
The following paper was originally published in the
Proceedings of the 2nd USENIX Windows NT Symposium

Seattle, Washington, August 3–4, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

RACC: An Approach to Cluster-Based Web Servers

Xiaolan Zhang, Ravi Shanmugan, Michael Barrientos, J. Bradley Chen
Harvard University



RACC: An Approach to Cluster-Based Web Servers

Xiaolan Zhang, Ravi Shanmugan, Michael Barrientos, J. Bradley Chen
Division of Engineering and Applied Sciences

Harvard University

Abstract

RACC is a cluster-based design for scalable cost-
effective web servers. Organized around the goal of
locality enhancement, the RACC approach seeks to
distribute requests arriving at the cluster among the
nodes so as to enhance the locality of reference that
occurs on individual nodes in the cluster. By improving
locality on individual cluster nodes, we can reduce their
working set sizes, thereby achieving superior
performance for less cost than conventional approaches.
We describe here the RACC architecture and its
prototype implementation on Windows NT.

1. Introduction

Cluster-based web server designs have great potential
because of its scalability and cost-effectiveness. A
simple approach to building a cluster-based web server
is to put an HTTP request router or “IP sprayer”
between the Internet and a cluster of web servers. The
router distributes HTTP requests among the cluster
nodes, typically assigning clients to server nodes in a
round-robin fashion. Adding more nodes to the cluster
can increase the aggregate performance of the cluster.

This simple approach to clustering is not a panacea. For
example, a server node for a large web site might
require a large amount of physical memory in order to
handle requests efficiently. Each node added to the
system will receive requests for the same set of
documents, and so will have the same large memory
requirements. If the document set grows beyond the
memory size of the server nodes, all nodes will begin to
thrash. As a result the server nodes tend to be either
expensive, slow, or both.

The RACC design seeks to eliminate this inefficient
resource usage by enhancing the inherent locality of the
request streams delivered to the server nodes. Rather
than distributing requests in a round-robin fashion, it
distributes requests based on the URL, such that the
current working set of the web server is partitioned
among the server nodes. We achieve this improvement
by replacing the IP sprayer with a Smart Router in
RACC. This design has a number of advantages over
the standard IP sprayer approach. First, each node in the
cluster is responsible for only a fraction of the total
working set of the web server. Second, the size of each

node’s working set decreases each time a node is added
to the cluster. The Smart Router can tune the load
presented to each node in the cluster based on that
node's capacity. This makes it possible to build the
cluster out of relatively inexpensive machines, and to
increase the capacity of the cluster by small increments.

2. Implementation

The heart of the RACC cluster is the Smart Router. The
Smart Router is partitioned into two layers, the user
level High Smart Router (HSR), and the kernel level
Low Smart Router (LSR).

The kernel-LSR is a driver sitting above NT’s TCP/IP
TDI interface. It listens on the HTTP port for a connect
request. When a request is received, TCP passes it to
the LSR. The LSR extracts the URL from the request
and passes it up to HSR. The LSR then waits for the
HSR to indicate which cluster node should handle the
request. The LSR maintains TCP connections with each
cluster node on which it forwards requests. After
delivering a request, the LSR ferries data between the
two connections until either end closes the connection.
A key implementation challenge in the LSR is efficient
handling of many simultaneous TCP/IP connections.

The job of the HSR is to monitor the state of the
document store, the nodes in the cluster, and properties
of the documents passing through the LSR. It then must
use the information to make decisions about how to
distribute requests over RACC cluster nodes. Internally,
the HSR builds a tree structure that matches the
document store name-space. Leaves in the tree
represent documents that can be requested from the web
site. Nodes in the tree represent internal nodes in a
hierarchical name space. As the HSR processes
requests, it annotates the tree with information about
the document store to be applied in load balancing. This
information could include document sizes, number of
times each document is requested, and compute cycles
required to deliver a given document.

We evaluated our design for both web file service and
dynamically generated web pages using Lotus Domino.
Our preliminary experiments show an improvement in
throughput of up to 8x over IP Sprayer for an artificial
static web file service workload, and a 20%
improvement for a workload based on Lotus Domino.


