
The following paper was originally published in the
Proceedings of the 2nd USENIX Windows NT Symposium

Seattle, Washington, August 3–4, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

Scalability of the Microsoft Cluster Service

Werner Vogels, Dan Dumitriu, Ashutosh Agrawal, Teck Chia, Katherine Guo
Cornell University

Scalability of the Microsoft Cluster Service

Werner Vogels, Dan Dumitriu, Ashutosh Agrawal, Teck Chia, Katherine Guo

Department of Computer Science, Cornell University†

vogels@cs.cornell.edu

† The reliable cluster computing research of the Reliable Distributed Computing Group at the department of Computer Science at Cornell
University is supported by DARPA/ONR under contract N0014-96-1-10014 and by Intel Corporation and Microsoft Corporation.

Abstract
An important argument for the introduction of software
managed clusters is that of scale: By constructing the
cluster out of commodity compute elements, one can,
by simply adding new elements, improve the reliability
of the overall system in terms of performance and in
availability. The limits to how far such a cluster can be
scaled seems to be dependent on the scalability of its
management software, which in its core has a collection
of distributed algorithms to guarantee the correct
operation of the cluster. The complexity of these
algorithms makes them a vulnerable component of the
system in terms of their impact on the overall
scalability of the system.

This paper examines two of the distributed components
of the Microsoft Cluster Service [8] that are most likely
to have an impact on its scalability: the membership
and the global update managers. The first sections of
the paper will provide some general background on
these distributed services and scalability issues. After
that the algorithms used to implement these service are
described in detail and an analysis of their impact on
scalability is given. The scalability analysis is based on
an off-line analysis of the algorithms as well as the
results of on-line experiments on a cluster with a, in
MSCS terms, large number of nodes.

1 Distributed Management
In distributed management software two components
are considered basic building blocks: a consistent view
about which nodes are on-line, and the ability to
communicate with these nodes in an all-or-nothing
fashion [2].

The first building block is captured in a membership
service: all nodes participate in a consensus algorithm
to agree on the current set of nodes that are up and
running. The system makes use of a failure detection
mechanism that monitors heartbeat signals or actively
polls other nodes in the system. The failure detector
will signal the membership service whenever it suspects
the failure of a node in the system. The membership
service will react to this by triggering the execution of a
distributed algorithm at all the nodes in the system, in

which they agree upon which nodes have failed and
which are still available. The joining of a new member
in the system, does not require the nodes to run the
agreement protocol, but can often be handled through a
simple update mechanism.

The second fundamental component provides a special
communication facility, with guarantees that exceed the
properties provided by regular communication systems.
Often in the process of managing a distributed system it
is necessary to provide the same information to a set of
nodes in the system. We can simplify the software
design of many of the components on the receiving side
of this information if we can guarantee that if one node
receives this information, that all nodes will receive it.
This atomicity guarantee allows nodes to act
immediately upon reception of a message, without the
need for additional synchronization. Often this
atomicity guarantee is not sufficient for a system, as it
does not only need be assured that all nodes will receive
the update, but that all nodes will see the updates in the
same order. This total order property makes the
communication module a very powerful mechanism in
the control of the distributed operation of the distributed
system.

2 Practical Scalability
This paper examines the membership and
communication services of the Microsoft Cluster
Service (MSCS) with an emphasis on their impact on
the scalability of the system. MSCS, as shipped,
officially supports 2 nodes, but in reality the software
can be run on a 16-node NT server cluster. At Cornell
the software is extended to run on 32 nodes and a
research project is underway to make the system scale
to larger numbers.

Making systems scale in practice centers around the use
of mechanisms to reduce the dependency of the
algorithms on the number of nodes. In the past two
approaches have been successful in finding solutions to
problems of scale: The first is to reduce the
synchronous behavior of the system by designing
messaging systems and protocols that allow high levels
of concurrent operation, for example by de-coupling the

sending of messages from the collecting of
acknowledgements. The second approach is to reduce
the overall complexity of the system. By building the
system out of smaller (semi-)autonomous units and
connecting these units through hierarchical methods,
growing the overall system has no impact on the
mechanism and protocols used to make the smaller
units function correctly.

A third, more radical approach, which is under
development at Cornell, makes use of gossip based
dissemination algorithms. These techniques
significantly reduce the number of messages and the
amount of processing needed to reach a similar level of
information sharing among the cluster nodes.

Given that cluster systems such as MSCS are used for
enterprise computing, any instability of the system can
have severe economic results. There is a continuous
tradeoff between responsive failure handling and the
cost of an erroneous suspicion. The system needs to
detect and respond to failures in a very timely matter,
but designers may choose a more conservative
approach given the significant cost of an unnecessary
reconfiguration of the system, caused by an incorrect
failure suspicion. In general cluster server systems run
compute and memory intensive enterprise applications
and these systems experience a significant load at
times, reducing the overall responsiveness. Scaling
failure detection needs intelligent mechanisms for fault
investigation [6,11] and requires the failure detectors to
be able to learn and adapt to changes [7].

3 Scalability goals of MSCS
The Microsoft Cluster Service is designed to support
two nodes, with a potential to scale to more nodes, but
in a very limited way. MSCS successfully addresses the
needs of these smaller clusters. The cluster management
tools are a significantly improvement over the current
practice and they are a major contribution to the
usability of clusters overall.

The research reported here is concerned with scaling
MSCS to larger numbers of nodes (16 - 64, or higher),
which is outside of the scope of the initial MSCS
design. There are three areas of interest:

1. Can the currently used distributed algorithms be a
solid foundation for scalable clusters?

2. Are there any architectural bottlenecks that should
be addressed if MSCS needs to be scalable?

3. If MSCS is extended with development support for
cluster aware applications are the current
distributed services a good basis for these tools?

 This paper should not be seen as criticism of the
current MSCS design. Within the goals set for MSCS it

functions correctly and will scale to numbers larger
then originally targeted by the cluster design team.

4 Cluster Management
The algorithms used in MSCS for membership and total
ordered messaging are a direct derivative of those
developed in the early eighties for Tandem as used in
the NonStop systems [3,4]. Nodes in a Tandem system
communicated via pairs of proprietary inter-processor
busses, which, in 1985, provided a 100 Mbit/second
transfer rate. Parts of the messaging side of the
algorithms was implemented in interrupt handlers to
provide minimal system overhead.

Although MSCS has a kernel module that implements
some of the messaging and failure detection, the
membership and global update algorithms are
implemented in an NT service, the Cluster Service,
which runs at user level. The Cluster Service holds in
total 11 managers, each responsible for a different part
of the cluster service functionality. Next to the
membership and communication managers, there are
managers for resource and failover management, for
logging and checkpointing, and for configuration and
network management.

In the following sections three of the components are
examined in detail: first the kernel module which holds
the cluster communication and failure detection
functionality. Secondly the join process and the failure
reconfiguration of the membership module are
analyzed. The last analysis is that of the global update
communication module.

5 Cluster Network
MSCS provides a kernel based cluster network
interface, ClusNet, which presents a uniform interface
to networks available for intra-cluster communication.
ClusNet supports basic datagram communication to
each of the nodes, using an addressing scheme based on
simple node identifiers which are assigned to nodes
when they are first configured for use in the cluster. To
support reliable communication ClusNet provides a
transport interface used by MS-RPC.

ClusNet is capable of managing a redundant
networking infrastructure, automatically adapting
packet routing in case of network failure.

5.1 Node Failure Detection
MSCS implements its Failure Detection (FD)
mechanism using heartbeats. Periodically every node
sends a sequenced message to every other node in the
cluster, over the networks that are marked for internal
communication. Whenever a node detects a number of
consecutive missing heartbeats from another node it
sends an event to the cluster service which uses this

event to activate the membership reconfiguration
module.

In the current MSCS configuration heartbeats are sent
every 1.2 seconds and the detection period for a node
suspicion is 7.2 seconds (6 missed heartbeats). The
timing values are not adaptive.

The cluster network module does not exploit any
broadcast or multicast functionality, and thus each
heartbeat results in (number_of_nodes-1) point-to-point
datagrams. In our test setup of 32 nodes, the cluster
background traffic related to heartbeats is 800 messages
per second. With 32 nodes active and an otherwise idle
network the mechanism works flawless and the packet
loss observed was minimal. Tests which replaced the
Fast-Ethernet switches with hubs showed that the
packet trains sometimes caused significant Ethernet-
level collisions on the shared medium. Adding
processing load to the systems resulted in variations in
the inter-transmission periods. False suspicions were
never seen.

When adding processing load and additional load on the
network frequently single heartbeat misses where
observed, but the values for generating a failure
suspicion event so conservative that never any false
suspicions were generated.

6 Node Membership
The MSCS membership manager is designed into two
separate functional modules: the first handles the
joining of nodes and a second, regroup, implements the
consensus algorithm that runs in case of a node failure.

6.1 Join
The join algorithm starts with a discovery phase in
which the joining node attempts to find other nodes in
the cluster. If this fails the node tries to form a cluster
by itself, the details of the cluster-form operation are
outside of the scope of the paper. After the node has
discovered which cluster nodes are currently running it
selects one of the nodes and petitions for membership
of the cluster. The selected node, dubbed the sponsor,
announces the new node to all active cluster members,
transfers all the up-to-date cluster configuration to the
new node, and waits for the node to become active. The
different phases of the join and their distributed
complexity are described in detail in the following
paragraphs

Phase 1: Discovery. When a cluster service starts is
attempts to connect to each of the other known nodes in
the cluster, using RPC over a regular UDP transport.
This sponsor discovery mechanism has a high degree of
concurrency: a thread is started for each connection
probe. The joiner waits for all threads to terminate,
which occurs after the RPC binding operation fails after

a time-out or when a connection is established. As the
joiner waits for all threads to terminate, the delay the
joining node experiences is based on the time-out
period of an RPC connection to a single node that is not
up. The timeout value for RPC out-of-the-box is
approximately 30 seconds, but it can be manipulated to
reduce the discovery phase to 10 seconds.

In all observed cases, the joining node always selected
the holder of the cluster IP address to sponsor its join.
The cluster IP address is a single address that migrates
to a node that functions as the access point for
administrative purposes: if the cluster is running there is
always a node that holds this IP address. By modifying
the startup phase to start by attempting to connect to
this address first before probing all the other nodes, it is
possible to reduce this phase of the join process to
under a second. This approach also avoids starting a
number of threads that is equal to the number of nodes
in the cluster.

Phase 2: Lock. From the nodes that are up, the joiner
selects one node to sponsor its membership in the
cluster. The first action by the sponsor is to acquire a
distributed global lock to ensure that only a single join
is in progress. Acquiring of the lock is performed using
a global update (GUP) method.

The use of GUP makes this phase is dependent on the
number of active nodes. Details on the performance and
scalability of GUP can be found in section 7.

Phase 3: Enable Network: Using a sequence of 5 RPC
calls to the sponsor the joiner retrieves all information
on current nodes, networks and network interfaces.
Following this the joiner performs an RPC to each
active node in the cluster for each interface a node is
listening on, and the contacted node in return performs
an RPC to the joiner to enable symmetric network
channels. After this sequence the node security
contexts are established which again requires the
joining node to contact all other active nodes in the
cluster, in sequence.

0

500

1000

1500

2000

2500

3000

1 4 7 10 13 16 19 22 25 28 31

#nodes

m
ill

is
ec

on
ds

Figure 1. Join latency under ideal conditions

This phase depends on the number of active nodes in
the cluster. An unloaded 31 nodes cluster, on average,
performs this sequence of RPC's in 2-4 seconds. On a
moderately loaded cluster, frequently this phase takes
longer then 60 seconds, causing the join operation to
time-out at the sponsor, resulting in an abort of the join.

Phase 4: Petition for Membership: The joiner requests
the sponsor to insert the node into the membership. This
is a 5-step process directed by the sponsor.

1. The sponsor broadcasts to all current members the
identification the joining node.

2. The sponsor sends the membership algorithm
configuration data to the joiner

3. The sponsor waits for the first heartbeat from the
new joiner.

4. The sponsor broadcasts to all current members that
the node is alive

5. The sponsor notifies the joiner that it is inserted in
the membership

The broadcasts are implemented as series of RPC calls,
one to each active node in the cluster. On an unloaded
cluster and network the serialized invocation of RPC to
30 nodes takes between 100 and 150 milliseconds.
When loading the systems with compute and IO tasks,
the RPC times vary widely from 3 millisecond to 3
second per RPC. Broadcast rounds to all 30 nodes were
observed taking more then 20 seconds to complete
(with exceptions up to 1 minute). As this phase is under
control of the sponsor the join is not aborted because of
a time-out. It can abort on a communication failure with
any of the nodes.

In step 3 the detection of the new heartbeat is delegated
to ClusNet, which performs checks every 600
millisecond, resulting in an average waiting period
between 0.6 and 1.2 seconds

Phase 5: Database synchronization. The joiner
synchronizes its configuration database with the
sponsor. In the experimental setup this database was of
minimal size and never out-of-date. As the retrieving of
the database updates is not depended on cluster size, not
further tests were performed in this phase.

Phase 6: Unlock. The newly joined node uses its access
to the global update mechanism to broadcast to all
nodes that it now is full operation and that the global
lock should be released.

The join operation is very much dependent on the
number of nodes in the system. Figure 1 show the times
for a join under optimal conditions. All RPC calls in the
algorithms are serialized and at minimum there are (10
+ 7 * number_of_nodes) calls. Joining the 32nd node to
the cluster requires at least 227 sequential RPC's. This
approach collapses under load, frequently it is
impossible to join any nodes if only a moderate load is

placed on the nodes and the system has more then 10-
12 nodes.

6.2 Regroup
Upon the receipt of a node failure event generated by
ClusNet the Cluster Service starts the reconfiguration
algorithm, dubbed regroup. The algorithm runs in 5
phases, with the transition to each new phase
determined after its is believed that all other nodes have
finished this phase, or when, in the first two phases,
timers expire.

During regroup the nodes periodically (300ms)
broadcast their current state information to all other
nodes using unreliable datagrams. The state is a
collection of bitmasks, one for each phase, describing
whether a node has indicated it has passed a phase. It is
not necessary for each node to have heard for each
other node in a phase; information about which other
nodes a certain node has heard of is shared. For
example if node 1 indicates that it has received a
regroup message from node 2, node 3 uses this without
that it actually needs to receive a message from node 2
in that phase. Also included in the state is a
connectivity matrix in which nodes record whether they
have seen messages from the other nodes and what
connectivity information has been recorded by the other
nodes.

The 5 phases of the regroup algorithm are the
following:

Phase 1: Activate. Each node waits for a local clock
tick to occur so that it knows that its timeout system can
be trusted. After that it starts sending and collecting
status messages. It advances to the next stage if

1. All current members have been detected to be
active (e.g. there was a false suspicion),

2. If there is one single failure and a minimal time-out
has passed or,

0

5000

10000

15000

20000

25000

30000

35000

40000

1 3 5 7 9

11 13 15 17 19 21 23 25 27 29 31

#nodes

#m
es

sa
ge

2 failures 1 failure

Figure 2. Number of messages in the system during regroup

3. When the maximum waiting time has elapsed and
several members have not yet responded.

The minimum timeout for phase 1 is 2.4 second, if all
but one node have responded in this time period it is
assumed that there was a single failure and the
algorithm moves to the next phase. If multiple nodes do
not respond, the algorithm waits for 9.6 seconds to
move to the next phase. If for some reason the regroup
algorithm times out in a different phase or when there
are cascading starts of the regroup algorithm at several
nodes, the algorithm executes in cautious mode and
always waits for the maximum timeout to expire.

Phase 2: Closing. This stage determines whether
partitions exist and whether the current node is in a
partition that should survive. The rules for surviving
are:

1. The current membership contains more than half
the original membership.

2. Or, the current membership has exactly half the
original members, and there are at least two
members in the current membership and this
membership contains the tie breaker node that was
selected when the cluster was formed.

3. Or, the original membership contained exactly two
members and the new membership only has one
member and this node has access to the quorum
resource.

After this the new members select a tie breaker node to
use in the next regroup execution. This tiebreaker then
checks the connectivity information to ensure that the
surviving group is fully connected. If not it prunes those
members that do not have full connectivity. It records
this pruning information in its regroup state, which is
broadcast to all other nodes. All move to stage 3 upon
receipt of this information.

In case of incomplete connectivity information the
tiebreaker waits for an additional second to allow all
nodes to respond.

Phase 3: Pruning. All nodes that have been pruned
because of lack of connectivity halt in this phase. All
others move forward to the first cleanup phase once
they have detected that all nodes have received the
pruning decision (e.g. they are in phase 3).

Phase 4: Cleanup Phase One. All surviving nodes
install the new membership, mark the nodes that did not
survive the membership change as down, and inform
the cluster network to filter out messages from these
nodes. Each node's Event Manger then invokes local
callback handlers to notify other managers of the failure
of nodes.

Phase 5: Phase Two. Once all members have indicated
that the Cleanup Phase One has been successfully
executed, a second cleanup callback is invoked to allow

a coordinated two-phase cleanup. Once all members
have signaled the completion of this last cleanup phase
they move to the regular operational state and seize the
sending of regroup state messages.

The regroup algorithm in its first two phases is timer
driven and the algorithm makes progress independent
of the number of nodes in the cluster. The transitions of
the next 3 phases are dependent on the number of nodes
in the system, but the "information sharing" mechanism
makes the system robust in dealing with sporadic
message loss.

The state information is broadcast by sending point-to-
point datagrams to each node in the cluster. With an
inter-transmission period of 300 millisecond, and 31
nodes in the cluster, this generates a background traffic
of over 3000 messages/second. A single failure
reconfiguration has an average runtime of 3 seconds
and thus generates around 10,000 messages. A two-
node failure, with a full running cluster is likely to
generate between 30,000 and 40,000 messages. Figure
2 details the observed messages in the system during
regroup.

7 Global Update Protocol
It is essential for a distributed management system to
have access to a primitive that allows consistent state
updates at all nodes. MSCS uses the Global Update
Protocol (GUP) for this purpose. Although the protocol
is described as providing atomicity, its implementation
has the stronger property of providing total ordering to
its update messages.

When a node starts an global update operation, it first
competes for a transmission lock managed by a node
that is assigned the functionality of the locker node.
Only one transmission can be in progress at a time. If
the sender can not obtain the lock it is queued on the
lock waiting list and blocks until it reaches the head of

LLLL

L+1L+1

L+7L+7

L+6L+6

L+5L+5

L+4L+4

L+3L+3

L+2L+2

Lock & update 0

Update 1

U
pd

at
e

7

Update 3

Update 2

Unlock

U
pd

at
e

6
U

pd
at

e
5

Update 4

Figure 3. Global Update Sequence

the queue. With the lock request the sender also
transmits its update information to the locker node
which applies it locally, and stores the message for later
replay under certain failure scenarios. While holding
the lock the sender transmits its update to all other
active nodes in the cluster and terminates the
transmission with a final message to the locker node
which releases the lock (see figure 3).

To transmit the messages to all other nodes, the sender
organizes the cluster nodes into a circular list, ordered
by NodeId. After it acquired the lock the sender send its
updates starting with the node that is after the locker
node in the list. The sender works through the list in
order, wrapping when it reaches the last node in the
cluster to the first node and stops when it once again
reaches the locker node. The transmission is finished
with an unlock message to the locker node.

Acquiring the lock before performing the updates
guarantees that only one update is in progress at a given
time, which gives the protocol the total ordering
property. Atomicity (if one surviving node applies the
update, all other surviving nodes will) is achieved
through the implementation of a number of fault-
handling scenarios.

1. The sender fails: the locker node takes over the
transmission and completes it.

2. A receiver fails: wait for the regroup to finish and
then finish the transmission.

3. The locker node fails: the next node in the node list
is assigned locker functionality and the sender
treats it as such.

4. The sender and locker fail: if the node following
the locker has received the update already, in its
role as new locker it takes over the transmission.

5. All nodes that received an update and the sender
fail: pretend the update never happened.

The protocol is implemented as a series of RPC
invocations. If an RPC fails, the sender waits for the
regroup algorithm to run and install a new membership.
GUP will then finish the update series based on the new
membership.

Given the strict serial execution of the protocol, its
performance is strongly dependent on the number of
nodes in the system. The implementation enforces no
time bound on the execution of an RPC and any node
can introduce unbounded delays as long as RPC keep-
alives are being honored.

Repeated measurements show huge variations in
results, with the variations being amplified as the
number of nodes increases. When a moderate load is
placed on the nodes it becomes impossible to produce
stable results. These variations can be contributed to
the RPC trains, which repeatedly transfer control to the
operating system while blocking for the reply. Upon
arrival of the reply at the OS level, the Cluster Service
needs to compete with other applications that are
engaged in IO, to regain CPU control. The non-
determinism of the current load state of the system
introduces the variances.

The latency of the protocol in an ideal setting is shown
in figure 4, the message throughput in figure 5. With 32
nodes the system can handle 6 small (50 bytes)
updates/second or 4 larger (2 Kbytes) updates/second.

With systems under a load the protocol breaks down
with more then 12 nodes in the cluster. With 10 nodes
frequently transmissions are observed that take 2-5
seconds to complete. With 32 nodes transmission times
up to one minute were recorded.

8 Discussion
When evaluating the scalability of the distributed
components of MSCS it is necessary to separate two

0

50

100

150

200

250

300
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

#nodes

m
ill

is
ec

on
ds

2 kByte 50 bytes

Figure 4. latency of GLUP under ideal conditions

0

20

40

60

80

100

120

140

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

#nodes

#m
es

sa
ge

/s
ec

on
d

2 Kbytes 50 bytes

Figure 5. GLUP throughput under ideal conditions

issues: the algorithms used and their particular
implementation.

8.1 Failure Detection
MSCS is willing to tolerate a long period of silence (7
seconds) before a failure suspicion is raised. This
allows for the implementation of mechanisms that can
easily deal with large number of nodes. The important
scale factor is the number of messages that the nodes
need to process both at the sending and the receiving
side. Implementing the heartbeat broadcast using
repeated point-to-point datagrams does not introduce
any problems with 32 nodes, but there is a clear
processing penalty at the sender and it will limit the
growth to larger numbers.

In an unstructured heartbeat scheme (every node sends
heartbeats to all other nodes), the load on the sender
and on the network can be significantly reduced by
using a true multicast primitive for disseminating the
heartbeats. It also removes the sender’s dependency on
the number of nodes in the system. However, the
number of messages a receiver has to process remains
proportional to the number of nodes in the system.

More structured approaches have been proposed to
reduce the overall complexity of failure detection by
imposing a certain structure on the cluster, and
localizing failure detection within that structure. A
popular approach is to organize the cluster nodes in a
logical ring [1,5] where nodes only monitor neighbor
nodes in the ring and a token rotates through the ring to
disseminate status information. In this scheme however,
the token rotation time is dependent on the number of
nodes, and the scheme thus has clear scalability limits.

Another aspect of scaling failure detection is the
increased chance of multiple concurrent node failures in
the cluster. The MSCS mechanism handles multiple
failures just as efficient as single failures, while most of
the structured failure detection schemes have problems
with timely detection of multiple failures and fast
reconfiguration of the imposed structure.

Currently the most promising work on failure detection
for larger systems is the use of gossip and other
epidemic techniques to disseminate availability
information [6]. These detectors monitor hundred’s of
nodes while still providing timely detection, without
imposing any significant increased load on nodes and
networks.

8.2 Membership Join
The observation that it frequently was impossible to
join the 15th or higher node into the cluster is an artifact
of the fact that MSCS was not implemented with a large
number of nodes in mind. The join reject happens in
the phase that is not under control of the sponsor node
and where the new node is setting up a mesh of RPC

bindings and security contexts with all other active
nodes. With 32 nodes this phase is close to a 100 RPC’s
and any load on the nodes causes significant variations
in these serialized executions.

There is no fundamental solution to the problem; if the
RPC infrastructure needs to be maintained, the setup
phase is needed and some tolerance is needed to allow
the mesh to be established. A possible solution would
for the joiner to update the sponsor on its progress in
this phase to avoid a join rejection.

8.3 Membership Regroup
The membership reconfiguration algorithm works
correct under all tested circumstances, independent of
the number of nodes used. There are two mechanisms
that ensure that the operation performs well, even with
a larger number of nodes: (1) The operation is fully
distributed, the constant broadcasting of state allows
node to rely solely on local observation of global state.
(2) The sharing of “I-have-heard-from-node-X”
information among nodes, makes that the nodes can
move to the next phase without having received status
messages from all nodes.

Given that a node failure suspicion is not raised until 7
seconds of silence by a node and the first phase of
regroup waits for an additional 3 seconds, a problematic
node has 10 seconds to recover from some transient
failure state. As no false suspicions were ever
observed, the timeouts in the first two phases of regroup
can be considered to be very conservative. In all
observed cases the current membership state was
already established well within a second, the remaining
time (2-9 seconds) was spent waiting for the failed
nodes to respond. As the first phase is dominant in the
execution time of the whole regroup operation, a
reduction in time can be achieved by combining the
failure detection information with the observed regroup
state.

A major concern in scaling the regroup operation is the
number of messages exchanged. A typical run with 32
nodes generates between 10,000 and 40,000 messages.
The status message broadcasts are implemented as
series of point-to-point datagrams, which has two major
effects: (1) the number of messages generated for the
regroup operation grows exponential with the number
of nodes and (2) the transmission of 32 identical
messages every 300 milliseconds introduces a
significant processing overhead at the sender. The
regroup algorithm is run at the cluster service, which
introduces a user-space/kernel transition for each
message, with associated overhead. Introduction of a
multicast primitive will allow the implementation to
scale at least linearly with the number of nodes and
would remove the processing over from the sender of
status messages.

8.4 Global Update Protocol
The absence of any concurrency in the message
transmission in GUP causes a strict linear increase in
latency and decrease in throughput when the number of
nodes in the cluster grows.

This serialized and synchronous nature of the protocol
is amplified in the particular MSCS implementation.
The protocol was originally developed for updating
shared OS data-structures, with the update routines
running in device interrupt handlers. In MSCS the
protocol is implemented uses a series of RPC calls to
user-level services. This change in execution
environment exposes the vulnerability of the strict
serialized operation.

There is no quick solution for the problems that this
GUP implementation presents us with. To emulate the
original Tandem execution environment the Cluster
Service would need to be implemented as a kernel
service, which at this point seems impractical.

Replacing GUP with a protocol that provides the same
properties but exhibits a more scalable execution style
seems preferable. This introduces a number of other
complexities, for example many of the currently
popular total ordering protocols rely on a tight
integration of membership and communication to
ensure correct failure handling. This would result in
replacing regroup as well as GUP.

9 Conclusions
In this paper some of the scalability aspects of the
Microsoft Cluster Service were examined. When
revisiting the three questions from section 3 the
following is concluded:

Can the currently used distributed algorithms be a solid
foundation for scalable clusters?

Both failure detection and regroup scale well to the
numbers that were tested in this paper. When scaling to
larger numbers the state processing at receivers will
become an issue. The serialized nature of GUP limits its
scalability to 10-16 nodes in the current MSCS setup.

Are there any architectural bottlenecks that should be
addressed if MSCS needs to be scalable?

The major issue in both failure detection and regroup is
the implementation of a broadcast facility using
repeated point-to-point messages. This introduces a
significant overhead on the sender and on the network,
and needs to be replaced by a simple multicast
primitive. The RPC trains in the membership join
operation and in GUP, create a major obstacle for
scalability, especially when the systems operate under a
significant load.

If MSCS is extended with development support for
cluster aware applications are the current distributed
services a good basis for these tools?

Support for cluster aware applications has strong
requirements in the area of application and component
management and failure handling, and requires efficient
communication and coordination services. These
services would need to be implemented using GUP,
which is, in its current form, unsuitable to provide such
a service.

To support cluster aware applications a better
integration of membership and communication is
needed. This will allow for the implementation of a
very efficient communication service with properties
similar to GUP. Such a service is capable of providing a
solid basis for application and component level
management and failure handling, and will offer
efficient communication and coordination services.

10 Future Work
Research is underway at the Cornell's Reliable
Distributed Systems group to investigate and implement
alternatives to the distributed management and
networking modules in MSCS. Goal is to allow the
system to perform well under the scenarios tested for
this analysis and to scale to larger numbers (256 nodes
and above) at reasonable cost. Recent results such as
the scalable failure detection [6] are very promising and
show that managing these numbers of nodes is feasible.

In a related project, dubbed Quintet [9,10], new tools
are developed to construct highly available, cluster
aware application servers. Quintet exploits MSCS
features where possible, but at this point provides its
own membership and communication modules.

Acknowledgements
Discussions with Jim Gray, Catharine van Ingen, Rod
Gamache and Mike Massa have helped to shape the
research reported in this paper. The advice of shepherd
Ed Lazowska was very much appreciated. Thorsten von
Eicken, S. Keshav and Brian Smith graciously
contributed hardware to the world’s largest wolfpack
cluster.

References
[1] Badovinatz, P., Chandra, T.D., Gopal, A.,

Jurgensen, D., Kirby, T., Krishnamur, S., and
Pershing, J., "GroupServices: infrastructure for
highly available, clustered computing",
unpublished document, December 1997

[2] Birman, K.P., Building Secure and Reliable
Network Applications. Manning Publishing
Company, and Prentice Hall, 1997

[3] Carr, R.,"Tandem Global Update Protocol",
Tandem Systems Review, V1.2 1985.

[4] Katzman., J.A., et.al., "A Fault-tolerant
multiprocessor system", United States Patent
4,817,091, March 28, 1989.

[5] Moser, L., Melliar-Smith, M., D. A. Agarwal, D.,
Budhia, R., and Lingley-Papadopoulos, C., “Totem
A Fault-Tolerant Multicast Group Communication
System”, Communications of the ACM, April 1996.

[6] Renesse, R. van, Yaron Minsky, Y., and Hayden,
M., “A Gossip-Based Failure Detection Service”,
in Proceedings. of Middleware '98, Lancaster,
England, September 1998.

[7] Renesse, R. van, Birman, K., Hayden, M.,
Vaysburd, A., and Karr, D., “Building Adaptive
Systems Using Ensemble”, Software--Practice and
Experience, August 1998.

[8] Vogels, W., Dumitriu, D., Birman, K. Gamache,
R., Short, R., Vert, J., Massa, M., Barrera, J., and
Gray, J., "The Design and Architecture of the
Microsoft Cluster Service -- A Practical Approach
to High-Availability and Scalability", Proceedings
of the 28th symposium on Fault-Tolerant
Computing, Munich, Germany, June 1998.

[9] Vogels, W., Dumitriu, D., Panitz, M.,
Chipalowsky, K., Pettis, J., "Quintet, Tools for
Reliable Enterprise Computing", submitted for
publication, June 1998.

[10] Vogels, W., van Renesse, R., and Birman, K., "Six
Misconceptions about Reliable Distributed
Computing", Proceedings of the 8th ACM SIGOPS
European Workshop, Sintra, Portugal, September
1998

[11] Vogels, W, "World Wide Failures", Proceeding of
the 1996 ACM SIGOPS Workshop, Ireland 1996.

