
The following paper was originally published in the

Proceedings of the 3rd USENIX Windows NT Symposium
Seattle, Washington, USA, July 12–13, 1999

R E D U C I N G S T A R T U P L A T E N C Y
I N W E B A N D D E S K T O P A P P L I C A T I O N S

Dennis Lee, Jean-Loup Baer, Brian Bershad, and Tom Anderson

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 1999 by The USENIX Association
All Rights Reserved

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738
Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.

USENIX acknowledges all trademarks herein.

Reducing Startup Latency in Web and Desktop Applications

Dennis Lee, Jean-Loup Baer, Brian Bershad, and Tom Anderson

Department of Computer Science and Engineering

University of Washington, Box 352350

Seattle, WA 98195-2350

fdlee,baer,bershad,tomg@cs.washington.edu

Abstract

Application startup latency has become a perfor-
mance problem for both desktop applications and
web applications. In this paper, we show that
much of the latency experienced during application
startup can be avoided by more e�ciently packing
application code pages. To take advantage of more
e�cient packing, we describe the implementation of
demand paging for web applications. Finally, we
show that combining demand paging with code re-
ordering can improve application startup latency by
more than 58%.

1 Introduction

Program startup latency is an important perfor-
mance problem for both desktop and web applica-
tions. Desktop applications are becoming larger and
improvements in disk speeds have not kept up with
the improvements in CPU speed. For example, Mi-
crosoft Word 2.0 on an Intel 66 Mhz 486 takes about
14 seconds to start, while Microsoft Word 7.0 on a
200 Mhz Pentium Pro occasionally takes almost 17
seconds to start.

The situation is worse for web applications on the
Internet. For many users, web applications take a
long time (a few minutes) to start because they con-
nect to the Internet through high latency, low band-
width links (i.e., modems). For example, Vivo, a
popular video display and control application, takes
over 8 minutes to download over a 56 Kbps modem
link and over 2 minutes on a 256 Kbps DSL link. A
similar problem occurs in the context of corporate
intranets: mobile professionals frequently download
new versions of internal corporate web applications

and experience frustrating wait times for these ap-
plications.

Researchers have recently proposed several ways
for improving startup latency including compres-
sion [Enst et al. 97, Franz & Kistler 97], non-strict
execution [Krintz et al. 98], just-in-time code lay-
out [Chen & Leupen 97], and optimizing disk lay-
out [Melanson 98] .

Our approach is orthogonal and uses code re-

ordering [Pettis & Hansen 90] and demand paging

[Levy & Redell 82] to improve the startup latency
of web and desktop applications, and reduce the
load on web servers and the network. Our approach
essentially improves startup time by improving the
e�ectiveness of demand paging systems: we place
procedures that will probably be used by the appli-
cation into a single contiguous block in the binary.
This approach can improve the startup latency of
web applications by more than 58% and that of
desktop applications by more than 45%.

The rest of this paper

Section 2 presents the motivation and architecture
for improving application startup latency. Section 3
describes our experimental methodology and setup.
In Section 4, we present the results of our measure-
ments. Finally, Section 5 concludes.

2 Approach

As motivation, we �rst present the results of pro-
�ling several web and desktop applications. These
pro�les show that existing applications can be bet-
ter laid out to optimize startup latency. We then

present our architecture for code reordering and our
architecture for allowing partial downloads of web
applications using demand paging.

2.1 Motivation

Web Applications
Application Description Size

envoy Document viewing control 1.09

scout VRML parser and renderer 0.98

vivo Applet for watching movies 0.44

whip AutoCAD drawing display
control

0.49

Desktop Applications
Application Description Size

acrobat Adobe Acrobat Reader 3.0 2.26

netscape Netscape Navigator 3.1 3.17

photoshop Adobe Photoshop 4.0 3.65

powerpoint Microsoft PowerPoint 7.0b 4.36

word Microsoft Word 7.0 3.78

Table 1: Web and Desktop Applications. Our web ap-
plications consists of four ActiveX [Chappell 96] con-
trols which display various document types. The size
column gives the size of the main application binary in
megabytes. For web applications, the given size is the
uncompressed size of the main application binary and
does not include dynamically loaded libraries (DLLs)
used by the applications.

We pro�led four web applications and �ve desktop
applications 1 (c.f., Table 1) to determine if there
was an opportunity to improve startup time by im-
proving the layout of procedures in a program bi-
nary.

Table 2 shows the statistics derived from pro�ling
four web applications. We ran these applications
to completion with a typical workload to determine
how many procedures in the application are actually
used. The table shows that the applications utilize
only between 38% (envoy) and 84% (scout) of the
bytes in their program binaries. Typically, web ap-
plications download their entire program binaries
before starting. The utilization statistics suggest
that startup times could be signi�cantly improved
if we download only the procedures actually used by
the application.

1Our tools work only on applications that contain reloca-
tion information. We used the latest versions of the desktop
applications that contain relocation information. Unfortu-
nately, many new applications ship with relocations stripped.

App. Kilobytes in Each Component
Data Used Code Unused Code

envoy 248 (23%) 164 (15%) 685 (62%)

scout 285 (29%) 262 (27%) 440 (45%)

vivo 274 (62%) 102 (23%) 69 (16%)

whip 197 (40%) 71 (14%) 224 (46%)

Table 2: Utilization of Web Applications. The per-
centages in parenthesis show the fraction of the entire
binary covered by the particular component. The data
column shows the size of all the non-code sections of
the binary including section headers. The unused col-
umn shows the potential bene�t of not downloading the
entire application binary.

Table 3 shows statistics for code pages of di�er-
ent desktop applications during startup. The bi-
nary for desktop applications is demand paged so
we examine the utilization of the code pages brought
in during startup. The table shows that only 26%
(netscape) to 47% (word) of these pages are utilized.
Interestingly, netscape and photoshop touch almost
every code page in their main binary during startup
suggesting that even with demand paging the entire
application is loaded to memory from disk. The low
page utilization numbers for all applications sug-
gest that like web applications, startup latency can
be improved for desktop applications by bringing in
only the actual procedures used by the application.

Application Code Pages
Total Touched Utilization

acrobat 404 246 (60%) 28%

netscape 388 388 (100%) 26%

photoshop 594 479 (80%) 28%

powerpoint 766 164 (21%) 32%

word 743 300 (40%) 47%

Table 3: Desktop Application Pro�le Results. Touched
gives the number of code pages touched during program
startup. Utilization gives the average fraction of used
procedures in touched code pages. Page fault rates dur-
ing startup could be reduced by better packing code
pages.

2.2 Architecture

The previous subsection showed that much of the
code transferred over the network or transferred
from the disk is not used by the application. Our
approach aims to transfer only the used procedures
in the application.

Figure 1 shows a diagram of the object rewriting
phases of our approach. We use pro�le informa-
tion to predict with high accuracy which part of the
application would be used. Using an object rewrit-
ing engine, we then move the likely-used procedures
together at the top of the code section, essentially
packing pages better to make the demand paging
system more e�cient. For our experiments, we sim-
ply arrange the code section in �rst-touch order. Or-
dering using procedure a�nity [Pettis & Hansen 90]
might be better for locality but �rst touch order
works well enough for our goal of improving startup
latency.

Profile
Information

Reordered
Application

Binary

Application
Binary

Profiler

Code
Layout

Code
Splitter

Headers &
 global data &

Likely-used code

Unlikely-used
code pages

Runtime
(in server)

Profiling Rewriting

desktop applications
finished at this phase

Figure 1: Object Rewriting Phases

For desktop applications, the system is done af-
ter generating the binary from the code reordering
phase. The built-in O/S demand paging system will
load in only the fraction of the pages containing the
used procedures.

For web applications, the system needs to be able to
download only the part of the application required
for execution. The code-splitting module splits the
binary into (1) a large main binary that contains the
data portion of the binary and the likely-used pro-
cedures, and (2) several page-sized �les containing
the unlikely-used procedures. At runtime, when the
client requests the web application, the server only
transfers the main binary. When the client needs an
unlikely-used procedure, it has to request the page-
sized �le that contains the procedure.

Web Client Architecture

Our client architecture extends demand paging to
web applications. This provides a convenient mech-
anism to detect missing pages and to allow the sys-
tem to function correctly when control passes to

functions that are not present in the initial down-
load.

Figure 2 shows a diagram of what happens on the
web client during program runtime. When a web
application is accessed by the client browser, only
pages containing the data and likely-used portion
of the binary are downloaded. The part of the
binary that has not been downloaded is marked
PAGE NO ACCESS by the system.

Page-Fault
Handler

Code pages

Program Data

Null pages
(initially marked

PAGE_NO_ACCESS)

Likely-used code

Operating System

Page fault

internet

Figure 2: Web Client Architecture

If the application transfers control to a page that
is marked PAGE NO ACCESS, the page-fault han-
dler is invoked. We modi�ed the handler to con-
tact the web server, download the �le containing the
page, and place the page in the appropriate location
in application memory. 2

3 Experimental Methodology

3.1 Startup Latency

To determine the startup latency, our timing sys-
tem (1) invokes the application, and (2) simulates
a user initiated event by sending a message to an
application window. We de�ne startup latency as
the time from the invocation of the application to
the time the application replies to the message sent
by the timing system.

Our timing method works because of the Windows
NT event queue model and the way most Windows

2As an alternative to downloading individual �les each
containing a single code page, the client could use the range
option in HTTP 1.1 [Nielsen et al. 97]. This would avoid
splitting the application binary into multiple �les.

applications are written. Under Windows NT, win-
dows are assigned to threads, and messages are sent
to thread-local event queues. Messages are delivered
to this queue and do not interrupt the execution of
the owning thread. For most applications, threads
process their message queue only when they have
�nished initializing and are ready to respond to user
input.

Occasionally, a thread responsible for the main ap-
plication window will respond to a user message
even when other threads are still drawing other win-
dows (e.g., tool bar windows). Since users are un-
likely to interact with the application until after all
the initial windows have been drawn, the timing sys-
tem sends a message to the last window drawn in-
stead of the main application window.

3.2 Environment

Our client system was a Pentium Pro 200 sys-
tem running Windows NT 4.0 Service Pack 3, with
128 MB of memory, and a Seagate ST34371W disk.
We used a slightly modi�ed version of Internet Ex-
plorer 4.0 as our browser. Our measurements were
taken using the processor cycle counter and the per-
formance counters built into Windows NT. All our
network measurements were taken on isolated net-
works with no external tra�c.

For our web server, we use Apache 1.3b5 running
on FreeBSD 2.2.6. To control the bandwidth and
latency between the web server and the client, we
installed the dummynet [Rizzo 99] patch to the BSD
kernel. Our Internet application experiments looked
at a range of bandwidths (from 56 Kbits/second to
3 Mbits/second) and latencies (from 10 ms. to 200
ms.) which cover the range of network conditions
on the Internet.

The application server used in our experiments with
application startup latency was a Pentium Pro 200
system running Windows NT 4.0 service pack 3 with
64 MB of memory. Unfortunately, we could not
control the bandwidth or latency to the application
server on NT so our measurements for desktop ap-
plications only involve communication on a single
shared 10 Mbit Ethernet link.

We used Etch [Romer et al. 97, Lee et al. 98], a bi-
nary instrumentation and rewriting engine, to pro-
�le and rewrite the applications used in this study.

For all our experiments, we pro�le and reorder only
the main application binary. For our prototype
implementation, we simulate having an augmented
page fault handler using the Windows NT debugger
API [Microsoft 98]. The web browser is run in the
context of a custom debugger.

4 Results

In this section, we present the results of our exper-
iments optimizing the startup latency. Section 4.1
describes the results for web applications, and Sec-
tion 4.2 describes the results for desktop applica-
tions.

4.1 Web Applications

In this subsection, we show the performance of our
optimization on web applications. We �rst present
a performance model describing the startup latency
of web applications and show how our optimization
improves startup latency. We then compare four
di�erent schemes for starting web applications.

4.1.1 Performance Model

Equation 1 is a simple model for predicting the
startup latency of web applications:

Startup =
Bytes

Bandwidth
+Requests� Latency

+Overhead

(1)

where:

� Bandwidth and Latency are the observed network
bandwidth and latency between the client and
server,

� Bytes is the number of bytes transfered,

� Requests is the number of requests for �les to the
web server, and

� Overhead is the �xed overhead of executing instruc-
tions to start the application.

Equation 1 suggests that we can improve startup
time by reducing the number of bytes transferred
and transfer all the needed bytes in a single requests.
Unfortunately, we cannot predict with perfect accu-
racy the actual bytes that the application would use.
Di�erent approaches thus have to strike a balance
between including as little as possible into the ini-
tially downloaded package and paying the cost of
extra requests.

Obviously, an approach would be faster than an-
other if it made fewer requests and transferred fewer
bytes. However, if an \improved" approach reduces
the number of bytes transferred at the cost of more
requests then it would be faster than the original
approach, if and only if:

StartupOrig > StartupImp (2)

BytesOrig �BytesImp

RequestsImp �RequestsOrig
> Bandwidth

� Latency

(3)

Equation 3 implies that the performance of one ap-
proach relative to another is closely related to the
bandwidth-latency product. An improved approach
may be faster when the bandwidth-latency product
is small but the same approach might actually be
slower when the bandwidth-latency product is large.

4.1.2 Di�erent Approaches

We compare the performance of four approaches to
starting web applications. These approaches ex-
amine the performance of demand paging and re-
ordering, and probe the space of trade-o�s between
(1) eager approaches which download more bytes in
a few requests, and (2) lazy approaches which down-
load less bytes in many requests.

� Original downloads the entire binary at once.
This approach assures that there will only be a
single request.

� Paged downloads a code page of the binary only
when it is needed. All of the program data
is still downloaded initially. This approach re-
duces the number of bytes transferred (i.e., un-
used pages are not transferred) but may have
to pay a high cost because of request latency.

� Reordered-Paged is like paged in that it down-
loads a code page only when needed. But this
approach �rst reorders the procedures in the
application to more densely pack likely-used
procedures into fewer code pages. Compared to
paged, reordered-paged minimizes the number of
pages needed by the application, e�ectively re-
ducing the number of bytes transferred and the
number of requests to the server that have to
be made.

� Reordered initially downloads the likely-used
portion of the code section with all the data
in the binary. It still has to pay the cost of a
request when control transfers to a page that is
not in the initially downloaded portion of the
code but this would be much rarer. Reordered
may transfer more bytes than the reordered-

paged approach since some of the pages in the
likely-used portion of the binary may not be
used.

We implemented prototypes of each of these ap-
proaches. Each prototype reorders, pages, and
downloads only the main application binary and not
the libraries that the binaries depend upon.

Figure 3 shows the results of our experiment start-
ing applications using the di�erent approaches and
network conditions. 3 The �gure shows the improve-
ment in startup latency for a workload that is di�er-
ent from the pro�led workload used to reorder the
binary (c.f., Section 2.2).

We highlight a few trends from the �gure:

� Reordered almost always does better than orig-

inal.

� For low bandwidth (e.g., 60+Kbps) and low la-
tency (e.g., 10 ms) connections, paged does bet-
ter than original. However, as the bandwidth-
latency product increases (graphs towards the
bottom right), paged makes too many requests
from the server and doesn't reduce the number
of bytes su�ciently to compensate.

� Comparing paged with reordered-paged shows
that demand paging still leaves much room for
improvement. In all cases, reordered-paged does
better than paged, especially in the cases of en-
voy and scout.

3Figure 6 in the Appendix shows the raw startup latency
numbers for all network conditions.

en
vo

y

sc
ou

t

vi
vo

w
hi

p

-60

-40

-20

0

20

40

60

S
pe

ed
up

 o
ve

r
O

rig
in

al
 (

%
)

Bandwidth: 64 Kbps,
Latency: 10 ms

en
vo

y

sc
ou

t

vi
vo

w
hi

p

-60

-40

-20

0

20

40

60

S
pe

ed
up

 o
ve

r
O

rig
in

al
 (

%
)

Bandwidth: 251 Kbps,
Latency: 10 ms

en
vo

y

sc
ou

t

vi
vo

w
hi

p

-60

-40

-20

0

20

40

60

S
pe

ed
up

 o
ve

r
O

rig
in

al
 (

%
)

Bandwidth: 948 Kbps,
Latency: 10 ms

paged
reordered-paged
reordered

en
vo

y

sc
ou

t

vi
vo

w
hi

p

-60

-40

-20

0

20

40

60

S
pe

ed
up

 o
ve

r
O

rig
in

al
 (

%
)

Bandwidth: 63 Kbps,
Latency: 100 ms

en
vo

y

sc
ou

t

vi
vo

w
hi

p

-60

-40

-20

0

20

40

60

S
pe

ed
up

 o
ve

r
O

rig
in

al
 (

%
)

Bandwidth: 244 Kbps,
Latency: 100 ms

en
vo

y

sc
ou

t

vi
vo

w
hi

p

-60

-40

-20

0

20

40

60

S
pe

ed
up

 o
ve

r
O

rig
in

al
 (

%
)

Bandwidth: 885 Kbps,
Latency: 100 ms

paged
reordered-paged
reordered

-87 -90

en
vo

y

sc
ou

t

vi
vo

w
hi

p

-60

-40

-20

0

20

40

60

S
pe

ed
up

 o
ve

r
O

rig
in

al
 (

%
)

Bandwidth: 61 Kbps,
Latency: 200 ms

en
vo

y

sc
ou

t

vi
vo

w
hi

p

-60

-40

-20

0

20

40

60

S
pe

ed
up

 o
ve

r
O

rig
in

al
 (

%
)

Bandwidth: 236 Kbps,
Latency: 200 ms

en
vo

y

sc
ou

t

vi
vo

w
hi

p

-60

-40

-20

0

20

40

60

S
pe

ed
up

 o
ve

r
O

rig
in

al
 (

%
)

Bandwidth: 545 Kbps,
Latency: 200 ms

paged
reordered-paged
reordered

-109 -112 -64

Figure 3: Web Application Results. Graphs show the improvement in startup latency of web applications under
various network conditions. The measured workload was di�erent from the pro�led workload used to reorder the
web binary. The titles show the measured bandwidths between the client and the server. This is di�erent from
the \available" bandwidth (56 Kbps, 256 Kbps, and 1 Mbps) because of the e�ects of TCP bu�ering and conges-
tion control [Peterson & Davie 96], and the limitations of dummynet. We attempted to get data points at higher
bandwidth-latency products but were limited by the TCP receive bu�er size used in Internet Explorer.

� Reordered attempts to do better than reordered-
paged by reducing the number of server re-
quests. The results show that reordered is
better than reordered-paged for high latency-
bandwidth product networks. However, for
low-bandwidth networks, the reduced number
of bytes transferred by reordered-paged make
that option better for startup.

The �gure also shows a case where our methods are
not very e�ective. For most cases with vivo, re-

ordered and reordered-paged do not do signi�cantly
better than original. Since vivo is already fairly well
compacted (84% of the binary is used, c.f., Table 2),
we are hard pressed to make the binary more e�-
cient.

Analysis of Downloaded Bytes

Figure 4 shows the breakdown of the bytes down-
loaded during the startup of the di�erent applica-
tions. Paged downloads fewer bytes than original

but generates a fair number of server requests. As
shown in Figure 3, this does not work well in the
presence of high latency. As expected, reordered-
paged downloads the least number of bytes and
has signi�cantly fewer server requests compared to
paged. This explains why reordered-paged is always
better than paged.

or
igi

na
l

pa
ge

d

re
or

de
re

d-
pa

ge
d

re
or

de
re

d

or
igi

na
l

pa
ge

d

re
or

de
re

d-
pa

ge
d

re
or

de
re

d

or
igi

na
l

pa
ge

d

re
or

de
re

d-
pa

ge
d

re
or

de
re

d

or
igi

na
l

pa
ge

d

re
or

de
re

d-
pa

ge
d

re
or

de
re

d

0

200

400

600

800

1000

K
ilo

by
te

s
T

ra
ns

fe
rr

ed

Text-Paged
Text-Initially Downloaded
Data

envoy scout vivo whip

13
2

45 11

11
4

43
12

33
16

7

32
20 10

Figure 4: Download Statistics. Numbers on top of the
bars give the number of faults requiring access to the
web server. Reordered-paged downloads less bytes than
paged and accesses the web server less. Reordered down-
loads more bytes than reordered-paged but accesses the
web server more.

Reordered reduces the number of server requests fur-
ther but transfers more bytes. The �gure shows that

reordered still experiences some faults and down-
loads more bytes than reordered-paged. The reason
is three-fold. First, the measured workload is dif-
ferent from the pro�led workload. We expect that
some of the code used in one run would not be used
in the other. Second, we pro�led the entire program
run, rather than just startup, to avoid faults even
in the middle of the program. Hence, we initially
download code that may not be used immediately.
This is the case for reordered in scout. Finally, our
pro�le does not identify the use of data embedded
in the code section. This may cause faults on access
to code pages containing data.

Reducing the number of bytes transferred has
bene�ts other than reducing the startup la-
tency of web applications. [Banga & Druschel 99,
Bradford & Crovella 98] showed that having a large
number of open connections on a web server can
cause serious performance degradation. By reducing
the amount of work that the server has to perform,
our techniques can reduce the duration of each con-
nection hence reducing the load on servers serving
up these Web applications.

4.2 Desktop Applications

In this subsection, we examine the e�ect of reorder-
ing on the startup latency of desktop applications.
We consider the e�ects of reordering on four di�er-
ent states of the O/S �le cache:

� Boot - We start the application right after the
system boots and the user logs in. The shared
libraries required to start the system would be
in the �le cache but the application binary and
other libraries would need to be read in from
disk.

� Warm-local - the �le cache contains the pages
from shared libraries but not those of the main
application binary. This corresponds to the
case when a user starts an application either
for the �rst time or after it has been purged
from the �le cache. We expect that the shared
libraries would be in the �le cache due to other
applications loading them.

� Warm-remote - like Warm-local except that
the main application binary lives on a remote
server. We assume that the application binary
is in the �le cache of the remote server. This

corresponds to the case when a user starts up
an application on a shared �le server. Since
Windows NT purges its local copy of the �le
when an application exits 4, we expect this case
to happen often in environments with shared
application servers.

� Hot - the �le cache contains all the application
and library pages.

We ran the original and reordered application under
these four scenarios. To �lter out spurious results,
we performed each of our measurements at least ten
times. We dropped the runs with the highest and
lowest times, and report the average of the other
runs. Figure 5 shows the results of these experi-
ments.

For all applications and con�gurations, reorder-
ing improves application startup latency. The two
warm scenarios show that reordering the binary can
signi�cantly reduce startup time. It is especially
e�ective for photoshop and word as they improve
their application startup time by almost 2 seconds
each. Page fault rates decrease a corresponding
amount for the cases where we improve the applica-
tion startup latency. This veri�es that a dominant
cost during startup are page-faults.

Since we only reordered the main application binary,
we expect to mildly improve the boot case. The ex-
periment shows that this is not the case. Many of
the shared libraries are loaded into the �le bu�er
cache during boot time as shown by the small di�er-
ence between the boot and the warm cases. Hence,
reordering just the application binary time shows
noticeable improvement even in the boot case.

We also included the hot case to see if reordering
procedures in �rst-touch order would slow down this
case. The �gure shows that for the hot case, reorder-
ing only mildly a�ects the application startup time,
all the di�erences were less than a tenth of a second.

5 Conclusion

We have implemented a system that uses code re-
ordering and demand paging to improve the startup

4Actually, Windows NT purges the local copy of a �le
when there is no longer an open handle to the �le in the local
machine [Leach & Naik 97].

latency of web and desktop applications. Our mea-
surements on a prototype implementation show that
the combination of these optimizations can improve
program startup latency of web applications by as
much as 58% and desktop applications by as much
as 45%.

For web applications, the approaches to improving
startup time have to carefully balance the compet-
ing requirements of downloading as few bytes as pos-
sible and accessing the server the least number of
times. This balance is especially important for net-
works with a high latency-bandwidth product.

References

[Banga & Druschel 99] Banga, G. and Druschel, P.
Measuring the Capacity of a Web Server Un-
der Realistic Loads. World Wide Web Jour-

nal, May 1999. to appear.

[Bradford & Crovella 98] Bradford, P. and Crovella, M.
Generating Representative Web Workloads
for Network and Sever Performance Evalua-
tion. In Proceedings of the 1998 ACM SIG-

METRICS Internation Conference on Mea-

surement and Modeling of Computer Sys-

tems, pages 151{160, July 1998.

[Chappell 96] Chappell, D. Understanding ActiveX and

OLE. Microsoft Press, 1996.

[Chen & Leupen 97] Chen, J. and Leupen, B. Improv-
ing Instruction Locality with Just-in-Time
Code Layout. In Proc. of the USENIX Win-

dows NT Workshop, pages 25{32, 1997.

[Enst et al. 97] Enst, J., Evans, W., Fraser, C., Lucco,
S., and T.Proebsting. Code Compression.
In Proc. ACM SIGPLAN 1997 Conference

on Programming Language Design and Im-

plementation, pages 358{365, 1997.

[Franz & Kistler 97] Franz, M. and Kistler, T. Slim
Binaries. Communications of the ACM,
40(12):87{94, December 1997.

[Krintz et al. 98] Krintz, C., Calder, B., Lee, H., and
Zorn, B. Overlapping Execution with Trans-
fer Using Non-strict Execution for Mobile
Programs. In Proc. 8th Int. Conf on Ar-

chitectural Support for Programming Lan-

guages and Operating Systems, pages 159{
169, 1998.

[Leach & Naik 97] Leach, P. and Naik, D. A Com-
mon Internet File System (CIFS/1.0) Pro-
tocol, December 1997. Internet Engi-
neering Task Force (IETF) draft docu-
ment, available from ftp://ietf.org/internet-
drafts/draft-leach-cifs-v1-spec-01.txt.

A
cr

ob
at

N
et

sc
ap

e

P
ho

to
sh

op

P
ow

er
po

in
t

W
or

d
0

2

4

6

S
ta

rt
up

 L
at

en
cy

 (
se

co
nd

s)

Boot

A
cr

ob
at

N
et

sc
ap

e

P
ho

to
sh

op

P
ow

er
po

in
t

W
or

d

0

2

4

6

S
ta

rt
up

 L
at

en
cy

 (
se

co
nd

s)
Warm-Local

A
cr

ob
at

N
et

sc
ap

e

P
ho

to
sh

op

P
ow

er
po

in
t

W
or

d

0

2

4

6

S
ta

rt
up

 L
at

en
cy

 (
se

co
nd

s)

Warm-Remote

A
cr

ob
at

N
et

sc
ap

e

P
ho

to
sh

op

P
ow

er
po

in
t

W
or

d

0

2

4

6

S
ta

rt
up

 L
at

en
cy

 (
se

co
nd

s)

Hot

original
reordered

(a) Startup Latencies

A
cr

ob
at

N
et

sc
ap

e

P
ho

to
sh

op

P
ow

er
po

in
t

W
or

d

0

500

1000

P
ag

e
F

au
lts

Boot

A
cr

ob
at

N
et

sc
ap

e

P
ho

to
sh

op

P
ow

er
po

in
t

W
or

d

0

500

1000

P
ag

e
F

au
lts

Warm-Local

A
cr

ob
at

N
et

sc
ap

e

P
ho

to
sh

op

P
ow

er
po

in
t

W
or

d

0

500

1000

P
ag

e
F

au
lts

Warm-Remote

A
cr

ob
at

N
et

sc
ap

e

P
ho

to
sh

op

P
ow

er
po

in
t

W
or

d

0

500

1000

P
ag

e
F

au
lts

Hot

original
reordered

(b) Page Faults

Figure 5: E�ect of Reordering. Page fault data was obtained using the performance counters built into Windows NT.
Reordering improves application startup latency and reduces the number of page faults experienced by the program.

[Lee et al. 98] Lee, D., Crowley, P., Baer, J.-L., An-
derson, T., and Bershad, B. Execution
Characteristics of Desktop Applications on
Windows NT. In Proc. 25th Annual Inter-

national Symposium on Computer Architec-

ture, pages 27{38, June 1998.

[Levy & Redell 82] Levy, H. M. and Redell, D. D. Vir-
tual Memory Management in VAX/VMS.
Computer, 15(3):35{41, March 1982.

[Melanson 98] Melanson, E. Tuning up. PC Magazine,
August 1998.

[Microsoft 98] Microsoft. Microsoft Developer Network
Library, April 1998. on CD-ROM.

[Nielsen et al. 97] Nielsen, H., Gettys, J., Baird-Smith,
A., Prudhommeau, E., Lie, H., and Lilley, C.
Network Performance E�ects of HTTP/1.1,
CSS1, and PNG. In Proc. of the ACM SIG-

COMM 1997 Conference on Applications,

Technologies, Architectures, and Protocols

for Computer Communication, pages 155{
166, September 1997.

[Peterson & Davie 96] Peterson, L. L. and Davie, B. S.
Computer Networks, A Systems Approach,

chapter 6. Morgan Kaufmann Publishers,
Inc., 1996.

[Pettis & Hansen 90] Pettis, K. and Hansen, R. Pro-
�le Guided Code Positioning. In Proc.

ACM SIGPLAN 1990 Conference on Pro-

gramming Language Design and Implemen-

tation, pages 16{26, 1990.

[Rizzo 99] Rizzo, L. Dummynet: A Simple Ap-
proach to the Evaluation of Network
Protocols, February 1999. available from
http://www.iet.unipi.it/ luigi/ip dummynet.

[Romer et al. 97] Romer, T., Voelker, G., Lee, D., Wol-
man, A., Wong, W., Levy, H., and Ber-
shad, B. Instrumentation and Optimization
of Win32/Intel Executables using Etch. In
Proc. of the USENIX Windows NT Work-

shop, pages 1{7, 1997.

A Web Application Download Times

This graph shows the startup latency from all our experiments with web applications under various network
conditions.

en
vo

y

sc
ou

t

vi
vo

w
hi

p

0

50

100

150

S
ta

rt
up

 L
at

en
cy

 (
se

co
nd

s)

Bandwidth: 64 Kbps,
Latency: 10 ms

en
vo

y

sc
ou

t

vi
vo

w
hi

p

0

10

20

30
S

ta
rt

up
 L

at
en

cy
 (

se
co

nd
s)

Bandwidth: 251 Kbps,
Latency: 10 ms

en
vo

y

sc
ou

t

vi
vo

w
hi

p

0

2

4

6

8

10

12

S
ta

rt
up

 L
at

en
cy

 (
se

co
nd

s)

Bandwidth: 948 Kbps,
Latency: 10 ms

en
vo

y

sc
ou

t

vi
vo

w
hi

p

0

1

2

3

4

5

6

7

S
ta

rt
up

 L
at

en
cy

 (
se

co
nd

s)

Bandwidth: 2732 Kbps,
Latency: 10 ms

original
paged
reordered-paged
reordered

en
vo

y

sc
ou

t

vi
vo

w
hi

p

0

50

100

150

S
ta

rt
up

 L
at

en
cy

 (
se

co
nd

s)

Bandwidth: 64 Kbps,
Latency: 50 ms

en
vo

y

sc
ou

t

vi
vo

w
hi

p

0

10

20

30

40

S
ta

rt
up

 L
at

en
cy

 (
se

co
nd

s)

Bandwidth: 248 Kbps,
Latency: 50 ms

en
vo

y

sc
ou

t

vi
vo

w
hi

p

0

2

4

6

8

10

12

14

16

S
ta

rt
up

 L
at

en
cy

 (
se

co
nd

s)

Bandwidth: 922 Kbps,
Latency: 50 ms

en
vo

y

sc
ou

t

vi
vo

w
hi

p

0

2

4

6

8

10

12

S
ta

rt
up

 L
at

en
cy

 (
se

co
nd

s)
Bandwidth: 2186 Kbps,

Latency: 50 ms

original
paged
reordered-paged
reordered

en
vo

y

sc
ou

t

vi
vo

w
hi

p

0

50

100

150

S
ta

rt
up

 L
at

en
cy

 (
se

co
nd

s)

Bandwidth: 63 Kbps,
Latency: 100 ms

en
vo

y

sc
ou

t

vi
vo

w
hi

p

0

10

20

30

40

S
ta

rt
up

 L
at

en
cy

 (
se

co
nd

s)

Bandwidth: 244 Kbps,
Latency: 100 ms

en
vo

y

sc
ou

t

vi
vo

w
hi

p

0

5

10

15

20

25

S
ta

rt
up

 L
at

en
cy

 (
se

co
nd

s)

Bandwidth: 885 Kbps,
Latency: 100 ms

en
vo

y

sc
ou

t

vi
vo

w
hi

p

0

5

10

15

20

S
ta

rt
up

 L
at

en
cy

 (
se

co
nd

s)

Bandwidth: 1147 Kbps,
Latency: 100 ms

original
paged
reordered-paged
reordered

en
vo

y

sc
ou

t

vi
vo

w
hi

p

0

50

100

150

S
ta

rt
up

 L
at

en
cy

 (
se

co
nd

s)

Bandwidth: 61 Kbps,
Latency: 200 ms

en
vo

y

sc
ou

t

vi
vo

w
hi

p

0

20

40

60

S
ta

rt
up

 L
at

en
cy

 (
se

co
nd

s)

Bandwidth: 236 Kbps,
Latency: 200 ms

en
vo

y

sc
ou

t

vi
vo

w
hi

p

0

10

20

30

40

S
ta

rt
up

 L
at

en
cy

 (
se

co
nd

s)

Bandwidth: 545 Kbps,
Latency: 200 ms

en
vo

y

sc
ou

t

vi
vo

w
hi

p

0

10

20

30

S
ta

rt
up

 L
at

en
cy

 (
se

co
nd

s)

Bandwidth: 579 Kbps,
Latency: 200 ms

original
paged
reordered-paged
reordered

Figure 6: Web Application Results.

