
The following paper was originally published in the
Proceedings of the 2nd USENIX Windows NT Symposium

Seattle, Washington, August 3–4, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

Chime: A Windows NT based parallel processing system

Shantanu Sardesai
Tandem Computers Incorporated

Partha Dasgupta
Arizona State University

Chime: A Windows NT based parallel processing system1

1 This research is partially supported by grants from DARPA/Rome Labs, Intel Corporation and NSF.

Shantanu Sardesai
Tandem Computers Incorporated

shantanu.sardesai@tandem.com

Partha Dasgupta
Arizona State University
 partha@asu.edu

1. Introduction
Shared memory multiprocessors are the best platform
for writing parallel programs. These platforms support
a variety of parallel processing languages (such as
CC++ which provide programmer-friendly constructs
for expressing shared data, parallelism, synchroniza-
tion and so on. However the cost and lack of
scalability and upgradability of shared memory multi-
processor machines, make them a less than perfect
platform.

Distributed Shared Memory (DSM) has been pro-
moted as the solution that makes a network of
computers look like a shared memory machine. This
approach is supposedly more natural than the message
passing method used in PVM and MPI.

 However, most programmers find this is not the case.
The shared memory in DSM systems do not have the
same access and sharing semantics as shared memory
in shared memory multi-processors. For example, only
a designated part of the process address space is
shared, linguistic notions of global and local variables
do not work intuitively, parallel functions cannot be
nested and so on.

Chime is the first system that provides a true shared
memory multiprocessor environment on a network of
machines. It achieves this by implementing the CC++
language (shared memory) on a distributed system. In
addition to shared memory, parallelism and synchro-
nization features of CC++, Chime also provides fault-
tolerance and load balancing.

2. Chime Features
Chime addresses most of the problems in a simple,
clean and efficient manner by providing a multiproc-
essor-like shared memory programming model on
network of workstations, along with automatic fault-
tolerance and load balancing. Some of the salient fea-
tures of the Chime system are:

1. Complete implementation of the shared memory
part of the CC++ language.

2. Support for nested parallelism; i.e. a parallel task
can spawn more parallel tasks.

3. Consistent memory model, i.e. the global memory
is shared and all descendants (which execute in
parallel) share the local memory of a parent task.

4. Machines may join the computation at any point
in time (speeding up the computation) or leave or
crash at any point without affecting the progress
(slowdowns will occur).

5. Faster machines do more work than slower ma-
chines, and the load of the machines can be varied
dynamically (load balancing).

In fact, there is very little overhead associated with
these features, over the cost of providing DSM. This is
a documented feature that Chime shares with its
predecessor Calypso.

3. Chime Architecture
A program written in CC+ is preprocessed to convert
it to C++. Then it is linked with the Chime runtime
library and a single executable file is generated. This
executable is executed on a network of machines (or
workstations). One of the workstations is designated
as the manager and the rest as workers. All run the
same executable.

A program starts on the manager. When the program
reaches a parallel construct, parallel tasks are gener-
ated and are allocated by the manager to the waiting
workers. During the execution of the parallel step, the
manager does scheduling and allocation of parallel
tasks, as well as memory management.

The manager and worker are multithreaded, the pro-
grammer written code is executed by one thread and
the other thread handles all the runtime functions. The
runtime functions include servicing DSM requests,
inter-task synchronization, cactus stacks for proper
stack sharing and scheduling that handles fault toler-
ance and load balancing. Chime is implemented on
Windows NT.

The performance tests of Chine show that it it per-
forms well for a variety of parallel programs. The
nested parallelism and synchronization support how-
ever adds considerable overhead in a distributed
system. The Chime system can be downloaded from
http://milan.eas.asu.edu.

