
The following paper was originally published in the
Proceedings of the 2nd USENIX Windows NT Symposium

Seattle, Washington, August 3–4, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

Distributed Preemptive Scheduling on Windows NT

Donald McLaughlin and Partha Dasgupta
Arizona State University

Distributed Preemptive Scheduling on Windows NT1

 Donald McLaughlin and Partha Dasgupta
Arizona State University
partha@asu.edu

1 This research is partially supported by grants from DARPA/Rome Labs, Intel Corporation and NSF.

1. Introduction
All multitasking operating systems use preemptive
scheduling. Many multiprocessor systems also employ
preemptive inter-task scheduling when they run par-
allel computations. However, preemptive scheduling
in distributed systems is rare, if not non-existent.

Consider a cluster of workstations, running a parallel
application. The application divides itself into a set of
tasks. The scheduler assigns these tasks to a set of
workstations. Often the tasks are not of equal length,
the machines are not of equal speeds and tasks can
create further subtasks. These situations lead to non-
optimal matches of workers to tasks causing execu-
tions that do not complete as quickly as it would be
possible in a better matched case. Also, the granulari-
ties of the tasks may be small, leading to high
overhead.

2. Distributed Scheduling
Our research has addressed such problems in a variety
of ways. We have developed scheduling algorithms,
both non-preemptive and preemptive that provide
good throughputs in managing distributed computa-
tions, even when the granularities of tasks are small.

Our research environment consists of the Chime par-
allel processing systems running on the Windows NT
operating system. This system support parallel proc-
essing on a network of workstations, with support for
Distributed Shared Memory (DSM), fault tolerance,
adaptive parallelism and load balancing. The default
scheduler used in Chime is Eager Scheduling. Eager
Scheduling is similar to a FIFO scheduling algorithm
augmented to provide fault tolerance (by assigning
uncompleted tasks repeatedly).

Hence, without intelligent scheduling, the faster ma-
chines idle at barrier points waiting for the slower
machines to finish, causing reductions in throughput.
In addition, small mismatches in the number of ma-
chines and tasks cause large idle times and low
granularities cause high overhead.

We have found that various preemptive scheduling
algorithms can be used in such situations for signifi-
cant performance improvements, in spite of the
overhead of preemptive scheduling in distributed sys-
tems.

3. Preemptive Scheduling
Over the last few years we have simulated and imple-
mented a host of preemptive scheduling algorithms.
We now present two such algorithms.

The first algorithm is a variation of the well-known
round robin algorithm. We call this the Distributed,
Fault-tolerant Round Robin algorithm. In this algo-
rithm, a set of n tasks is scheduled on m machines,
where n is larger than m. Initially, the first m tasks are
assigned to the m machines. Then, after a specified
amount of time (time quantum), all tasks are pre-
empted and the next m tasks are assigned. This
continues in a circular fashion until all tasks are com-
pleted.

The second is the Preemptive Task Bunching algo-
rithm. All n tasks are bunched into m bunches and
assigned to the m machines. When a machine finishes
its assigned bunch, all the tasks on all other machines
are preempted and all the remaining tasks are col-
lected and re-bunched (into m sets) and assigned
again. This algorithm works well for both large-
grained and fine-grained tasks even when machine
speeds and task lengths vary.

4. Implementation and Performance
We have implemented the algorithms on the Chime
parallel processing system running on Windows NT.
The major roadblock turned out to be process migra-
tion under NT. The lack of signals posed the greatest
problem as a thread can only be interrupted by another
thread that suspends it. Care has to be taken to ensure
that the thread to be migrated is not suspended waiting
for a runtime event. Race conditions and starvation
conditions have been encountered.

The final system runs well, and performance results
are very encouraging. We found that the round-robin
scheduler provided acceptable performance on large
grained programs, but was hampered by the migration
overhead. The task bunching scheduler performed
really well in a wide variety of situations. More infor-
mation and papers can be found at
http://milan.eas.asu.edu.

