer. One-level Storage System. IRE Transactions on Electronic
Computers, EC-11:223–235, April 1962.

[20] B. W. Lampson. Hints for Computer System Design. In Proceed-
ings of the 9th ACM Symposium on Operating System Principles,
pages 33–48, Bretton Woods, NH, December 1983. ACM.

[21] E. K. Lee and C. A. Thekkath. Petal: Distributed Virtual Disks.
In Proceedings of the Seventh Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASP-
LOS VII), pages 84–92, Cambridge, MA, October 1996.

[22] J. N. Matthews, D. Roselli, A. M. Costello, R. Y. Wang, and
T. E. Anderson. Improving the Performance of Log-Structured
File Systems with Adaptive Methods. In Proceedings of the 16th
ACM Symposium on Operating Systems Principles (SOSP ’97),
pages 238–251, Saint-Malo, France, October 1997.

[23] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry. A Fast
File System for UNIX. ACM Transactionson Computer Systems,
2(3):181–197, August 1984.

[24] N. Nieuwejaar and D. Kotz. The Galley Parallel File System.
In Proceedings of the 10th ACM International Conference on
Supercomputing, pages 374–381, Philadelphia, PA, May 1996.
ACM Press.

[25] W. Norcutt. The IOzone Filesystem Benchmark.
http://www.iozone.org/.

[26] D. Patterson, G. Gibson, and R. Katz. A Case for Redundant Ar-
rays of Inexpensive Disks (RAID). In Proceedings of the 1988
ACM SIGMOD Conference on the Management of Data (SIG-
MOD ’88), pages 109–116, Chicago, IL, June 1988.

[27] D. M. Ritchie and K. Thompson. The UNIX Time-Sharing Sys-
tem. Comm. Assoc. Comp. Mach., 17(7):365–375, July 1974.

[28] D. Roselli, J. R. Lorch, and T. E. Anderson. A Comparison of
File System Workloads. In Proceedings of the 2000 USENIX An-
nual Technical Conference, pages 41–54, San Diego, CA, June
2000.

[29] D. Roselli, J. N. Matthews, and T. E. Anderson. File System Fin-
gerprinting. Works-In-Progress at the Third Symposium on Op-
erating Systems Design and Implementation (OSDI ’99), Febru-
ary 1999.

[30] M. Rosenblum and J. Ousterhout. The Design and Implemen-
tation of a Log-Structured File System. ACM Transactions on
Computer Systems, 10(1):26–52, February 1992.

[31] D. S. H. Rosenthal. Evolving the Vnode Interface. In Proceed-
ings of the 1990 USENIX Summer Technical Conference, pages
107–118, Anaheim, CA, 1990.

[32] J. R. Santos and R. Muntz. Performance Analysis of the RIO
Multimedia Storage System with Heterogeneous Disk Configu-
rations. In ACM Multimedia ’98, December 1998.

[33] D. S. Santry, M. J. Feeley, N. C. Hutchinson, A. C. Veitch, R. W.
Carton, and J. Ofir. Deciding When To Forget In The Elephant
File System. In Proceedings of the 17th ACM Symposium on Op-
erating Systems Principles (SOSP’99), pages 110–123, Kiawah
Island Resort, SC, December 1999.

[34] S. Savage and J. Wilkes. AFRAID — A Frequently Redun-
dant Array of Independent Disks. In Proceedings of the 1996
USENIX Technical Conference, pages 27–39, San Diego, CA,
January 1996.

[35] J. Schindler and G. R. Ganger. Automated Disk Drive Charac-
terization. Technical Report CMU-CS-99-176, Carnegie Mellon,
1999.

[36] J. Schindler, J. L. Griffin, C. R. Lumb, and G. R. Ganger. Track-
aligned Extents: Matching Access Patterns to Disk Drive Char-
acteristics. In Proceedings of the First USENIX Conference on
File and Storage Technologies (FAST ’02), Monterey, CA, Jan-
uary 2002.

[37] M. Seltzer, K. Bostic, M. K. McKusick, and C. Staelin. An
Implementation of a Log-Structured File System for UNIX. In
Proceedings of the 1993 USENIX Winter Technical Conference,
pages 307–326, San Diego, CA, January 1993.

[38] M. Seltzer, K. A. Smith, H. Balakrishnan, J. Chang, S. Mc-
Mains, and V. Padmanabhan. File System Logging versus Clus-
tering: A Performance Comparison. In Proceedings of the 1995
USENIX Annual Technical Conference, pages 249–264, New Or-
leans, LA, January 1995.

[39] M. I. Seltzer, G. R. Ganger, M. K. McKusick, K. A. Smith,
C. A. N. Soules, and C. A. Stein. Journaling Versus Soft Up-
dates: Asynchronous Meta-data Protection in File Systems. In
Proceedings of the 2000 USENIX Annual Technical Conference,
pages 71–84, San Diego, CA, June 2000.

[40] D. Stodolsky, M. Holland, W. V. Courtright II, and G. A. Gib-
son. Parity-logging disk arrays. ACM Transactions on Computer
Systems, 12(3):206–235, August 1994.

[41] A. Sweeney, D. Doucette, W. Hu, C. Anderson, M. Nishimoto,
and G. Peck. Scalability in the XFS File System. In Proceedings
of the USENIX 1996 Annual Technical Conference, San Diego,
CA, January 1996.

[42] N. Talagala, R. H. Arpaci-Dusseau, and D. Patterson.
Microbenchmark-based Extraction of Local and Global Disk
Characteristics. Technical Report CSD-99-1063, University of
California, Berkeley, 1999.

[43] D. Teigland. The Pool Driver: A Volume Driver for SANs. Mas-
ter’s thesis, University of Minnesota, December 1999.

[44] D. Teigland and H. Mauelshagen. Volume Managers in Linux.
In FREENIX Track of the USENIX 2001 Annual Technical Con-
ference, Boston, MA, June 2001.

[45] C. A. Thekkath, T. Mann, and E. K. Lee. Frangipani: A Scal-
able Distributed File System. In Proceedings of the 16th ACM
Symposium on Operating Systems Principles (SOSP ’97), pages
224–237, Saint-Malo, France, October 1997.

[46] T. Ts’o. http://e2fsprogs.sourceforge.net/ext2.html, June 2001.

[47] R. van Renesse. Masking the Overhead of Protocol Layering.
In Proceedings of the ACM SIGCOMM ’96 Conference, pages
96–104, Palo Alto, CA, 1996.

[48] Veritas. http://www.veritas.com, June 2001.

[49] R. Wang, T. E. Anderson, and D. A. Patterson. Virtual Log-
Based File Systems for a Programmable Disk. In Proceedings of
the Third Symposium on Operating Systems Design and Imple-
mentation (OSDI ’99), New Orleans, LA, February 1999.

[50] J. Wilkes. DataMesh Research Project, Phase 1. In Proceedings
of the USENIX File Systems Workshop, pages 63–69, May 1992.

[51] J. Wilkes, R. Golding, C. Staelin, and T. Sullivan. The HP Au-
toRAID Hierarchical Storage System. ACM Transactions on
Computer Systems, 14(1):108–136, February 1996.

[52] R. Zimmermann and S. Ghandeharizadeh. HERA: Heteroge-
neous Extension of RAID. Technical Report USC-CS-TR98-
685, University of Southern California, 1998.

