
USENIX Association

Proceedings of the
2002 USENIX Annual Technical

Conference

Monterey, California, USA
June 10-15, 2002

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



Characterizing Alert and BrowseServicesfor Mobile Clients

Atul Adya,ParamvirBahl,Lili Qiu
Microsoft Research

1 Microsoft Way, Redmond,Washington98052�
adya,bahl, liliq � @microsoft.com

Abstract

Thereis a fair amountof evidencethatsuggeststhatIn-
ternet accessfrom wirelessly-connectedmobile hand-
held devices is gaining popularity. However, there
haven’t beentoo many studiesthat have focusedsolely
on analyzingthe wirelessInternet. In this paper, we
studythe notificationandbrowseservicesprovided by
a large commercialweb site designedspecifically for
userswho accessit via their cell-phonesandPDAs. Un-
likepreviouswebstudiesthathaveanalyzedbrowseser-
vicesprovidedoverwired networks,we focusprimarily
on browseandnotificationservicesprovidedover wire-
lesschannels.Specifically, we analyzethe notification
and browser tracesto understandthe systemload, the
typeof contentaccessed,anduserbehavior. We discuss
the implicationsof our findings for techniquessuchas
multicast,querycachingandoptimization,andtransport
protocoldesign.

1 Intr oduction

Over the last decadethe cellular phone industry and
the World Wide Web have experienceda phenomenal
growth aspeoplearoundtheworld haveembracedthese
technologiesat a remarkablerate. Today, most major
wirelessserviceprovidersin the UnitedStates,Europe,
andJapanoffer wirelessInternetservicesandmany In-
ternetcompaniesprovide contentthat hasbeenadapted
to suit thelimited display, bandwidth,memory, andpro-
cessingpowerof smalldevices.

Anotheremergingtrend,relatedto wirelessInternet,has
to do with how usersmanagethe gigantic information
flow that the Internetprovides. Realizingthat usersare
beingoverwhelmedwith information,several webcon-
tent providers allow usersto switch their data access
model from polling and navigation to notificationsor
alerts.Insteadof periodicallybrowsingthroughtheweb
sites for potentially useful information, an increasing
numberof usersareadoptingthemodelwherethey reg-

isterfor informationin which they areinterested.These
usersprovide a callbackaddressusuallyin the form of
anemailaddress,a cell-phonenumber, or a pagernum-
ber, dependingon their perceivedimportanceof the in-
formation.Whenever therelevanteventis triggered,the
contentprovider sendsa notificationto theuser. Exam-
plesof someUS companiesthat provide suchnotifica-
tions includeYahooMobile, MSN Mobile, AOL Any-
where,andInfoSpace.All of theseservicesallow users
to subscribeto alertsfor stockquotes,sportsscores,lot-
tery, horoscope,calendareventsetc. If alert services
becomesa popular form of user interaction with the
web, it will be critical for contentprovider andcontent
managementcompaniesto handlethesenotificationsef-
ficiently. Propermanagementof notificationsinvolves
understandingwhich typesof notificationsarepopular,
which typesof devices are usedby subscribersfor re-
ceiving notifications,thefrequency of sendingtheseno-
tificationson a peruserbasis,etc.

In this paper, we studynotificationandbrowseservices
provided by a large popularcommercialweb site that
is designedspecificallyfor US userswho accessit via
their cell-phonesandPDAs. Unlike mostpreviousweb
studies,which have analyzedbrowsing servicespro-
vided over wired networks, we focus primarily on a
web server that deliversnotification and browsing ser-
vices over wirelesschannels. We analyzenotification
and browser tracesto understandthe systemload, the
type of contentthat is accessed,anduserbehavior. We
believethatourstudyis importantfor contentproviders,
wirelessISPs,andwebsitemanagers.

We note herethat we do not study the performanceof
thewebserver subsystemor its architecturaldesign.In-
stead,we usewebserver logsto analyzethebrowseand
notificationpatternsof wirelesswebusers.

The rest of this paperis organizedas follows. In Sec-
tion 2 we review previouswork donein thefield of web
traceanalysis. In Section3, we describethe different
waysin which thewebsite is accessed,thecharacteris-



tics of thedatalogs,andthetypesof analyseswe carry
out. We presentdetailedanalysisof thenotificationand
browse logs in Sections4 and Section5, respectively.
In Section6, we examinethe degreeof correlationbe-
tweentheusageof browseandnotificationservices.We
concludein Section7.

2 RelatedWork

Therehave beena numberof studieson the accessdy-
namicsof web servers servicing clients over a wired
network. Thesestudiesinclude analysesof web ac-
cesstracesfrom the perspective of proxies[7, 20, 21],
browsers[6, 9], and servers [4, 16]. However, to our
knowledge,all previouswebworkloadstudieshavebeen
conductedfor browseservicesonly andtherearenopub-
lishedstudiesonnotificationservices.Consequently, we
believe, our analysisof notificationservicesis the first
studyof its kind.

Even for the browsing services,most studiesanalyze
webserversservingclientsover wired networks. There
arevery limited studieson web serversservingclients
over wirelesschannels. The study closestto ours is
the one doneby Kunz et al. [12], which analyzesnet-
work tracesgeneratedby a mobile browserapplication.
Specifically, their paperanalyzesuserbehavior (bytes
transferredand time spenton the wirelesslink) based
on thenotionof a sessionthatwaschosento be90 sec-
onds; however, a differentsessionperiod could poten-
tially changetheir results. The main limitation of their
work is thesizeof thedataanalyzed:althoughthetraces
werecollectedover a periodof sevenmonths,only 80K
entrieswerelogged.It is unclearwhethertheinferences
drawn from this studycanscaleup to largecommercial
sites. In contrast,we analyzedtraceswith millions of
entriesgeneratedoveraperiodof 12daysatalargecom-
mercialsite.Furthermore,theirstudyalsohasthelimita-
tion thatit usesclient IP addressesfor identifying users;
sinceIP addressescanbe reassignedto differentusers,
it is difficult to perform an accurateuser-basedanaly-
sis. In our study, sinceevery entry in the logs contains
a uniqueidentifier for every access/notification,we are
ableto carryoutuser-behavior analysismoreaccurately.
In addition, our study is broaderas we focus on user
behavior, server load,content,anddocumentpopularity
analysis.

Tang and Baker analyzed a seven-week trace of a
metropolitan-areapacket radio wirelessnetwork, anda
twelve-weektraceof abuilding-widelocal-areawireless
network [18, 19]. Both studiesfocus on how the net-
workswereused,e.g.,whenthenetworksweremostac-

tive, how active the network were,andhow oftenusers
moved, etc. They did not considerthe contentor ap-
plicationsfor which peopleusedthewirelessnetworks,
which is thefocusof our paper.

Recently, Balachandranet al. [5] analyzedthe userbe-
havior and network performanceof an IEEE 802.11
basedwirelesslocal areanetwork (LAN) usinga work-
loadcapturedat a threedaytechnicalconferenceevent.
Their study focusedon characterizingwireless LAN
usersfor thepurposeof comingupwith aparameterized
model to describethem. Additionally, they carriedout
workloadanalysisto addressthenetwork capacityplan-
ning problem.Their studyis very differentfrom oursin
termsof analysis,methodologyand objectives. While
we focusprimarily on wirelessbrowseandnotification
services,they considerall network traffic for improving
thenetwork performance.Furthermore,thedata-setthey
capturedandanalyzedis smallerandsignificantlydiffer-
entfrom thewebserver traceswe analyze.

In thesectionsthatfollow, wheneverappropriate,we re-
fer to relatedwork doneby otherresearchersandcom-
pareit with our findings.

3 Data Characteristics

Before presentingthe analysis,we briefly describethe
different ways in which the web site is accessed,the
characteristicsof thedatalogs,andthetypesof analyses
we carriedout.

For thewebserverweusedin thisstudy, asinglebrowse
requestresultsin exactlyoneHTTPrequestto theserver.
Thereareno imagesor othertypesof contentembedded
in thepagethat is transmittedto theclient asa resultof
this request.

In therestof thepaper, weusethetermnotificationdoc-
umentto referto a uniquedocumentthatmaybesentto
multiple users;we refer to eachsuchtransmissionasa
notificationmessage, which includesduplicates.

3.1 Typesof Accesses

For browsing, the web site is accessedin threediffer-
ent waysandwe categorizethe browseaccessesbased
on this usage:desktop, offline, and wireless. Desktop
accessesincluderequestsfrom desktopandlaptopma-
chinesconnectedto the website via wireline networks.
Offline accessesaregenerateddueto handhelddevices
suchasPDAs. CompaniessuchasAvantgoandVindigo



offer servicesthatlet usersselectcontentfrom different
web sitesand download it onto a handhelddevice for
browsing at a later time. The contentdownloadoccurs
whena usersynchronizeshis/herhandheldwith a desk-
top machineand is controlledby a “downloader” pro-
gram; we refer to theseprogrammaticaccessesby the
downloaderasoffline accesses.Wirelessaccessesoccur
dueto browseactionsinitiatedby usersfrom their cell-
phonesor wirelessdevices. Typically, a requestfrom a
cell-phoneis directedto a “gateway” (operatedby the
user’sserviceprovider) thatforwardsthemessageto the
web site; this gateway also forwardsthe reply back to
thecell-phone.Thus,from thewebsite’s perspective, it
just communicatesdirectly with the gateway machines
usingthe standardHTTP protocol. Sinceonegateway
can serve multiple clients, we do not useIP addresses
to identify users;instead,we usea uniqueidentifieras-
signedto every client thatis loggedwith eachaccess.

Browser Type No. of accesses No. of users

Desktop 7,342,206 639,971
Wireless 2,210,758 58,432
Offline 20,508,272 50,968
Misc 2,944,708 1,634

Table1: Useraccessesaccordingto browsertypes

We determinethe type of accessbasedon the browser
type storedin the log entry correspondingto that ac-
cess. For example,entrieswith browsertype “Mozilla
Windows”, “Avantgo”,“UP.Browser”arecategorizedas
desktop,offline and wirelessaccessesrespectively. In
Table 1 we show the numberof accessesaccordingto
the browsertype (in our case,eachaccesscorresponds
to a singleHTML page).The last category (Misc) cor-
respondsto log entriesfor which the browser type ei-
ther was empty or containedcharactersthat could not
bemappedto any known browserclient. Thetablealso
shows the numberof uniqueusersthat were responsi-
ble for differenttypesof accesses.Note,thenumberof
desktopusersis muchhigherthanthe offline andwire-
lessusersdueto thefactthata largenumberof usersuse
their desktopmachinesto registerwith thewebsite.

In the caseof notifications,thereis a client type in the
logsthat tells usthetypeof theregisteredclients.More
than99%of themessagesweresentto wirelessclients;
theremainingweresentto desktopclients.

3.2 Description of Data Logs

We hadaccessto logsfor 12daysof webbrowsingfrom
August15, 2000throughAugust26, 2000. Therewere

approximately33million entriesin thebrowselogs.Ad-
ditionally, we usednotification logs from August 20,
2000 throughAugust 26, 2000, which contained3.25
million entries. For our analysisof the correlationbe-
tweenbrowseandnotificationservices(Section6), we
obtainedadditionalnotificationlogs andperformedthe
comparisonfor theperiodfrom August15,2000through
August26,2000.

When a registeredusersendsa browse requestto the
webserver, a uniqueidentifiercorrespondingto theuser
is sentto the server and loggedin the web traces(for
unregisteredusers,the id field is empty). We usethese
identifiersfor performingtheuser-basedanalysis.Each
log recordalsocontainsotherpiecesof usefulinforma-
tion alongwith theuserids, suchasthedate,time, type
of browser, theURL accessed,thedatareceivedandsent
by theserver, etc.

Whena notificationmessageis sent,a recordis logged
in a database.We obtaineda part of this databasefor
our analysis. The databaseentriescontainedinforma-
tion aboutthe server from wherethe notification mes-
sagewassent,a userid, typeof thedevice to which the
messagewassent(e.g.,phoneor pager),type of alert,
whenit wassent,etc.

To efficiently manipulatea large amountof data logs
(over 10 GB), we consolidatedtheminto a commercial
databasesystemand createdindiceson columnssuch
asdate,userid, andURL. To overcomethe limited ex-
pressivenessof ourdatabaselanguage(in termsof string
manipulation),we furtherprocessedthedatabaseoutput
usingPerlscripts.

3.3 Typesof Analyses

We now discussthe typesof analysesthat we perform
on thenotificationandbrowselogs,andthemotivations
for doingtheseanalysis.

1. Content analysis: We are interestedin questions
suchas: (i) whatarethemostpopularcontentcat-
egories,and(ii) whatis thedistribution of message
sizes?We believe suchquestionsareimportantto
(i) contentproviderswho needto understandbetter
how to prioritize and usethe systemand network
resourcesefficiently, and to (ii) web site develop-
erswho areinterestedin supportingfastaccessto
popularcontent.

2. Popularity analysis: We areinterestedin thepop-
ularity distribution of notificationandbrowsedoc-



uments.In particular, we areinterestedin compar-
ing theseaccessesto thewell-known Zipf-lik e dis-
tribution asreportedin previousweb studies[4, 7,
10, 14, 16], and in determininghow concentrated
arethenumberof requests/transmissionsfor popu-
lar documents.This hassignificantimplicationfor
the effectivenessof webcachingandmulticastde-
livery.

3. User-behavior analysis: We areinterestedin clas-
sifying usersaccordingto their accesspatterns.
This is useful for personalization,targetedadver-
tising, prioritizing, andcapacityplanning. Specif-
ically, we look at thefollowing aspectsof userbe-
havior:

� Spatial Locality: whetherusersin the same
geographicalregion tend to receive/request
similar notificationandbrowsingcontent.

� Temporal Stability: whetherusersare inter-
ested in browsing similar documentsover
time.

� User Load Distribution: how differentusers
place load on the web site; for service
providers, this distribution has implications
on pricing.

4 Notification Log Analysis

Table 2 shows the overall statisticsfor the notification
logs. In oneweek,the server sentout 3.25million no-
tification messagesfor a total of 295 megabytes. One
fourth of the messagessentout weredistinct,while the
remainingmessageshadthesamecontentbut sentto dif-
ferentusers(in somecases,thesamemessageis sentto
ausermultiple times,e.g.,if auserhasregisteredfor in-
formationto bedeliveredat specifictimesandtheinfor-
mationhasnot changedduringthatperiod).Thesignifi-
cantamountof duplicationin messagessentto different
userssuggeststhat sendingnotificationvia application-
level multicastwould be useful; Section4.2 examines
this issuein greaterdepth.Therewere200,860distinct
users,of which 99.02%werewirelessusers.Thenotifi-
cationsweresentattheaveragerateof 323messagesper
minute. Thepeakratewasmuchhigher, approximately
30 timesashigh astheaveragerate.

4.1 Content Analysis

We begin our analysisby looking at the contentof the
notificationssentto varioususers.

Total messages 3,251,537
Total distinctmessages 884,272
Total bytestransmitted 295MB
Total bytesof uniquemessages
transmitted

71.3MB

Total numberof users 200,860
Total numberof wirelessusers 198,882
Avg. notificationrate 322.57(msgs/min)
Peaknotificationrate 9502(msgs/min)

Table2: Overallstatisticsfor thenotificationlogsfor the
periodfrom Aug 20 throughAug 26,2000.

4.1.1 Popular Categories

We classifiedthe notificationsinto categoriesbasedon
the subjectfield, which was recordedin the notifica-
tion logs. We plottedthe numberof messagessentfor
eachnotificationcategory in Figure1, andthe number
of userswho receivedthe notificationmessagefor each
category in Figure2.
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Figure1: Thetotal numberof notificationssentfor each
category.
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Figure2: Thetotalnumberof userswho receivednotifi-
cationsfor eachcategory.

As Figure1 shows, email,weather, news, stockquotes,
sports,andhoroscopesarethe mostpopularcategories
in termsof the total numberof notification messages.
In comparison,weather, email, horoscopes,news, and
stock quotesare the most popularcategories in terms
of the total numberof users(seeFigure2). As we had
expected,email alertswerevery popular. On the other
hand,we hadnot expectedweather-relatednotifications



to be so popular. Intuitively, one might have expected
stock quotesand news to be more popular, especially
sinceusershave to explicitly registerfor differentnoti-
fication types(including weather),i.e., notificationsare
not beingsentdueto somedefault settingon the user-
signuppage. Another surprisewas the low popularity
of calendaralerts. For calendaralerts, it is possible
that subscribersusehandhelddevicesthat arenot con-
nectedto thewirelessInternet,for example,PDAs with
pre-installedsoftwareto handlescheduledmeetings,an-
niversaries,etc.
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Figure3: Changeof userinterestbetweenweekdayand
weekends

Next we analyzedhow userinterestchangedduring the
courseof aweek.Figure3 showsacomparisonbetween
theamountof notificationdatasentonaweekdayversus
a day on the weekend. As onewould expect,thereis a
significantdifferencebetweenthenumberof stockquote
alertssentduringtheweekdaycomparedto thosesenton
the weekend. Similarly, thereare fewer mail alertson
weekends;this is probablydueto lower levels of work
activity thatoccuronweekendsrelativeto weekdays,re-
sulting in fewer triggeringevents. For othercategories
(e.g.,sports,weather, horoscopes),thenumberof notifi-
cationmessagesdoesnot vary significantlyover week-
endsand weekdays.We attribute thesepatternsto the
fact that not many userspersonalizeall aspectsof their
notificationportfolio in a very fine-grainedmanner(for
eventtypessuchasweather, thewebsiteallows usersto
selectthefrequency andthetime of delivery).

4.1.2 Notification MessageSizeand Its Implications

We find that notification messagesare small. Specifi-
cally, all messagescontainlessthan256bytes.Weshow
themessagesizedistribution in Figure4 to illustratethis
point. Consequently, it is importantfor thedeliverypro-
tocol to handlesmallmessagesefficiently. For example,
if the protocolcreatesa new TCP connectionfor every
notificationmessage,the overheadcanbe high. In par-

ticular, the connectionestablishmentmay increasethe
user-perceived latency by a factor of 3 (i.e., from one
half round-triptime to oneanda half round-triptime).
Assumingthe averagenotification messagesize to be
128bytes,theconnectionsetupandtear-down increases
thebandwidthusagefrom 168bytespermessageto 448
bytesper message(i.e., 7 additionalpackets: 3 pack-
etsin the three-way handshake connectionsetup,and4
packetsin theconnectionteardown).
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 Figure4: Sizedistribution of notificationmessages(in-
cludingduplicates).

Onesuggestionfor reducingtheoverheadof connection
setupandteardown is to usepersistentconnections[13],
i.e., reusea TCP connectionfor multiple transfers. In
our case,the serverssendingthe notificationmessages
can maintainpersistentconnectionswith the gateways
of the wirelessISPsandthensendall messageson this
connection.

4.2 MessagePopularity Analysisand Its Impli-
cations

Several studieshave found that web accessesfollow
Zipf-lik e distribution: thenumberof requeststo the �����
mostpopularobjectis proportionalto �	�
 [3, 4, 6, 7, 10,
14, 16]. Theestimatesof � rangefrom 0.5 to 1 for web
proxy logs [7, 10, 14], and rangefrom 1 to 2 for web
server logs [4, 16]. It is interestingto examinewhether
notificationmessagesexhibit a similar property.

To do the above, we take the following approach:For
each notification document,we count the number of
notification messages(i.e., copies)that were senton a
given day. We plot the total numberof transmissions
of a document(i.e., notification messages)versusthe
popularityrankingof the documenton a log-log scale.
Figure 5 shows the plot for August 21, 2000. The
plots for the otherdaysaresimilar, andareomittedfor
brevity. If weignorethefirst few notificationdocuments
andthe flat tail in Figure5 (as is donein the previous
work [6, 7, 16]), we note that the curve fits a straight
line reasonablywell. We computethe valuesof � us-
ing least-squarefitting, after excluding the top 20 doc-



umentsandthe flat tail (the latter setrepresentsthe no-
tification documentsthatweresentonly onceor twice).
The straight line on the log-log scaleimplies that the
notification documentsfollow a Zipf-lik e distribution.
We find that for our completedata-setthe value of �
variesfrom 1.137to 1.267(in Figure5, the valueof �
is 1.146).Thesevaluesarehigherthanthe � in theweb
proxy logs[7, 10, 14], andlower than(but closeto) the� observedfor popularwebserver logs[16].
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Figure 5: Frequency of notification documentsversus
rankingin log-log scale(for August21,2000).

Figure 6 shows the cumulative distribution of notifica-
tion documentson August 21, 2000. The top 1% of
notificationdocuments(i.e., 1704)accountfor 54.24%
of the total notification messages. In the logs for
other days, the top 1% of notification documentsac-
countfor 54.15%- 63.66%of thetotal messages.Such
a high concentrationof messagescontaining popular
documentssuggeststhat using application-level multi-
cast[8, 11, 17, 22] for populardocumentswould yield
significantsavingsin bothbandwidthandserver load.
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 Figure 6: Cumulative distribution of notification mes-
sagesto documents(for Aug 21,2000).

A possibleoptimizationis to distribute a setof caches
overtheInternetto form anoverlaymulticasttreerooted
at the notificationserver. Whena notificationmessage
needsto be sentto multiple recipientssimultaneously,
it can be sentover the overlay tree and also storedat
the cachesthat it traverses. Thesecachescan help in
offloadingthe retransmissionwork (say, dueto a client
comingonline) from theserver: whenthesamecopy of
notificationneedsto be sentat a later time, the caches

closestto thereceivercanforwardthemessage

Note that even thoughthe currentnotificationtraffic is
not significant,asthepopularityof notificationservices
increases,bandwidthusagewill becomean important
factorfor scalingthenotificationsystem.Consequently,
optimizationssuch as application-level multicast will
becomemoreimportant.

We alsoobserved that the concentrationof notification
messagesto documentsbecomeslesspronouncedasthe
numberof thedocumentsconsideredincreases.For ex-
ample,thetop 7.6%– 42.0%of thedocumentsaccount
for 80% of the total messages,and the top 45.1% –
71.0%of notificationsaccountfor 90%of thetotal mes-
sages.This impliesthata largeperformancebenefitcan
beobtainedby multicastingonly themostpopularnoti-
ficationdocuments.

4.3 UserBehavior Analysis

We now studytwo aspectsof userbehavior: (i) thespa-
tial locality of userinterest,and(ii) the distribution of
loadthatusersplaceon theserver.

4.3.1 Spatial Locality

Spatial locality of user interest is about determining
whetherpeoplein thesamegeographicalregion tendto
receive similar notification content. To carry out our
analysiswe take the following approach.We definea
notificationmessageto be locally sharedif at leasttwo
usersin the samecluster receive the notification. We
comparethe degreeof sharingusinggeographicalclus-
teringandfour randomclusterings.In thegeographical
clusteringcase,clientsin thesamecity areclusteredto-
gether. In the randomclusteringcase,clientsareclus-
teredrandomlywith the clustersizebeingthe sameas
in geographicalclustering.We obtainedthe geographi-
cal locationof usersusinga registrationdatabasewhich
containszip code information for eachuser. The zip
code information is not clean — someuserssupplied
invalid zip codes;we filter out all thezip codesthatare
not 5 digits. 14% of the userssuppliedsuchinvalid zip
codes. In the remainingentries,it is still possibleto
have zip codesthat do not matchthe actualuserloca-
tion, but thefraction is likely to besmall. Furthermore,
whencomputingthedegreeof localsharing,weexclude
thecitiesto which fewer than100notificationmessages
weresentover thecourseof theweek.



As shown in Figure7, clientsresidingin the samecity
have significantly more sharingin notification content
comparedto theclientspickedat random.We alsocom-
paredgeographicalclusteringwith threeother random
clusteringsandobservedsimilar results.Thehigherde-
gree of sharingin notification messagesfor clients in
the samegeographicalregion indicatesthat localized
servicesare popular for notification services. For ex-
ample,peopleliving in New York are interestedin re-
ceiving notification messagesaboutweatheror events
in New York. The geographicallocality in notification
contentimplies that placing servers (i.e., either notifi-
cation server replicasor servers in an overlay network
thatprovideapplication-levelmulticast)closeto popular
geographicalclusterscanbeusefulin reducingnetwork
load.
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Figure 7: Comparethe local sharingbetweenrandom
clientsandclientsthataregeographicallyclosetogether.

4.3.2 Load distrib ution of differ ent users

On average,we observedthata userreceives2.3 notifi-
cationmessagescontainingatotalof 0.2KBytesperday,
and16.1notificationmessagescontaining1.4KBytesof
data per week. There is a significantvariation in the
clients’ usage— duringtheweekthatwe studied,some
clientsreceivedover1000messages(containingashigh
as0.1 MB of data),while other clients received fewer
than10 messagescontainingas little asa few hundred
bytesof data.

Figures8 and9 show thetotal numberof messagesand
thetotalnumberof bytesreceivedby differentusersona
log-logscale,respectively. Bothcurvesfit verywell with
a straightline (i.e., follow Zipf-lik edistribution),except
at thetail wherethereis a suddendrop.We computethe
valuesof � usingleast-squarefitting, afterexcludingthe
sharpdrop at the tail. The valueof � is 0.4437when
usageis definedasthenumberof messages;whenusage
is definedasthenumberof bytes,its valueis 0.4567.
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Figure8: Thetotal numberof notificationmessagesre-
ceivedby differentusers.
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Figure9: Thetotalnumberof notificationbytesreceived
by differentusers.

To further studyhow usageis distributedacrossdiffer-
entclients,we plot thecumulative distribution of client
usagein Figure 10. As the figure shows, the top 5%
of theclientsreceived28%of thenotificationmessages,
and 25% of the notification bytes; the top 10% of the
clients received 40% of the notification messages,and
38% of the notification bytes. It is clear that a small
fraction of usersconsumea significantfraction of the
systemand network resources.It is also interestingto
notethat the CDF curvesaresimilar for the two differ-
entwaysof definingusage.Thesimilarity of thecurves
shows thateachuserreceivesa similar numberof bytes
permessage.
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Figure10: Cumulative distribution of differentclients’
usage.

The cumulative load imposedby all users(in termsof
numberof messagesandthenumberof bytessentby the
servers)is shown in Figure11. Thefigureshowsthatthe
numberof messagesandthe numberof bytesarefairly
constantduring weekdaysbut exceedthe numbersent
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Figure11: Numberof bytesandmessagesservedby the
notificationserversduringthedaysin theweek

duringtheweekend. This confirmswhatonewould ex-
pect,i.e., informationalertsaremorefrequentlygener-
atedwhenpeopleareworking.

4.4 Summary

Our analysisshows thatnotificationmessagesaresmall,
populardocumentsaccountfor a significantfraction of
themessages,andthereexistsahighdegreeof sharingin
geographicalregions.Systemdesignersneedto develop
transportprotocolsthatcansendsuchmessagesin areli-
able,efficientandsecuremanner. For example,anover-
lay network consistingof geographicallyplacedcaches
along with application-level multicast can reducethe
total network bandwidthrequirementsand server load.
We alsoobservedthat thereis a significantvariationin
clients’ usageof notificationservices.Serviceproviders
can designpricing plansaccordingto the needsof the
clientsandalsospecializecontentbasedon geographi-
cal location.

5 Browser Log Analysis

In this section,we presentour browserlogsanalysis.In
our earlier work, we performedanalyseson document
contentandpopularity, distributionof usersessions,and
systemload [1]. For the sake of completeness,we first
summarizethe major findingsof our previous analysis,
andthenstudythetemporalstability andspatiallocality
of useraccesses,aswell asthe distribution of the load
placedby differentuserson thewebserver.

5.1 Summary of previous analysis

In [1], we analyzedthe browser log collectedduring
the period from August 15, 2000 through August 26,
2000.During this timethewebserverreceived1.6– 3.2
million requestsper day from 64,000– 98,000distinct
clients.Below is a synopsisof our majorfindings:

1. The distribution of documentpopularity doesnot
closelyfollow Zipf-lik e distribution, wherea doc-
umentis definedasa uniqueURL or asa unique
URL andparameterpair. Themajority of requests
areconcentratedon a smallnumberof documents.
In particular, wefoundthat0.1%– 0.5%of thedoc-
uments(i.e., approximately121– 442)accountfor
90%of therequests.

2. More than 60% of the pagesaccessedat the web
server are due to offline PDA usersand lessthan
7% of the accessesaredueto wirelessclients; the
remainingaccessesare due to desktopclients for
registrationandcustomizationservices.

3. Our analysis for the distribution of reply sizes
showed that mostof the repliesto wirelessclients
arelessthan3 KBytes. For offline clients,mostof
the repliesare lessthan6 KBytes. The reply size
distribution for thetwo typesof clientsis similar.

4. Our usersessionanalysisshowed that userstend
to have short sessionswhen interactingwith the
web site: 95% of the sessionswere less than 3
minutes. We empirically determinedthe session-
activity thresholdto be somewherebetween30 to
45 seconds(i.e., if no requestis received from a
clientfor suchaduration,it impliesthattheold ses-
sionhasended).

5. Our category analysisshowed that stock quotes,
news, andyellow pagesare the top categoriesac-
cessedby wirelessclients. For offline clients,help
is themostpopularcategory followedby news and
stockquotes.

6. We observedthat therelative importanceof differ-
ent categoriesdid not changebetweenweekdays
and weekends (except stock quotesand sports).
However, the amount of data accessedover the
weekenddropsby approximately45%.

Thesefindingshave thefollowing performanceimplica-
tions:

1. Thehigh concentrationof requeststo populardoc-
umentsin thebrowserlog implies thatcachingthe
resultsof popularquerieswould be very effective
in reducingthewebserver load.

2. Sincemostrepliessentto wirelessandoffline users
aresmall(3 – 6 KB), thewirelesswebservershould
be highly optimizedin sendingshort replies,e.g.,
optimizingTCPslow startandre-start[15, 23] can
beusefulin this environment.



3. Our heuristic, basedon user sessionanalysis,to
determinethesession-inactivity periodcanbeuse-
ful to wirelessserviceproviders who want to re-
claim IP addresses.Our analysisshowed that IP
addressesmaybereclaimedmorequickly thanthe
time perioddeterminedin earlierwork [12].

5.2 NewAnalysis

We now presenta user-basedanalysisof the browser
logs(basedontheuniqueidentifierassociatedwith each
browserequest).We examinetemporalstability, spatial
locality, andusagevariationacrossdifferentusers.

5.2.1 Temporal Stability

In thesection,weanalyzewhetherusersareinterestedin
a similar setof documentson differentdays.To answer
this question,we pick the  most populardocuments
from eachday, and comparethe extent of the overlap.
Sinceall the web pagesare dynamicallygenerated,a
documentis definedasa combinationof a uniqueURL
nameandthe queryparameters(i.e., two requestswith
thesameURL with differentparametersareconsidered
asdifferentdocumentrequests).We will usethe terms
documentandqueryinterchangeablyin this section.

First we studytherequestsfrom all users,i.e., including
wireless,offline, anddesktopusers. Figure12 (a) and
(b) plot theoverlapbetweenweekdaysAugust15(Tues-
day) and August 21 (Monday) versusother days(i.e.,
bothweekenddaysandweekdays)(In Figure12 (a) and
(b), thecurveswith pointsarefor pairsof weekdays,and
thosewithout points are for a weekdayand weekend.)
Figure13plotstheoverlapbetweenweekenddays.Note
thatthex-axisdatavaluefor thetop  casedoesnot al-
wayscorrespondto exactly  in thegraphs.Thereason
is that whenwe considerthe top (say)100 documents,
thenext few documentsafterthesedocumentsmayalso
have the samefrequency asthe 100��� document;since
we include thesedocumentsas well for the “top 100”
datapoint, it sometimesresultsin a smallmis-matchof
theplottedpoints.

LookingatFigure12(a) and(b), wemakethefollowing
observations:first, theoverlapbetweendifferentdaysis
significant.For example,theoverlapsareover 80%for
thetop 100documents,andmostlyover70%for thetop
1000documents.This indicatesthat the setof popular
queriesremainsrelatively stable,and suggeststhat we
cancachea stablesetof popularqueryresultsor opti-
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mizethedatalayoutto improvetheperformanceof these
queries. For example,workload-basedtechniquescan
beusedto generateindicesandmaterializedviewsauto-
maticallyfor adatabase[2]; thesetechniquesarelargely
applicableif the databasequery workload is relatively
stable(which is thecasefor our browserqueries).

Second,theoverlapinitially fluctuateswith theincreas-
ing numberof documentspicked, and then decreases
whenthe numberof top documentspicked is over 100.
Theinitial fluctuationis probablydueto thefactthatal-
thoughvery populardocumentstendto remainpopular,
their relative rankingdoeschangeover time. However,
aswefurtherincreasethenumberof documents,wemay
includesomelesspopulardocuments.Sincethesedoc-
umentsarelesslikely to remainpopularthanvery pop-
ular documents,the temporaloverlap decreases.This
phenomenonwasalsoobservedin [16].

Third, the overlapbetweenpairsof weekdaysis gener-
ally higherthantheoverlapbetweena weekenddayand
a weekday. The overlapbetweentwo weekenddaysis
even higher. This is consistentwith our intuition, and
suggeststhat we shouldusepastweekdayworkloadto
predictfutureweekdayworkload,andlikewiseusepast
weekendworkloadto predictfutureweekendworkload.

We also examine the requestscoming from only the
wirelessusers,andfind the resultsarevery similar. As
before, the set of popularqueriesremainsstableover
time. Thestability is especiallyhigh whenwe consider
themostpopularqueries.In addition,thereis a signifi-
cantdifferencebetweentheaccesspatternon weekdays
versusthaton weekends.

5.2.2 Spatial locality

In this section,we considerthe following question:do
peoplein the samegeographicalregion tendto issuea
similar set of queries. We employ the sameapproach
asis usedin studyingthespatiallocality for notification
services(describedin Section4.3.1).

Figure14 comparesthe fraction of documentsthat are
sharedwithin a geographicalcluster and within four
randomclusters,when we considerrequestsfrom all
the users(excluding userswith invalid IDs). The fig-
ure shows that the curve for the geographicalclusters
overlapswith those for random clusters. This over-
lap indicatesthat the degree of sharingbetweengeo-
graphicalclusteringandrandomclusteringis compara-
ble,andthecorrelationbetweenusers’interestin brows-

ing over wirelesschannelsandtheir geographicalloca-
tion is weak.
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Figure14: Localsharingbetweenrandomsetsof clients
andclientsthataregeographicallyclosetogether.

A possibleexplanationfor the weakcorrelationis that
the popularbrowsecontenthasglobal interest. In par-
ticular, asmentionedin Section5.1,0.1%- 0.5%of the
URL andparametercombinations(i.e.,about121– 442
uniquecombinations)accountfor 90% of the requests.
With sucha high concentrationof userintereston a few
documents,evenwhenclientsarepickedatrandom,they
sharemany requests;therefore,the geographicallocal-
ity becomesinsignificant. A similar phenomenonhas
beenobservedin a studyof a popularnews server [16],
wherethe authorsobservedthat the significanceof do-
mainmembershipbecomesdiminishedduringapopular
event. A major distinctionbetweenthat studyandours
is the way in which usersare clustered: in that study,
usersareclusteredbasedon their DNS names,whereas
in ourstudyweclusterusersbasedontheirgeographical
region,e.g.thecity in which they reside.

A naturalquestionfollows – why is theresucha high
concentrationof interestin populardocumentsthateven
when clients are picked at random they sharemany
documents? Examinationof the most popular URLs
andparametersshows that they includethe front pages
for email login, news, sports,weather, lottery, and the
signupapplication,aswell assomepopularstockquote
queries.Intuitively, thesequeriesarevery popularto all
usersregardlessof their physicallocations.

The lack of geographicallocality implies that the web
server’s contentcan be replicatedwithout keepingin
mind thegeographicallocationof theclients.

We performedthe samespatial locality analysisto re-
questsissuedonly by wirelessclients. Figure15 sum-
marizestheresults.With geographicalclustering,wire-
less clients have slightly more sharing of documents
than with randomclustering; however, the distinction
betweenthetwo clusteringsis muchlesssignificantthan



thedifferenceobservedfor notificationdocuments.This
resultsuggeststhatusinggeographicallocality of wire-
lessusersasinput for optimizing performance(or pro-
viding content)will yield limited success.
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Figure15: Comparisonof localsharingbetweenrandom
setsof wirelessclientsandwirelessclientsthataregeo-
graphicallyclosetogether.

5.2.3 Load distrib ution of differ ent users

In this section,we studythedistribution of loadsplaced
on the web server by differentusers. Our earlieranal-
ysis [1] examinedthedifferencein loaddistribution be-
tweenwirelessusersandoffline users.Now we look at
theloaddistribution at a morefine-grainedlevel — at a
per-userlevel.

Figure 16 and Figure 17 show the total numberof ac-
cessesand total numberof datarequestedby different
clients,respectively (userswith invalid identifierswere
discarded). As the figuresshow, thereis a significant
variationin theloadplacedby differentusersontheweb
server: someusersrequestseveral ordersof magnitude
more documents/datathan other users. The accesses
from only the wirelessclients reveal similar property.
Thus,serviceproviderscanconsiderdesigningdifferent
pricing plansthatto caterto thewidely varyingneedsof
differentusers.

1

10

100

1000

10,000

100,000

1 10 100 1000 10,000 100,000 1,000,000

T
ot

al
 n

um
be

r 
of

 a
cc

es
se

s

User ID (sorted by the number of accesses)

Figure16: Total numberof accessesmadeby different
users.
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Figure 17: Total numberof datareceived by different
users.

Figure18 shows the inter-arrival time betweenrequests
comingfrom thesameuser. Therequestsgeneratedfrom
the offline usersaremuchmorebursty thanthosefrom
thewirelessusers:97%of the requestsfrom theoffline
usershave 1 secondor lessinter-arrival time, whereas
only 9% of the requestsfrom the wirelessusershave
comparableinter-arrival time. We observe very bursty
traffic for offline PDA usersbecausetheir requestsare
generatedby the downloaderprogramratherthana hu-
manbeing;theseusersalsogeneratesignificantlymore
requeststhan wirelessusers. If not handledappropri-
ately, suchburstscan delay wirelessusersunnecessar-
ily. The web site designerscan addressthis problem
in a numberof ways. For example, they can provide
higherpriority to wirelessusersor restrict the burst of
offline userrequeststo a few front-doorservers(servers
that handleincoming HTTP requests).An orthogonal
efficiency issuethat needsto be addressedis the syn-
chronizationprotocolfor PDAs, i.e., insteadof sending
a large numberof small requests,the synchronization
protocolcould batchall theserequestsinto a singlere-
questandreducetheserver loadandroundtriplatency.
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6 Corr elation between notifications and
browsing

Having studiedboththenotificationlogsandthebrowse
logs,it is usefulto understandwhetherthereis any corre-
lationbetweenthebrowsingandnotificationactivitiesof
users.We areinterestedin answeringquestionssuchas:
(i) do usersutilize oneof theservicessignificantlymore
than other services,and (ii) doestheir interestin par-
ticular contentcategoriesdiffer acrossthetwo services.
We usethenotificationandbrowserlogs,bothspanning
from August15, 2000throughAugust26, 2000for the
following analysis.

6.1 Correlation in the amount of usage

Figure19showstheaveragenumberof notificationmes-
sagesversusthenumberof browserequests,andtheav-
eragenumberof browserequestsversusthe numberof
notificationmessages.Thereis little correlationbetween
the two variables:the numberof notificationmessages
fluctuateswidely with the numberof browserequests;
similarly, the numberof browserequestsalsoshows no
obvioustrendwith respectto thenumberof notification
messages.Thecorrelationcoefficientbetweenthesetwo
variablesis 0.265whenconsideringall users,and0.125
whenconsideringonly wirelessusers.Thelow correla-
tion coefficientsimplies that web site designerscannot
predicta user’s browsingactivity basedon his/hernoti-
ficationactivity, andvice versa.

6.2 Correlation in popular contentcategories

Wenow look atthequestionwhetherusersareinterested
in a similar setof contentcategoriesacrossthetwo ser-
vices. To answerthis we take the following approach:
first, we classifynotificationmessagesandbrowsingac-
cessesinto differentcategories. (The detailsof catego-
rizing notificationsaredescribedin Section4.2,andthe
detailsof categorizingbrowseaccessesaredescribedin
our earlierwork [1].) Thenfor eachindividual user, we
pick the top  contentcategoriesin browsing andtop contentcategoriesin notification(if thenext few cat-
egoriesafter the  ��� category have thesamefrequency
of accessas the ���� category, we include thosecate-
goriesaswell for thetop  case).

Figure 20 shows the percentageof userswho have at
leastsomeoverlapbetweentheir top  browseandnoti-
ficationcategories.Thedegreeof overlapis muchhigher
whenwe considerwirelessusersonly. For example,for
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Figure 19: Correlationbetweenthe numberof browse
requestsandnotificationsof wirelessusers.

thetop 3 categories,thepercentageof overlappedusers
is less than 10% when consideringall the users,and
around50% whenconsideringonly the wirelessusers.
Ontheotherhand,evenwhenconsideringwirelessusers
only, thenumberof overlappedusersis nevermorethan
65%.
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 Figure20: Numberof userswho have overlapbetween
their top  browsing categoriesandtop  notification
categories.

We now comparethe extent of the overlapby varying from 1 to thetotal numberof categories.Theresults
areshown in Figure21. The figure shows the average
percentageof overlapbetweentwo categories,wherethe
averageoverlapis computedasfollows:
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 Figure 21: Correlationbetweenthe numberof browse
requestsandnotificationsof wirelessusers.
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where UWV denotesthe numberof browse categories,XV denotesthe numberof notificationcategories,and
relevantusersrefersto thoseusersthathave at leastone
browserecordandonenotificationrecordin therespec-
tive logs. We show the resultsfor only the top 9 cate-
gories,sincethevaluesbeyondthatarestable.

Essentiallytheseratioscomputethepercentageof over-
lap for each individual user, and then take the aver-
ageof thesepercentagesover all wirelessusersor all
users. Since not all usershave at least  browsing
or notificationcategories,we compute���F��������� � 	�� � and�����L���T�L� 0�(+N , wherethe former computesthe percentage
of overlapby usingthe minimum of UWV and YV , and
the latter usesthe maximumof UWV and XV . The fig-
ure shows that the amountof overlap is considerably
higher when consideringonly wirelessusers. For ex-
ample,for the top threecategories,the overlap is less
than7% whenconsideringall users.In comparison,for
wirelessusers,the ���������T��� 0�(+N and ���F��������� � 	�� � values
are21%and36%,respectively. Wealsoobservethatthe
effect of increasing is small. Evenwhen  is 8, the
percentageof overlapis lessthan50%for wirelessusers.

Theaboveresultsindicatethatwirelessusershavemod-
eratecorrelationin the way they usebrowseandnotifi-
cationservices.In comparison,the correlationis much
lower when consideringall users. This is becausethe
mostpopularbrowsingcategoriesfor desktopusersare

sign-upservices,direction, and generalhelp, whereas
notificationis usuallynot usedto deliver thesetypesof
content. On the other hand, somewirelessusersare
interestedin both browsing and receiving notifications
aboutemails, stock quotes,personalization,news and
sports. However, the degreeof correlationis limited,
andserviceproviderscannotsolelyrely onauser’snoti-
ficationprofile to determinewhatcontenthe/shemaybe
interestedin browsing.

7 Conclusions

Internetaccessvia smallhandhelddevicesis expectedto
increasetremendouslyin thenext few years.In this pa-
per, we analyzedthe accesspatternsof a largeweb site
designedprimarily for wirelessandhandheldmobilede-
vices. The web site providesboth browseandnotifica-
tion services.To our knowledge,this is a first-of-a-kind
studythat analyzesnotificationservices.It is alsofirst
in analyzinguserbehavior usinga commercialwebsite.
We believe this is animportantfirst stepin thedirection
of understandingthe dynamicsof wirelessInternetser-
vices.
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