
The following paper was originally published in the

Proceedings of the 3rd USENIX Windows NT Symposium
Seattle, Washington, USA, July 12–13, 1999

H I G H - E N D W O R K S T A T I O N C O M P U T E F A R M S
U S I N G W I N D O W S N T

Srinivas Nimmagadda, Joshua LeVasseur, and Rumi Zahir

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 1999 by The USENIX Association
All Rights Reserved

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738
Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.

USENIX acknowledges all trademarks herein.

High-End Workstation Compute Farms
Using Windows NT

Srinivas Nimmagadda, Joshua LeVasseur, Rumi Zahir
{ snimma@scdt.intel.com, jlevasse@mipos2.intel.com, rumi.zahir@intel.com }

Intel Corporation

Abstract

This paper describes our experiences in building and
deploying Windows NT* based high-end workstation
compute farms within the Intel engineering community.
An overview of Intel’s compute requirements is
presented, along with the solution developed to address
Intel’s large compute cycle needs. The paper discusses
NT’s contribution to the solution, including recognized
NT strengths as well as migration and deployment
challenges we faced. The paper emphasizes
workarounds to known issues for other user
communities to leverage, but also enumerates areas in
which Windows NT and the Win32 API* could be
improved. Our paper concludes that despite many
challenges, NT based high-end workstation farm
computing is viable.

1 Engineering Computing Environment at
Intel

As in many other semiconductor and computer systems
companies, product development and engineering work
for chip design, CAD tool development, and
commercial EDA tool deployment has traditionally
been carried out on Unix* based workstations. High-
end workstation computing at Intel largely revolves
around providing compute cycles to the various chip
design projects for running a variety of computationally
intensive workloads. Typical applications range from

* Third party trademarks and brands are the property of
their respective owners.

large compute-bound integer and floating-point
applications (such as performance, logic and circuit
simulations), to long-running jobs with very large data
sets (e.g., full-chip layout verification or performance
simulations of on-line transaction processing systems).
Most of the jobs are compute-bound and usually run for
several hours. It is not unusual for many of the
compute-bound jobs to run for several days or even
weeks. As a result, most of the compute cycles are
spent by applications running in batch mode on a farm
of hundreds of high-end multi-processor workstations.
Usage models and system needs of a workstation
compute farm are quite different from the more
widespread file server, database client/server or web
server installations typically found in large enterprises.

At Intel, hundreds of engineers submit thousands of
compute and data intensive simulation jobs into the
workstation compute farm every day. Jobs are typically
a group of collaborating applications rather than a
single executable. Within a job, applications are
sequenced by scripts and communicate through files,
named pipes or shared memory. Table 1 summarizes
typical job parameters from an Intel workstation
compute farm hosted on Windows NT.

This paper describes the challenges and experiences
that we have faced in developing and deploying
Windows NT based compute farms for Intel chip design
computation needs.

Farm Characteristic Typical Environment
of Dual-processor Systems > 100
of Jobs per Week > 25000
Utilization (user+system/wallclock) > 80 %
Job Characteristics
Ø # of Processes (per job)
Ø Memory requirements (per job)
Ø Input Data Set Size (per job)
Ø Job Runtime

1-10
50-500 MB
30-600 MB
Several minutes to several days

Table 1. Typical Workstation Farm Parameters

2 Compute Farm Building Blocks

Our compute farms consist of hundreds of networked
NT workstations built from off-the-shelf components.
The machines are placed in rack and stack setting
without monitor and keyboard/mouse attachments.
Typical configurations include dual-processor Intel®
Pentium® II 400 MHz CPUs, 512MB RAM, 9 GB
local disk space, connected to data servers via 100Mb
Ethernet. All machines run the Windows NT 4.0
Workstation operating system image with service pack
three.

From the end user’s point of view, the entire farm looks
like a single virtual computer that provides on-demand
compute cycles. The physical location of job execution
is transparent to the user and results are reported as if
the job executed locally, i.e. through output files.
Typically, users develop and debug applications and
scripts interactively using smaller data sets. Once
debugged, the jobs run on the NT compute farm with
much larger data sets, often through hundreds of
iterations. Three key aspects of batch computing on
Windows NT that we address in this paper are:

The Batch Computing Engine: The most important
component in building a compute farm is a distributed
job scheduling and execution engine. The engine
provides a virtual computer view of the farm machines,
transparent job execution, load balancing, and
priority/quota based job-scheduling features. Section
3.1 presents NetBatch, an in-house batch engine, that
we developed to address these requirements.

The Network File System: To provide batch jobs with
the illusion of a single virtual computer, a unified run-
time environment and name space are required at three
different levels:
• a high-performance unified file system (data) view,
• a unified secure data access mechanism, and
• a unified user profile (path, environment variable

and application settings).

Section 3.2 presents various file system and data access
mechanisms used by our compute farm. These
technologies include Samba* (public domain), DFS*
(from Transarc) with DCE* (from Gradient), and
NTFS*/SMB* servers (from Microsoft).

Application Development and Porting Issues: Most
compute jobs consist of multiple collaborating
applications that are glued together with perl or tcsh
scripts. Porting of these legacy scripts to NT has often
required more effort than actually porting the
applications themselves. In cases where scripts are
heavily dependent on idiosyncracies of Unix commands
(such as ls, cat, grep, awk, sed, etc.), porting of legacy
scripts just requires too much effort. Another paper in
these proceedings [MTEX], describes a solution that
allows us to run applications on NT while the bulk of
the scripts execute on Unix. In Section 3.3 (in this
paper), we discuss our experience using the public
domain Cygnus utilities [Noer 98] on NT directly, and
we identify key technical short-comings of NT's native
scripting support.

Jobs

NetBatch
Master

Data Servers

100 Mbs

NetBatch
Compute
Servers

NetBatch
Compute
Servers

Figure 1. A NetBatch Compute Farm

3 Challenges and Solutions

3.1 NetBatch: A Distributed Batch
Computing Engine on Windows NT

Figure 1 shows a high level view of a NetBatch
compute farm. A NetBatch pool is a network of NT
workstations, each running a NetBatch server process,
which communicates with a pool master. The NetBatch
Server process monitors the individual machine load
and resources, and provides the seamless job execution
environment. Each NetBatch pool has one pool master
controller responsible for providing the user interface
(for job acceptance, control, etc.), load-balancing and
job scheduling capabilities. The load balancing service
on the master collects load and machine availability
information from the machines within the cluster, and
selects least loaded machines for job execution. The
scheduler service applies a set of criteria (based on
priorities and user quotas) to the queued batch jobs to
select the best job for execution.

The following sections highlight some of the key areas
of our batch engine implementation:

• Job Tracking and Management: how NetBatch
executes and tracks batch jobs with multiple child
processes.

• User Impersonation: how NetBatch provides
transparent execution of single or multi-process
jobs under the exact user credentials and
environment that existed at the time of submission.

• Job Scheduling and Suspension : how NetBatch
load balances the compute farm by dispatching
jobs to idle or least loaded machines, and permits
suspension of running jobs .

• Batch Computing on Interactive Desktop
Workstations: how NetBatch uses idle desktop
workstation compute resources.

3.1.1 Job Tracking and Management

To carry out its functions, NetBatch must track batch
jobs that spawn multiple child processes. For example,
to track the resource usage of a batch job, and to
suspend or terminate the job in response to a user
request requires knowledge of a complete process tree
of the job. The first approach we considered used a
technique (similar to one implemented in the Microsoft
SDK tlist command) to identify parent-child
relationships by walking the kernel process data
structures to construct the process tree. However,
termination of an intermediate process splits the process
tree and complicates group tracking. Another technique
that we explored attaches a dummy object to the parent

with a child inheritable handle. Then all processes
containing a handle to the dummy object can be
counted as part of the same process group. This method
is also infeasible because application s can disable
handle inheritance across process creation. We tried
using session identifiers to provide another possible
solution because each batch job impersonates the user
(submitter of the job). This technique, however, does
not work in scenarios where a job requires true process
group support from the OS. Examples of this include
application initiated process group control where a
process can switch between groups and other
accounting purposes. This prompted us to pursue a
native NT solution with Microsoft, which has resulted
in a new Windows 2000 feature known as job object
[Solomon 98]. A job object is a new kernel object that
provides capabilities such as process grouping, resource
usage collection (on a group basis), and enforcement of
process resource limits. Our conclusion is that job
object feature is well suited for job tracking and
management under Windows 2000, while any of the
above workarounds provide reasonable solutions with
restricted scope under NT 4.0 release.

3.1.2 User Impersonation

All processes in a batch job need to run with the exact
user credentials of the person submitting the batch job.
NT impersonates a user with the LogonUser() and
ImpersonateLoggedOnUser() APIs. However,
to use the LogonUser() API, the NetBatch Server
requires the user’s clear text password. There could be a
significant time lapse between the NetBatch job
submission and machine availability in the pool for
execution of the job, during which the password may
change.

To provide a clear text password to LogonUser(),
NetBatch could collect the passwords at the time of job
submission and securely store them until job execution.
Alternately, all passwords could be collected in advance
and stored in a two-way encrypted user password
database for later retrieval to use with the
LogonUser() API. However, maintaining a two-way
encrypted database poses security concerns and also
creates administration and password synchronization
issues. This prompted us to investigate further and
resulted in the creation of a password-less
impersonation mechanism in NT. We enhanced the
winlogon local security authority system with our
representative DLL, which permits the NetBatch batch
job to login without a password. However, this
approach has a limitation that the impersonated process
cannot access SMB network files.

In a Unix environment, user impersonation is a simple
task with the setuid() system call, where the
administrator (root) can impersonate a user for
executing the batch job. Due to these reasons we feel
that a true, trusted delegation-based impersonation
capability would be extremely useful in NT.

3.1.3 Job Scheduling and Suspension

Load balancing between machines is an important
factor in improving the overall throughput in the NT
batch farm. Choosing the machine with the least-loaded
CPU and the most suitable free memory, page file, and
free temporary disk space configuration is an important
function to optimize in a farm environment. In
Windows NT, these indicators can be obtained from the
system supplied performance counters. The NetBatch
server periodically scans these counters and reports
these machine availability indicators (CPU load, free
memory, disk space, etc.,) to the NetBatch master for
making best scheduling decisions. Since NT doesn’t
have a native performance counter that gives CPU load,
we had used a formula similar to the one used to
compute CPU load factor in Unix operating systems.
This load factor is computed as the weighted moving
average of the number of ready to run threads over 15
minutes. The formula for the load factor is (10*N 1 +
4*N5 + N10)/15; where Nx is the average number of
ready to run threads in the system during the last x
minutes. It will be an interesting research topic to create
a general-purpose machine availability indicator(s)
based on available free CPU, memory, page file, and
free disk space indicators , and further quantifying job
run-time requirements using these indicator(s).

One of the features of our batch engine is to suspend
execution of batch jobs on demand. Suspension of the
job requires suspension of each process in the batch job.
However, Windows NT doesn’t provide a process
suspension feature, although it can suspend individual
threads in a process with the SuspendThread()
API. However, this Win32 API function requires a
handle to each thread in the process. Using the
performance counters, it is easy to enumerate the thread
IDs in each process. Win32 doesn’t provide a
mechanism to convert a thread ID to a thread handle!
We can obtain a process handle given a process ID, but
there is no way to suspend a process. This deficiency in
NT is worked around using process debug APIs to
obtain the thread handles. All threads are suspended
resulting in process suspension. It would be very useful
if the Win32 API supported a built-in process
suspension mechanism, or exposed the internal APIs to
convert a thread ID to a thread handle.

3.1.4 Batch Computing on Interactive
Desktop Workstations

Intel deploys large numbers of powerful NT desktops
for interactive desktop use. One of our goals is to utilize
the unused computing bandwidth of these desktops
during off-hours. The following are some key
challenges we have encountered and addressed in
providing farm computing using interactive desktops.

Detecting when a machine is being used interactively is
an important component for integrating a user’s desktop
machine with the NT compute farm. NetBatch uses the
Windows NT SetWindowsHookEx() API to setup
hooks that monitor the keyboard and mouse activity and
thus detect the presence of interactive users. After
detecting a user, NetBatch takes appropriate intrusion
avoidance actions including: preventing new batch jobs
from beginning while the user is present, suspending
already running jobs, and optionally terminating and
resubmitting jobs to a different machine. While
detecting the presence of console users is easy,
detecting remotely logged-in users, such as logins from
home using telnet, rcmd, rsh services, is a challenging
task. We have identified a workaround for this by
polling the process tree and identifying the unique users
every few seconds. However, we found this type of
polling is expensive when combined with the batch
server’s other tasks. We feel this is an important
counter that the NT core OS should add to the list of
performance counters. Without OS support, this is an
expensive and sometimes inaccurate task to perform at
user level.

Several of our batch jobs run for days to weeks. One of
the capabilities we would like to have in the core OS is
support for application checkpoint and migration from
one machine to another. This feature would allow the
batch engine to free up a desktop machine when the
user resumes interactive work. At present, we have
solved this problem using a combination of methods.
The first approach temporarily suspends the batch job
when the interactive desktop user is present and restarts
the job when user leaves. The second approach
suspends the job for a period of time, and if the
interactive user is still present , terminates the job and
restarts it on a different machine.

This impacts the overall throughput and turn-around
time for the jobs. Another approach requires
application-level state checkpointing and resumption . A
group at Intel [Srouji 98] developed a transparent
checkpointing method on top of NT, but it places
limitations on the type of applications that can be
checkpointed. Middleware approaches require

application source modification, or recompilation, or re-
linking . This is not favourable in a typical EDA
environment with integrated suites of applications from
external and internal sources . Despite this, most
middleware approaches also have limitations on check -
pointing m ulti-process applications, or applications
with IPC and other process dependencies. Our
conclusion is that complete process checkpoint and
migration is difficult without support from the core OS.

Disabling application popup error dialog boxes on a per
process basis is very important. This is very useful
especially if the batch jobs run on interactive desktops.
A critical error in a batch program should not display a
dialog box on the interactive desktop. Apart from
interactive users not liking the popup display, it
suspends any running batch jobs until someone hits OK
or Cancel on the dialog box. Using the existing NT API
SetErrorMode(), it is possible to disable pop-ups
for batch applications .

3.1.5 Batch Engine Performance

Our NetBatch masters run on either Unix or NT
platforms and manage NT farm servers. Our master
code is mostly algorithmic (rather than system) code
and the performance numbers for masters were roughly
equivalent on both Unix and NT platforms. Master
takes about 21% CPU for controlling and load
balancing a cluster of 1000 machines. Average
NetBatch overhead for managing a job through its life
cycle (queuing, scheduling, providing execution
environment and utilization metrics logging) is 400
milliseconds. The overhead on NT server is about 110
ms for starting the job, while 40ms on a comparable
Unix machine. Of the additional 70ms overhead on NT,
about 30ms were spent simulating fork() like API,
20ms were spent simulating the password-less
(setuid) style code, and the rest for user environment
translation and other NT specific overheads. This
additional overhead is negligible, as it is a one time task
required for launching a job that could run for long
time. While the job is running, job monitoring (such as
suspension, altering priorities, termination, etc.,) on NT
has additional overheads due to lack of process groups
and resource usage information. This was observed as
additional 0.5 -1% CPU consumed by our NT server
during the job runtime for executing workarounds
described in section 3.1.1 and section 3.1.3 .

3.2 The Network File System

To make a user job run on any machine in the compute
farm, we needed a uniform environment at three levels:
a uniform file system space, a uniform data access

control mechanism, and uniform user login profiles.
Our batch compute jobs cover a wide variety of file
access patterns: read and write to small data files,
sequential read or write to multi-gigabyte data files,
random access to large databases, repeated demand
loads of executable pages, and reuse of the files. As a
result, any data access mechanisms have to provide
excellent network file system performance, and scale to
facilitate concurrent data accesses to hundreds of batch
farm clients.

Intel’s support structure favors centralized file servers
for easy administration and maintenance operations
such as backup, retrieval, and project resource
partitioning. Locating file data in central servers, and
making the user login access profiles uniform across all
the machines (interactive and batch) is the first step in
providing a unified job run-time environment.

Along with NT farms, we have a large install base of
Unix workstations that use NFS and AFS file systems.
Applications in both NT and Unix environments need
access to common data input files. To serve these cross-
domain requirements we have considered three types of
file or data sharing approaches: Samba, DFS, and native
SMB (NT file servers).

Samba: Samba is an open source product that acts as a
gateway between Unix file systems and SMB protocol
based file clients. The Samba server runs on a Unix
machine and can integrate file systems from different
servers and export them to NT clients as a single share.
It has the advantage of providing access to the unified
name space of the Unix file system, but suffers from
scalability and performance issues. We partially solved
the performance problem by replicating the gateways
and thus reducing the clients per gateway ratio. In our
environment, logic simulation jobs required a ratio of
one Samba gateway (running on a powerful Unix
workstation) per 100 clients, where each client accessed
10-15MB of data over a period of a couple hours. The
Samba solution did not satisfy the needs of architectural
performance simulation jobs, which often have a large
file working set (gigabytes of trace files), and demand
load many pages from the executables.

DFS: DFS is a distributed file system from Transarc,
which offers a global file name space shared by all
clients, hides the disjoint nature of the DFS servers,
offers local disk caching for improved performance,
and provides ACL based file access controls. DFS file
systems offer great flexibility and performance. In our
environment we have chosen DFS for our data intensive
compute farms. Initial versions of DFS lacked support
for multi-user access on NT clients and experienced
occasional stability issues. We worked with DFS/DCE

vendors (Transarc and Gradient) to add the multi-user
features to DCE2.2 and DFS. This latest release also
addressed several stability issues that existed in earlier
releases of DCE and DFS.

SMB: We also tested the use of NT file servers with
SMB based NT clients. The NT file servers provide
access to their files through shares, which the NT client
can access through UNC paths, or by mapping the share
to a drive letter. UNC is not popular as it lacks support
for standard file system operations such as changing or
setting the current working directory. Microsoft Dfs
offers an integrated name space solution for SMB
clients, but it was dropped due to reliability problems
with the earlier version . The drive letter approach was
the only choice left for data access on NT clients but it
also has a few issues. The drive letters are established
globally throughout the OS, rather than on per user or
session basis, which restricts the number of concurrent
mappings, and opens security holes in a multi-user
environment. NT also leaves stale mounts when a user
login session terminates without unmapping a drive.

SMB suffers from reliability and scalability problems.
Its reliability suffers from packet time-outs, which
cause application level errors. Application binaries
stored on a remote NT file server, when executed on a
NetBatch compute farm machine, often experience
abnormal program terminations due to packet time-outs
when the OS attempts to demand load an unmapped
code page. This problem can be solved by making a
local copy of the image file, either by explicitly copying
the file, or by setting a bit (/swaprun:net) in the image
file which triggers the NT loader to make a local copy
in the pagefile prior to execution. The main
disadvantage of this approach is reduction in
throughput and bottlenecks at the file server, especially
when binary files are large and many of them execute
concurrently on hundreds of farm machines. This
problem has been addressed in other environments,
such as on NFS based Unix clients, where the process
execution is kept on hold state until normal
communication with the file server is restablished. This
mechanism isolates long running applications from
transient network data access failures.

Filesystem Reliability Comparison: We attempted to
compare the reliability of DFS, SMB with an NT
server, and SMB with a Samba server exposing NFS
file systems, within our compute farm environment .
The workload was based on architectural performance
analysis of gigab ytes of compressed trace information
from an online transaction processing benchmark. The
workload is I/O bound, although a fair amount of CPU
time is required for decompression . The data fetch and
the data decompression are pipelineable, if the file
system supports a streaming prefetch mechanism. The
reliability experiments executed in the standard
compute farms during weekends. The compute farm s
continuously handle a load under indeterminate
network conditions. But restricting the data collection
to weekend runs helped isolate the file servers from the
spurious network traffic due to interactive users. The
performance data was captured while executing one,
two, five, and ten simultaneous jobs in a NetBatch
cluster. All jobs requested the same file information
from the server. Executables were located within the
DFS filesystem, to protect the jobs from packet
timeouts during demand loads of code pages. Table 2
tabulates the results. DFS successfully handled the load.
SMB with the NT fileserver suffered from data packet
timeouts under more intense loads. The Samba server
and NFS servers were too loaded to return requests
within the packet grace period; a single Samba server is
the point of entry for all architecture related NT clients
into the NFS file system.

SMB Summary: We suspect that poor caching by
SMB causes an increased load on the network, which
raises the probability of a packet time-out and thus a
loss in reliability. SMB’s reliability problems limit its
scalability in our batch computing environment.

We abandoned the SMB/NT file server solution due to
the above reasons, and due to the lack of robust cross-
domain (NT to Unix client) capabilities. There are two
key areas which NT must address to make the native
SMB file system an acceptable solution in a typical
engineering computing environment: i) improve
reliability and scalability, and ii) improve client side

Filesystem 1 job 2 jobs 5 jobs 10 jobs
DFS 8.71 hours/job 8.0 hours/job 9.95 hours/job 10.85 hours/job
SMB with NT
fileserver

8.45 hours/job 9.68 hours/job failure failure

SMB with
Samba and NFS

failure failure failure failure

Table 2. Filesystem reliability for a disk intensive workload (several gigabytes).

share mapping mechanisms (improved UNC and a
superior approach to the multiple drive letters).

3.3 Application Development and Porting
Issues

Many of our engineering applications were originally
developed and deployed on Unix systems. While many
solutions exist that emulate Unix services on NT such
as OpenNT* [Walli 97], NutCracker*, and Cygwin*
[Noer 98], we decided to convert our applications to
NT’s rich native Win32 API in most cases. For the
large part this has been straightforward, especially since
many of our applications are non-graphical in nature. In
some instances, however, we have been unable to
convert applications to the Win32 API, and in these
cases, we use the Cygwin libraries and Cygnus utilities.
We use these public domain tools for scripting, and for
porting code that requires the use of the UNIX fork()
system call, which is not provided by Win32 API. It
seems to us that these two capabilities would be good
candidates for future Windows NT or Win32 API
extensions.

3.3.1 Scripting Solutions

As stated earlier, many of our batch jobs string
applications together using scripts. As a result, our
design automation team chose to use Cygnus utilities
and public domain perl/tcsh packages to support our
batch mode scripting needs. While we have
encountered several stability issues with the cygwin.dll
b.17 version (related to concurrency and multi-user
usage of the GNU commands), migration to cygwin.dll
b.20 seems to have addressed the majority of our issues.
Currently it looks like we will continue to use these
public domain scripting engines, since the native
Windows NT scripting command shell (cmd.exe) only
provides very limited capabilities. For instance, it is
missing regular expression parsing and string
processing capabilities, and it also lacks an interface
with the Win32 API. To provide a batch friendly
environment, Windows NT needs a more powerful,
customizable and rich native shell environment.
Another fundamental shortcoming for scripting on NT
is that the Windows NT executable loader only
recognizes files with certain extensions as executables.
This problem can be solved if the NT loader is modified
to recognize scripts using the file execute attribute , and
then use the first line of the script to determine which
scripting engine to invoke.

* Third party trademarks and brands are the property of
their respective owners.

3.3.2 Fork System Call

In the traditional Unix environment, the fork() system
call has been conveniently used to replicate the process
state and address space. Our simulators protect the state
of long-running simulation jobs by periodically creating
a child image. The parent image waits for completion of
the child image. If the child image encounters live-
locks or run-time errors, the parent simulator will
terminate the child image and fast-forward the
simulation beyond the condition causing the problem.
The isolated address space of the child simulator
insulates the parent from any of the child’s errors and
memory leaks. The child also has access to another 2
gigabyte address space for data collection. While the
Windows NT kernel does provide process address
space and some state cloning capabilities, the Win32
API stops short of providing a complete process clone
interface, even for non-graphical “console”
applications. The NT thread paradigm does not replace
the benefits of the fork paradigm, for a faulty thread can
damage the entire simulator. The one-for-one cloning of
a process address space, along with associated
operating system state semantics, is a powerful and
much needed Win32 API.

4 Recognized NT Strengths

With the exception of earlier workarounds, NT provides
many other attractive features, which we used to
develop a robust and simplified NetBatch engine, some
of which are listed here. The NetBatch components are
highly multithreaded, using native kernel threads to
handle intrusion detection, job control, resource
monitoring, server communication, etc. Various
components utilize asynchronous procedure calls
(APC) and mail slots to create a robust communication
infrastructure. Performance counters provide a central
place to get a wide range of machine resource
indicators and process metrics used for optimal job
scheduling decisions. Process priority classes provide a
way to utilize machine cycles with minimal intrusion
with other tasks and improve latency for (with real time
priority) critical tasks. SCM (Service Control Manager)
provides a good way for installing and managing long
running NetBatch services on hundreds of farm
machines. The NetBatch engine utilizes the event log
for debug and error analysis. Apart from these core OS
facilities, Visual Studio (MSVC) Integrated
Development Environment (IDE) and Win32 SDK
provides excellent software development, debugging,
and maintenance environment.

5 Related Work

Condor [Bricker 91, Litzkow 88] is a high-throughput
batch-computing environment for networked
workstations. It is sensitive to the needs of desktop
users and makes use of unused desktop cycles. It uses
flexible match making algorithms [Raman 98] to find
the best machine to execute each job. Condor also
provides transparent checkpointing and migration of
batch jobs on intrusion detection. Some limitations of
Condor include the unavailability of a complete batch
solution on NT, and limitations on check pointing most
multi-process, communication, and I/O intensive
applications in the typical high-end computing
environment. The distributed nature of Condors schedd
makes enforcing user or group scheduling policies and
fair share allocation difficult. The gateway architecture
for multi-clustering makes implementation and
managing cross-site policies e asier, but results in poor
scalability and reliability due to the complexity of the
remote scheduling protocols.

LSF (Load Sharing Facility) from Platform Computing
Inc., is based on the Utopia architecture [Zhou 92]. The
LSF suite has a complete set of job scheduling and
load-balancing features. An NT port of LSF is also
available. Some limitations of LSF on NT are the lack
of transparent authentication and data access support,
and lack of good cross domain (Unix-NT) seamless
computing support.

Microsoft’s Wolfpack [MSCS 98] provides clustering
extensions to the Windows NT operating system that
promise scalability and availability of servers in a
mission critical enterprise environment. It has limited
load-balancing features, but does not provide job-
scheduling capabilities. Wolfpack can be used to scale
and load-balance data servers, while the distributed
batch engine described in this paper is able to schedule
and load-balance jobs across NT workstation compute
farms.

6 Summary

Intel’s engineering community generates many
compute intensive jobs, suitable for batch execution,
which may sustain execution times of hours to weeks.
Users see the batch pool as a large virtual computer that
provides on-demand compute cycles while seamlessly
executing the user jobs. Three key components
necessary to establish the homogenous virtual computer
is a batch compute engine, a unified job run-time
environment, and application infrastructure to manage
large workloads. The batch compute engine manages
workstation resources, distributes load across many

compute nodes, controls the jobs, and manages the job
run-time environment. The unified job run-time
environment ensures consistency between the
interactive and batch compute environments, provides a
global file name space, enforces a global security
mechanism, and propagates application configurations.

As this paper describes, NT offers solutions (either
direct capabilities or workarounds) for most of the large
compute farm issues. At Intel, we successfully use NT
compute farms for some of our mission critical needs.
Our experience has shown that the overall NT
environment stability is comparable to that of the Unix
environment . Our conclusion is that NT is a viable
choice as an OS to deploy for the infrastructure of a
large compute farm, and offers tremendous
cost/performance advantages to RISC/Unix workstation
solutions. In this paper we have presented several
challenges and solutions that other NT user
communities can leverage, and presented areas in which
Windows NT and Win32 API could be improved
further.

The following lists offer some suggestions for
improving Windows NT and the Win32 API.

Operating System Related Improvements:
• Provisions for secure user impersonation without

using clear text passwords.
• Addition of a fork() system call.
• Improved shell support for scripting.
• Operating system support for process suspension,

check pointing and restart.
• Support for a true multi-user execution

environment in Windows NT.

File System Related Improvements:
• Improve network file system reliability and

scalability .
• Support for a unified name space and better client

side share access features.

Future improvements to our batch engine described in
this paper include better intrusion detection for local
and remotely logged-in users, improved scheduling
schemes, and better support for multi-cluster
capabilities.

Acknowledgements

Thanks to Tae Paik, Eldon Chan and other members of
the corporate NT engineering computing program for
their great encouragement and constant support for this
effort. Thanks to Raghu Krishnamurthy, Ty Tang, and
Mike Hester for their contribution in developing the

batch engine on NT during early 97 and Dave Liebson
for his contributions in addressing several farm issues.
Thanks to Drew Hess and Tom Willis for providing
valuable technical feedback on this paper. The progress
we have made couldn’t have been possible with out the
help from many other members of our IT NT team and
great co-development effort from our ever demanding
internal customers.

References

[Bricker 91] Allan Bricker, Micahel Litzkow, and
Miron Livny: “Condor Technical Summary”,
University of Wisconsin – Madison, 1991.

[Litzkow 88] M.J. Litzkow, M. Livny, and M.W.
Mutka. “Condor – A Hunter of Idle Workstations”. In
Proc 8th International Conference on Distributed
Computing Systems, San Jose, California, June 1988.

[MTEX] T. Tang, V. Lal, and S. Krishnapura, "MTEX:
A Bridge For Migrating CAD Design Environment
From UNIX To NT", Usenix Windows NT
Symposium, 1999.

[MSCS 98] White paper on “Windows NT Load
Balancing Service (Wolfpack) technical overview”,
http://www.microsoft.com/ntserver/ntserverenterprise/t
echdetails/prodarch/wlbs.asp and clustarchit.asp.

[Noer 98] Geoffrey Noer, “Cygwin32: A Free Win32
Porting Layer for UNIX Applications”, Proceedings of
2nd USENIX Windows NT Symposium, Seattle,
Washington, August 3-4, 1998.

[Raman 98] R. Raman, M. Livny, and M. Solomon.
Matchmaking: Distributed Resource Mana gement for
High Throughput Computing, Proceedings of the
Seventh IEEE International Symposium on High
Performance Distributed Computing, July 28-31, 1998,
Chicago, IL.

[Solomon 98] David Solomon, “Inside Windows NT”,
Second Edition, Microsoft Press.

[Srouji 98] Johny Srouji, Paul Schuster, Maury Bach,
and Yulik Kuzmin: “A Transparent Checkpoint Facility
on NT”, Proceedings of 2nd USENIX Windows NT
Symposium, Seattle, Washington, August 3-4, 1998.

[Walli 97] Stephen Walli: “OPENNT™ : UNIX
Application Portability to Windows NT™ via an
Alternative Environment Subsystem”, Proceedings of
USENIX Windows NT Workshop 1997, Seattle,
Washington, August 11-13, 1997.

[Zhou 92] S. Zhou. LSF: Load sharing in large-scale
heterogeneous distributed systems. In Proc. of
Workshop on Cluster Computing, 1992.

[Zhou 92] S. Zhou, J. Wang, X. Zheng, and P. Delisle.
Utopia: A Load Sharing Facility for Large,
Heterogeneous Distributed Computer Systems,
Technical Report CSRI-257, University of Toronto,
Toronto, Canada.

