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Abstract

Sandia National Laboratories (U.S. Department of
Energy) and Compaq Computer Corporation built a
72-node Windows NT cluster, which Sandia utilizes for
production work contracted by the U.S. government.
Recently, Sandia and Compaq's Tandem Division
collaborated on a project to run a I-terabyte
commercial-quality scalable sort on this cluster. The
audited result was a new world record of 46.9 minutes,
three times faster than the previous record held by a
32-processor shared-memory UNIXsystem. The
external sort utilizes a unique, scalable algorithm that
allows near-linear cluster scalability. The sort
application exploits several key hardware and software
technologies; these include dense-racking Pentium II
based servers, Windows NT Workstation 4.0, the
Virtual Interface Architecture, and the ServerNet [
System Area Network (SAN). The sort code was highly
CPU-efficient and stressed asynchronous and
sequential 1/O and IPC performance. The 1/0
performance when combined with a high-performance
SAN, yielded supercomputer-class performance.

1. Introduction

High-performance sorting is important in many
commercial applications that require fast search and
analysis of large amounts of information (for example,
data warehouse and Web searching solutions). We
present the design of a cluster and a commercial-quality
sorting algorithm that together achieved record-
breaking performance for externally sorting a terabyte
of data. The audited terabyte-sorting time of 46.9
minutes was three times faster than the previous record
[NyK97], which was achieved on a 32-processor SGI
Origin 2000.

The cluster consists of 72 Compaq Proliantl] servers
running Microsoft Windows NTO, although only 68 of
the servers were utilized for the sort. It was built in
collaboration with US Department of Energy’s Sandia
National Laboratories in New Mexico, where it is
currently deployed for production work contracted by

the U.S. government. The cluster nodes communicate
using Compaq’s ServerNet-I SAN (System Areca
Network). The SAN topology uses unique dual-
asymmetric network fabric technology for performance
and reliability [MeH99].

The external three-pass parallel sorting algorithm is
also expected to scale well on larger clusters. In fact,
the algorithm was originally developed for Compaq’s
NonStop™ Kernel (NSK) based servers (and will be
productized on both NSK and Windows NT clusters).
The program uses an application-specific portability
library, libPsrt, and a message-passing library, libVI.
Section 4 describes the application software
architecture in detail. LibVI builds upon the VI
Primitives Library specified by the Virtual Interface
Architecture (VIA) Specification [Com97]; it provides
a robust, high-throughput, multi-threaded and thread-
safe messaging layer with efficient waiting primitives
based on NT’s 10 Completion Ports. LibPsrt builds
upon libVI and supports more application-specific
operations, such as remote I/O and memory
management.

2. Cluster Hardware Configuration

The cluster hardware consisted of rack mounted
Proliant servers, a ServerNet[] I SAN, and over 500
disks. The disks were either internal to the nodes or
plugged in to Compagq hot-pluggable drive enclosures.
The total purchase price for a similarly configured 68-
node cluster would be $1.28M.



This system consists of the following hardware:

Item
Servers

Quantity

68 systems, 136 CPUs,
34GB RAM

269 Wide Ultra SCSI-3
busses, 537 disks, 62
external disk enclosures,
4.5TB dtorage

68 dual-port ServerNet |
NICs, dua-fabric topology
utilizing 48 6-port
ServerNet | switches

22 racks, 12 KVM switches,
2 rack mounted flat-panel
monitors

67 Windows NT
Workstation, one 70-license
Windows NT Server

68 Embedded 100BaseT
NICs (included in the
servers) attached to asingle
Cisco Catalyst 5500 switch
The costs break down as shown in Figure 1. As shown
in the graph, the largest portion of our system's cost was
in disks and externa disk enclosures. The second
largest portion was the servers (including additional
CPUs and memory added onto the base server
configuration). The ServerNet network was only 16%
of the system cost, including al of the cables, switches,
and NICs. The racking gear, KVM (keyboard, video,
mouse) switches, and the monitors used as system
consoles contributed only 5% to the cost. The 72-port
Cisco Catalyst 5500 Ethernet switch made up 3% of the
system cost, and finally, the Windows NT operating
system made up 2% of the system cost.

2.1 Compaq Proliant 1850R Servers

The full Sandia cluster contained 72 rack-mounted
Compaq Proliant 1850R servers, each with:
Two 400MHz Intel Pentium |1 Processors
512MB, 100Mhz SDRAM
One integrated and one PCl-card based dual-Ultra-
Wide SCSI-3 controller (for a total of 4 SCSI
busses)
One dual-ported ServerNet | NIC

Disks

ServerNet

Racking

Operating System

Ethernet Network

Of these nodes, 68 were actually used for the sort: 67 as
sort nodes and one as the sort manager. In addition, a
total of over 500 SCSI disks (in varying configurations)
were distributed among the 67 sort nodes (nominally, 8
disks per sort node — 7 for sorting and one for the OS).
The disks were all striped using Windows NT’s ftdisk
utility. Each node ran Windows NT Workstation 4.0
Service Pack 3 (except the sort manager node which ran

ServerNet Racking
o . 5%
perating 16%
System
2%
Ethernet

Disks

3% 41%

Servers
33%

Figure 1: Cluster cost breakdown

NT Server). All nodes were running a ServerNet-
specific software stack comprising Compag ServerNet |
VI (SnVie) version 1.1.10, ServerNet PCl Adapter
Driver (SPAD) verson 1.4.3, and ServerNet SAN
Manager (SANMAN) version 1.1.

The Proliant 1850R nodes were ideal for this cluster
because of several key features: high memory
bandwidth, small rack footprint, and integrated remote
console for system management. Memory bandwidth of
450MB/sec was measured with the STREAMS
benchmark on these nodes (using both CPUs). This is
vital to achieving good sorting performance because
much of the time spent sorting is spent in merges,
which tend to stress processor-memory bandwidth in a
manner similar to the long-vector accesses modeled by
the STREAMS benchmark. The small footprint was
important in order to make such alarge cluster feasible.
Proliant 1850Rs take only 3U (about 5.25 in/13.3 cm)
of rack space, and include 3 1-inch hot-pluggable drive
bays, room for 2 internal drives, and 4 PCl dots.
Finaly, the integrated manageability features allowed
us to monitor and reboot nodes from a single system
console using Compaq Insight Manager software.

2.2 ServerNet | SAN

Each ServerNet | PClI NIC provides two ServerNet
ports: an “ X” port and a“Y” port. Each port contains a
transmitter and a receiver, both of which can operate
concurrently, driving a bi-directional parallel LVDS
cable in both directions simultaneously. The NICs in
our system are interconnected by two fabrics of 6-port
ServerNet-1 crossbar routers (see Figure 2). An “X
fabric” connects all the X ports, and a “Y fabric’
connects all the Y ports. The two router fabrics are
complete but asymmetric: each node interfaces with
both fabrics and each fabric interfaces with every node,
but the topologies of the two fabrics are different.
Therefore, each fabric provides a path between every
source-destination pair, but the path lengths (measured
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Figure 2 : Sandia network topology

in router hops) of most paths differ from one fabric to
the other.

Traditionally, ServerNet topologies used two identical
fabrics for reliability (but not for performance) by
switching to a path in the Y fabric when the X fabric
path to a destination was down, and vice versa. Here,
we utilize the two fabrics for reliability and
performance by configuring SnVie to “prefer” the
shorter path when establishing a connection between
two processes on different end nodes. This reduces
network-routing latency (300 ns pipelined latency per
packet per ServerNet I router) by creating and using
paths with fewer hops; we also lower the probability of
output-port contention (because each fabric handles
only half of the total message traffic). Fault tolerance is
maintained by this approach because there are at least
two possible paths between each node pair, and traffic
can always be routed via the alternate path if the
preferred path fails.

X-Fabric
(10

bisection
links)

Y-Fabric
(14
bisection
links)

3. The Sort Algorithm

David Cossock of Tandem Labs developed sort, merge,
and parallel selection algorithms [Cos98] that were
used. The file to be sorted is distributed across the local
filesystems of the sort nodes, and sort processes are
assigned to nodes. While the algorithm applies equally
well to variable-length records, the results reported here
are with files containing fixed-width records (80 bytes
long) each containing an 8-byte (uniformly distributed)
random integer key. The sort algorithm leaves the
sorted data distributed among nodes such that the node-
order concatenation of all the files consists of records
sorted by the integer key in either ascending or
descending order.

The three sort phases include the following:

e Phase 1 (local-sort): each node sorts memory-
resident runs of the local partition.

*  Phase 2 (local-merge): the local runs are merged so
that each node has a completely sorted work file.



*  Phase 3a (partition): The sort processes execute a
parallel selection protocol over ServerNet,
determining (1) the upper and lower bounds of
their ultimate sorted output partition, and (2) the
relative byte addresses, within each node's work
file, of the beginning and end of records containing
keys between these bounds. This is the only part of
the sort that utilizes the sort monitor process.

*  Phase 3b (parallel-merge): Using remote I/O across
the ServerNet SAN, nodes merge pieces of each of
the other nodes’ work files to end up with their
portion of the sorted data.

While Phases 1 and 2 stress the system balance within
each node, stressing its CPU-memory and disk 1/O
subsystems, Phase 3b stresses each node’s I/0O bus and
the cluster interconnect.

Sort Monitor

operation completion. This means that each sorting
thread can issue commands, which can be IPC, remote
I/O, or inter-thread (within a process) communication,
and then it can wait on its own I/O completion port for
the next completed operation or incoming request. The
shadow thread is essentially a dispatch loop that
receives requests and completion notifications on one
IOCP and posts completion of local requests on another
IOCP to be read by the local sorting thread. It also posts
completions of remotely requested operations on VI
connections (as “reply” messages).

4.1 LibPsrt

LibPsrt provides an RPC-like model, based on the I/O
architecture of Compaq’s NSK operating system (note:
we could not utilize Windows NT RPC because it did

Sort Process

\ _/ Application

libPsrt
libVI
* User Libraries
SnVie 1.0.10 Kernel
Spad 1.4.3 ' I SanMan 1.1
\ ServerNet I NIC (rev. 1.5E) Hardware

Figure 3 : Sort Communication Architecture

4. Communication Software Architecture

The architecture of the sort application is shown in
Figure 3. Each sort node runs a “sort process”, and the
sort manager node runs the “sort monitor” process.
Each sort process contains two threads. A “sorting
thread” implements the sorting algorithm minus remote
I/O and interprocess communication (IPC), and a
“shadow thread” performs, in the background, IPC and
remote 1/O (on behalf of other sort processes). Each of
these threads uses a library called libPsrt, which
provides mechanisms for both IPC and remote 1/O.
Local I/O is handled directly by the sort thread itself
using NT’s asynchronous ReadFile and WriteFile
system calls and event-based completion. All remote
I/O and IPC is also asynchronous and uses Windows
NT I/O Completion Ports (IOCPs) to determine

not support the ServerNet SAN). In this model, sort
and shadow threads issue “requests” to other threads
that can be the same node or on any other node in the
cluster. Each of the requests contains a command and a
data portion. When the request is fulfilled, the thread
sends a “reply”, which also includes a data portion. An
example of this is when the sort manager wants to
obtain the “key” ranges in order to do partitioning in
Phase 3a of sorting. It sends a message to each of the
nodes with a “key request” command and a blank data
segment. Each node replies to key request with its keys
included in the reply’s data segment. Because the sort
process is not always ready to process requests, all IPC
requests are first handled by the shadow thread, which
forwards them to the sorting thread (i.e., it posts them
to the sort thread’s IOCP). Then, when it is ready, the
sort thread reads these requests from its IOCP, and



replies directly with the requested data. For remote I/O
requests, the shadow thread reads the local sort file and
responds directly to the requesting remote thread
without involving the sort thread.

4.2 LibVI

LibPsrt is built on top of libVI, a message passing
library built on the Virtual Interface Architecture
(VIA). LibVI provides a traditional send/receive style
messaging API. It is thread safe, and has support for
asynchronous send/receive operations (each
implemented as a synchronous call in its own thread).
One key feature of libVI is its ability to post message
completions through Windows NT I/O completion
ports. For a more detailed description of libVI, see
[Fin99].

4.3 ServerNet Drivers

LibVI uses SnVie, a kernel-level implementation of the
Virtual Interface Architecture for ServerNet I hardware
[Hor95]. It is intended as a porting vehicle for
migration to ServerNet II [HeG98]'. While SnVie
provides all of the features of ServerNet II, it is
implemented in software. Therefore, it has lower
performance than ServerNet II VI, which will be
implemented in hardware. In ServerNet II, VI data
transfers will occur without any kernel transitions.
LibVI will run without modification on ServerNet II
when it becomes available. SnVie uses ServerNet I's
TNet Services API, which is supported by the
ServerNet PCI Adapter driver (SPAD). Name service
support for low-level ServerNet Node IDs is provided
by the SAN Manager driver (SANMAN).

5. Performance Studies with the Sandia
Cluster

5.1 Sequential I/O Performance with
Striped Disk Partitions

Windows NT offers several mechanisms for issuing and
completing I/O requests. In this section we present
some performance measurements that were made
during sort application development. These results
represent filesystem and disk performance under
Windows NT, but not the performance of the sort
application code. However, we utilized these
measurements to make better choices when
implementing the sort.

'for more information on ServerNet II see
http://www.servernet.com

Riedel, et al [RiV98] report that striping large accesses
across multiple disks, using unbuffered 1/0, and having
many outstanding requests are the ways to optimize
sequential disk performance. Benchmark code for their
work is also available from Microsoft Research
(http://research.microsoft.com/barc/Sequential _10/).

We augmented their benchmark code with support for
IOCPs (I/0 Completion Ports), an efficient mechanism
for notification of outstanding I/O requests. Riedel, et al
had found write performance saturating below read
performance.

Using this benchmark, we found that:

*  The best performance was given by asynchronous
unbuffered I/0 using either event-based or IOCP
signaling;

* At 512KB I/O request size, peak read performance
and very nearly the peak write performance could
be achieved with just 2 I/O requests outstanding at
any given time; otherwise, 8 outstanding 1/O
requests were needed for full throughput at 128KB
1/0 size; and

*  We needed to stripe I/Os across either 2 10K-rpm
or 3 7200-rpm disk drives in order to fully exploit a
40 MB/s Ultra-Wide SCSI bus.

In fact, a single Seagate ST39102LW (9 GB, 10K-rpm)
drive was measured at 18.43 MB/s at 128KB I/O size
with 8 outstanding requests under an Adaptec SCSI
controller.

The Compaq Proliant 1850R nodes have an integrated
Symbios 53¢875 dual-channel SCSI controller. With 3
10K-rpm drives striped across two SCSI strings, at
512KB I/O size, and 20-deep asynchronous unbuffered
I/0 issue, we were able to reach a total bandwidth —
reading or writing — of 53 MB/s. The deployed system
has a second dual-channel SCSI controller in the form
of Symbios 53¢876 PCI card. At about 110MB/s the
32-bit 33-MHz PCI bus peaks; the four SCSI strings
with 3 disks each are therefore quite enough to exploit
all available I/0 bus bandwidth in the server.

5.2 Communication Performance with
LibVI over ServerNet I VI

5.2.1 ServerNet Hardware Performance
and Scalability

Each ServerNet I link is rated at 50 MB/s in each

direction. ServerNet I hardware-level packets contain

up to 64 bytes of payload and 16 bytes of header and
CRC. Each packet specifies either a read/write request



or a read/write response. Only read responses and write
requests carry payload. Requests and responses occur in
one-to-one correspondence; i.e., every request must be
acknowledged by a response. It is easy to see that peak
uni-directional data bandwidth on a ServerNet I link is
at most 40 MB/s when we consider packetization and
acknowledgement overheads; likewise, peak bi-
directional data bandwidth on a ServerNet I link is 33.3
MB/s.

Each node is allowed to have up to 8 request packets
outstanding. The SPAD driver configures this limit to 4.
The ServerNet I NIC responds to requests received
from the network by performing PCI read or write
operations. It is important to note that, irrespective of
the request type, every request-response sequence
involves exactly one PCI (memory space) read
transaction and one write transaction. While fewer than
4 requests are outstanding, an end node can continue to
generate requests. Once the limit is reached, an end
node can only issue responses; the next request must
wait for a response.

Data transfer occurs when an initiating node uses its
Block Transfer Engine (BTE) to initiate a request; at
the target node, the Access Validation and Translation
(AVT) logic carries out the specified operation and
generates a response. ServerNet routers perform
wormhole routing, allowing packet transfer to occur in
a pipelined fashion: Each packet travels through the
network as a train of symbols; the routing logic is
pipelined so that within 300 nanoseconds of arriving at
an input FIFO on the switch, the head of the train
emerges at an output port with the remaining symbols
following one per 50 MHz clock. So long as four or
more requests can be completed per round-trip time, the
pipeline will continue to run efficiently.

There are three principal sources of “pipeline bubbles”
in ServerNet I: (1) PCI bus first-byte read latency, (2)
single-threadedness of the BTE engine, and (3) output-
port contention in routers.

The first of these reduces the average PCI efficiency of
ServerNet I NICs, pushing the 32-bit 33-MHz PCI bus
into saturation as soon as a node hits 33 MB/s uni-
directional outbound traffic or 19 MB/s bi-directional
traffic. PCI saturation can delay generation of response
packets, causing packet round-trip times to shoot up.

The second causes the BTE to idle when all 4 requests
are outstanding, pushing the network interface into an
outstanding request (OR) limited mode, where the peak
bandwidth of a connection drops to 4*64/RTT MB/s
where RTT is the hardware round-trip time for a
request-response pair in microseconds. Another

property of a single-threaded BTE is its inability to use
both fabrics simultaneously; at best, it can support static
load balancing of connections between fabrics.

Output-port contention occurs in ServerNet routers
when two packets try to go out of the same router port;
one of them is blocked, causing other traffic behind it to
back up. Thus, output-port contention causes
congestion in the network, lowering the network’s link
utilization and throughput and increasing the RTT of
packets. We hasten to note that ServerNet II has much
better performance characteristics on all three counts.

5.2.2 LibVI Performance and Scalability

In this section we present raw performance
measurements of the libVI communication library
running over ServerNet I VI. We measured both point-
to-point and all-to-all performance, though the sort
primarily stresses the all-to-all bandwidth or the
network.

5.2.2.1 Point-to-point latency and
bandwidth

To measure point-to-point performance a simple ping-
pong test was utilized. This test consisted of one
process sending a message of a given size to another
process, then that process sending the message back.
The time for this operation was halved to get the one-
way send time. For this test, all data were sent
synchronously using blocking send and receive
functions. In addition, all graphs in this paper use the
VIA send/receive-based long message protocol (rather
than the VIA remote-DMA based protocol) as
described in [Fin99] because it performed better for sort
phase 3b.

LibVI’s basic message latency was about 138
microseconds. Note that ServerNet I VI is a software
implementation, and this latency is system dependent.
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Latencies between 80 and 200 microseconds have been
observed with libVI on different systems. While this
variation should decrease with ServerNet II’s hardware
VIA implementation, PCI and memory latency as well
as CPU speed will always cause this to vary.

One of the primary advantages of VIA based networks
is their ability to transfer long messages using DMA,
freeing the processor to perform computation or to
service short messages. LibVI was designed to
minimize CPU utilization, and maximize the use of
DMA. This was done primarily by using “wait”
commands to check for message completion, rather
than polling for completion. This implementation
results in extremely low CPU utilization. For long
messages, 1ibVI’s CPU utilization was less than 5%
running at full bandwidth. Even for short messages,
CPU utilization was quite low. However, this was done
at the cost of message latency. It is likely that lower
latency could be achieved with a polling-based short-
message protocol, or a protocol that does not have an
additional thread involved in message receipt.
However, our protocol seeks to maximize concurrency
and message throughput, a feature well suited to data-
intensive applications. In fact, this sort was quite
insensitive to latency. Sort performance was almost
entirely a function of SAN and disk bandwidth. With
such a low CPU utilization, it is possible to effectively
overlap operations in the CPU with communication to
an extent not possible with most message-passing
libraries and networks.

Message bandwidth is shown in Figure 4. The point-to-
point bandwidth achieved was 30MB/s. This difference
between this and the “achievable peak™ of 33.3MB/sec
was due to the “long-message” protocol used for this
measurement.
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Figure 5: Long message aggregate
bandwidth protocol comparison

LibVI internally can utilize either VIA’s send/receive
mechanism or its remote DMA mechanism for
transferring messages larger than 56 bytes (small
messages are always transferred with send/receive). In
our experiments, VIA send/receive delivered better
aggregate bandwidth when many nodes were
communicating with many nodes simultaneously.
However, point-to-point bandwidth of the send/receive
based protocol was about 10% worse than the remote
DMA based protocol (with only one pair of nodes
communicating across the entire cluster). Because the
sort performance was more dependant on aggregate
bandwidth, we chose to use libVI’s send/receive based
long-message protocol for the sort. This protocol is a
compile-time internal option for libVI, and does not
change libVI’s semantics or its API.

5.2.2.2 Aggregate bandwidth

One of the key metrics against which libVI was
benchmarked is aggregate bandwidth. This was
especially important for the Terabyte Sort code, which
included a parallel-merge phase limited by the
network’s aggregate bandwidth. While these results
were limited by the networking hardware utilized in the
Sandia cluster, we also found some non-obvious
protocol effects.

The aggregate bandwidth test utilizes the IOCP
send/receive routines. The test initially issues one
512K byte send to every other process and one 512K
byte receive from every process (the 512KB message
size was chosen because it was the block size used in
the parallel-merge phase of the sort). Then, it sits in a
loop waiting on the IOCP for one of the operations to
complete. As operations complete, the program re-
issues the same operation (either or an asynchronous
send or receive) to or from the same process. It
continues to re-issue the operations until each specific
send and receive has been issued 50 times. This results
in the transmission of 25MB*<# of procs> of data both
in and out of every process in the cluster. Because
messages are issued in completion order, the
communication pattern is random and there is no
attempt made to alleviate hot-spots. This unstructured
communication is very similar to the sort’s parallel
merge, and was a good predictor of sorting
performance.

We ran this test with one process per node across the
set of nodes from 0 to N-1 (where N is the total number
of processes on which we ran the test). This resulted in
the performance shown by the squares in Figure 5 (i.e.,
the “unrestricted” line). As can be seen from the graph,
scaling is relatively linear, but per-node bandwidth is
below the peak ServerNet bandwidth of 33MB/sec per
direction.



In fact, we were achieving only about 8 MB/sec/node
(bi-directional) vs. the “achievable” maximum, 19
MB/sec (bi-directional). The primary cause of this was
that the network was not a fully connected crossbar.
The topology we utilized was only capable of about
of the peak bandwidth, so we should only be able to
attain about 9.5MB/sec/node.

However, 8MB/sec/node was still slower than what we
expected. This turned out to be from node contention.
Essentially, if two or more nodes are sending or
receiving data from a node in the system, then they will
receive it slower than if they had sequentialized their
access to that node. This is particularly true for the
sort, where every node is likely to have multiple
send/receive operations that are ready to begin at any
given time. While it is combinatorially unlikely that 3
or more nodes will be reading from or writing to any
node’s ServerNet NIC, it is quite likely that there will
always be some NIC that has at least two nodes
contending for it. Unfortunately, it was impossible to
orchestrate the communication in the sort code to fully
alleviate this problem, but it was possible to impose
restrictions on the libVI long-message protocol.

The changes to the libVI communication protocol
introduced “restrictions” in different portions of the
protocol. First, consider the send/receive protocol. In
the standard “unrestricted” protocol, it is possible to be
simultaneously receiving a message from and sending a
message to every other node in the cluster. However,
we can impose a lock that restricts this to a single
“long-message” send and a single “long-message”
receive active at any given time. The results of these
changes are shown in the diamonds in Figure 5. As can
be seen, for small numbers of nodes, the unrestricted
protocols performed slightly better, but for larger
number of nodes, the restricted send/receive performed
significantly better. This difference was an increase in
the bi-directional bandwidth of about 1MB/sec/node for
the full machine, raising performance to about
9MB/sec/node. Therefore, the restricted send/receive
protocol was used for the Terabyte Sort. However, for
typical applications that do not perform the same
amount of unstructured all-to-all communication, the
unrestricted protocol is recommended since it performs
better in the more common case.

5.3 Sort Application Performance

The following sorting performance was obtained on 68
nodes of our 72-node cluster. One node was dedicated
to a sort monitoring process. Each of the remaining 67
nodes owned a partition consisting of 205,132,767 80-
byte records (with 8-byte integer keys) for a total of
16,410,621,360 bytes per node. The benchmark sorts a
total of 13,743,895,389 records in 46.9 minutes. The

breakdown of this sort time is shown in Figure 6 and
further described in the following sections.
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Figure 6: Breakdown of terabyte sort time

5.3.1 Process Launch and Connection
Establishment

The initial 25 seconds of the sort were lost in process
launching and communication initialization between
sort processes. While this time may seem excessive, it
was in fact the result of a significant amount of tuning.

When the job starts the following must occur:

* the sort monitor must start the sort processes on
each of the 67 sort nodes;

» the sort processes must establish VI connections
with each of the other sort processes and the sort
monitor; and finally,

*  the sort monitor must send initial sort parameters to
each of the sort processes.

The remote process launch was achieved with a custom
RPC server on each of the sort nodes. This RPC server
implemented a remote “create process” API, similar to
the standard Win32 CreateProcess system call. Then,
the nodes had to establish VI connections. Because
libVI emulates a connectionless model, all VI
connections must be established in advance, before the
sort algorithm can start. Unfortunately, the connection
mechanism in ServerNet I VI is inefficient, and highly
timing dependent. While it is expected that the
connection mechanism for ServerNet II will be better,
connection establishment overhead remains one of the
weaknesses of the VI Architecture standard, and it is
unlikely it will ever be fast. If this were a significant
performance problem for the sort, we could have
overlapped part of the connection establishment process
with Phase I of sorting. However, that would have
required significant modification to libVI, which was
undesirable in order to keep the code maintainable.

5.3.2 Local In-Core Sorting and Merging

Each node sorted approximately 16 GB of data in 13:05
to 13:45 minutes. As data were read and written once
during sort and once during merge, 64 GB of net disk
access was accomplished at a net I/O rate of 5.3 GB/s



on 67 nodes, or 78.3 MB/s per node on 7 disks spread
across 4 SCSI strings on a single PCI bus. One of the
stripe sets consisted of 4 7200-rpm drives on 2 SCSI
strings in an external disk enclosure. The other stripe
set consisted of two internal and one hot-pluggable
10K-rpm drives installed in the server. These were also
spread across two SCSI strings (the drive containing the
system’s OS shared the SCSI string with the single hot-
pluggable 10K disk). In addition to this, a few of the
stripe sets used additional disks to make up for
underperforming drives. As noted above, this drive
count is below what is needed to saturate the SCSI
buses. Peak I/O rates observed while sorting were
therefore disk-count limited. Performance on this phase
during stress periods was also PCI limited; with dual-
PCI systems the cluster would have hit an average 1/O
rate of 7.5 GB/s.

The application uses multi-threading and asynchronous
file operations to provide input/output concurrency
during the local sort and merge phases. The 16 GB data
are treated as 116 runs of about 138 MB each. Each sort
process, as discussed above, maintains 30 MB of
outstanding requests with 2 MB buffers. Multiple
asynchronous bulk reads are issued during the sort
phase, while the double-buffered merge input consists
of 116 concurrent 1.25 MB requests. The merge phase
is seek-count limited (which could be optimized further
on large-memory systems by utilizing larger buffers
and doing fewer seeks). In spite of multi-threading, the
sort phase incurs occasional CPU delays.

CPU Utilization

Sort Phase (out of 2.0)
Local Sort 1.3
Local Merge  0.65

Parallel Merge 0.18-0.22

Table 1: Sort CPU Utilization

CPU utilization for the entire sort was low, and it is
likely that we could have achieved similar results with
uniprocessor nodes. The results are summarized in
Table 1. The “local sort” was the only phase of the sort
that had a CPU utilization of more than one, and the
“local merge” used only _ as much CPU as the local
sort.

With the advent of Ultra2 Wide (i.e., 80 MB/sec or
faster) SCSI and Fiber Channel SCSI systems, and dual,
wider, and/or faster PCI busses available in many
servers, we expect the time for these phases to drop
below five minutes on newer systems.

5.3.3 Parallel Selection and Partitioning

Using a highly efficient parallel selection procedure, the
sort took only 4-6 seconds to conduct a three round
protocol of bounding, k-th record sampling, and
merging, to determine what output partition needed
which piece of each node’s sorted data.

5.3.4 Parallel Merge

Essentially, this phase involves a global data movement
in which almost every byte of data moves across the
network in a random all-to-all communication pattern.
This is the phase where the ServerNet I SAN and each
node’s PCI bus were stressed. Approximately a terabyte
of data moved across the cluster in 32.6 minutes. This
means that each node merged at about 8MB/sec for a
total rate of 535MB/sec. To achieve this, each node had
to simultaneously read its disk at 8MB/sec, write its
disk at 8MB/sec, and sustain 8MB/sec of bi-directional
bandwidth through its ServerNet NIC. The total
bandwidth through the network was 535MB/sec. This
was about 88% of the aggregate ServerNet bandwidth
measured in Section 5.2, despite the increased load on
the PCI bus due to SCSI disk transfers.

Because most of the real work in this phase was 1/O or
IPC, and both SCSI and ServerNet have very low CPU
utilization, the total CPU for this phase was 0.18-0.22
across both CPUs (as shown in Table 1). While this is
far less than the 2.0 CPUs we had available, we have
observed that libVI’s performance does drop
substantially in a uniprocessor environment. This is due
to the overhead associated with handling I/0 and IPC
interrupts and executing application code on the same
processor.

The performance of this phase was PCI limited; high
first-byte latencies on PCI bus drive small-transfer
efficiency in to the 25% range ServerNet I’s small
packet size caused the inevitable PCI reads — 1 per 64-
byte packet — to operate at this low efficiency.

The limiting effects of the PCI bus were further
magnified by the single-threadedness of BTE. The
network operated in outstanding request exhausted
mode: requests could not be issued waiting for
responses to earlier requests. Simulation of our
topology under the Phase 3b workload [ShA99]
showed that at 4 KB transfer size, a 50/50 mix of read
and write requests, and a request injection rate of 4700
4KB-requests per second, the min, max and mean
values of packet RTT were, respectively, 3.34, 682 and
25.8 microseconds. Therefore, whenever ServerNet I
NIC went into outstanding request (OR) exhaustion
(due to all 4 unacknowledged packets outstanding),
performance dropped below 10 MB/sec bi-directional.



Simulations also showed that the network dynamics
consisted of periodic phase transitions into and out of
this OR-exhausted mode.

In addition, the 4-in 2-out topology at the periphery of
the network was necessary to keep the router counts
low. Output-port contention caused by traffic
concentration further limited the utilization of the
bisection links.

Even so, a sustained bisection bandwidth of 535MBps
was achieved by the topology primarily because the
asymmetric-fabric architecture kept the hop-counts low,
thereby reducing the round-trip times. Many of the
lessons learned about ServerNet I’s large-scale
performance influenced the design of ServerNet II.

With a dual-PCI server, and two ServerNet I NICs per
node, the time for this phase would have been cut in
half, falling to 15 minutes, without requiring any
change in network topology. Coupled with 4-way 10K
rpm disk striping per partition, estimated total sort time
would be below 25 minutes.

With ServerNet II NICs (multi-threaded engine,
efficient PCI operation due to 512-byte packet size,
faster 125 MB/s links), 64-bit PCI busses, and
ServerNet II’s 12-port routers (which will drop inter-
node distance to 2 hops), we expect Phase 3 time to
drop below 10 minutes, to a point where even remote
/O will be limited by disk speeds.

To summarize, while the current result stands at 46.9
minutes to sort a terabyte of data, we envisage a time of
about 15 minutes — a three-fold improvement — using
commodity hardware available within the next few
months. It is important to note that our sort algorithm,
libPsrt and 1libVI are architected for scalability and
efficiency; that is why, improvements in price and
performance of sorting are expected to closely track
forthcoming improvements in cost and performance of
hardware.

6. Summary

This paper described the hardware and software used
for Compaq's Sandia Terabyte Sort benchmark. The
Sort exploited several key technologies including
dense-racking Intel Pentium II based Compaq servers,
Ultra-Wide SCSI disks and dual-channel controllers,
Microsoft Windows NT 4.0, Compaq ServerNet I SAN,
and the Virtual Interface Architecture. These
technologies combined with a unique scalable sorting
algorithm and highly efficient communication software,
deliver high performance at a fraction of the cost of
other solutions.
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