
The following paper was originally published in the
Proceedings of the 2nd USENIX Windows NT Symposium

Seattle, Washington, August 3–4, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

SecureShare: Safe UNIX/Windows File Sharing
through Multiprotocol Locking

Andrea J. Borr

SecureShare: Safe UNIX/Windows File Sharing through Multiprotocol Locking

Andrea J. Borr
aborr@hummosa.com

Abstract

As mixed UNIX/Windows environments become more
common, safe file sharing among the NFS and CIFS
clients becomes a significant problem. In this paper,
we describe SecureShare, a multiprotocol file sharing
technology that resolves the mismatch between
NFS/NLM and CIFS file locking protocols, provides
coherent caching and enables multiprotocol change
notification. SecureShare achieves the goal through a
uniform lock-mode model and multiprotocol oplock
management. This paper presents the main features of
SecureShare and discusses the rationale behind its de-
sign.

1. Introduction

Today, mixed UNIX/Windows environments are be-
coming increasingly common. Many commercial and
academic institutes typically employ a mixed network
of UNIX clients using the Network File System [3]
(optionally with Network Lock Manager [5]) and Win-
dows clients using either the Common Internet File
System [6] or “(PC)NFS” [7]. Sharing files across the
different systems is highly desirable and commonly
done. However, correct concurrent read/write accesses
from the different types of clients present a significant
problem, because of the mismatch between NFS/NLM
locking protocols and CIFS locking protocols.

Uncoordinated concurrent read/write accesses to files
and directories can result in application failures or file
data integrity problems. Examples of such problems
are (1) readers receiving “stale” data (i.e. data cur-
rently in the process of being updated by another appli-
cation), (2) writers overwriting each other’s updates,
and (3) applications having their in-use files deleted
“out from under” them. Locking is typically used to
coordinate concurrent accesses to files and directories,
and prevents such problems from occurring.

Unfortunately, Windows and UNIX differ considerably
in how they allow applications to access files and data
while controlling the concurrency issues that arise in
multi-user, multi-application environments. Windows
implements a robust and complete set of file-open, data
access and locking paradigms. UNIX, by contrast,
typically implements only a basic data access facility,
ignoring for the most part issues of concurrency and

file sharing altogether. These differences in the han-
dling of locking and file sharing issues carry over into
the designs of the NFS and CIFS protocols used by
UNIX and Windows, respectively, for remote data ac-
cess. For example, CIFS transmits file open requests
and byte-range lock requests to the file server, whereas
NFS does not.

Correct interoperability of CIFS and NFS/NLM is im-
peded by the fact that CIFS and NFS/NLM have differ-
ent and incompatible semantics for file-locking, file-
open, and file sharing. The two principal
interoperability problems are (1) CIFS mandatory
locking vs. NFS/NLM advisory locking; (2) CIFS hier-
archical locking vs. NFS/NLM non-hierarchical lock-
ing.

CIFS requires that the file server and all of its clients
conform to the mandatory locking model. In the man-
datory model, the file opener’s (alternatively, the byte-
range lock owner’s) exclusivity of access to the opened
file (locked byte-range) is enforced by the file server at
the system level.

By contrast, NFS/NLM lacks file-open functionality,
and provides only advisory locking. In the advisory
model, system-level enforcement is replaced by appli-
cation-level compliance. In this environment, each of a
set of applications that read and write shared data de-
pends for its correct functioning on global compliance
with advisory locking rules.

In a mixed CIFS and NFS/NLM network, the incom-
patibility of the mandatory and advisory models poses a
risk to data integrity. Windows-based applications de-
pend on the stricter CIFS mandatory model for their
correct functioning and for the integrity of their data.
These applications may fail in the face of NFS accesses
that write, remove, or otherwise corrupt in-use Win-
dows files in a manner that violates the stricter CIFS
mandatory model, but is permitted under the looser
NFS/NLM advisory model.

The second problem impeding correct interoperability
of CIFS and NFS/NLM is the fact CIFS expects all cli-
ents to conform to a hierarchical locking model. Cor-
rect application functioning and data integrity under
CIFS rest on the assumption that a client first acquires a
file-lock (i.e. by opening a file) before requesting a
byte-range lock within the file. The NFS/NLM proto-
col, on the other hand, has no concept of a locking hier-

archy. NFS/NLM has provision for acquiring a byte-
range lock on a file, yet lacks provision for pre-
acquiring a file-lock on the file by opening the file.

Network Appliance’s solution to these problems is Se-
cureShare [1], a multiprotocol file sharing technology.
SecureShare is integrated into the Data ONTAP mi-
crokernel, Network Appliance’s operating system for
its proprietary file server appliance, or filer [2]. Secure-
Share provides correct semantics for file sharing, op-
portunistic locking, byte-range locking, coherent cach-
ing, and change notification in a mixed network of
UNIX clients using NFS, optionally with NLM, and
Windows clients using either CIFS or (PC)NFS.

The key features of SecureShare are:

• uniform lock mode and multiprotocol lock en-
forcement

• multiprotocol oplock management

• multiprotocol change-notify.

In implementing multiprotocol data integrity, Secure-
Share reconciles the different and incompatible locking
and file-open semantics utilized by CIFS and
NFS/NLM clients. In implementing multiprotocol
oplock management, SecureShare supports standard
CIFS oplocks, while at the same time making oplocked
data available to NFS-based clients through multiproto-
col oplock break. In implementing multiprotocol
change-notify, SecureShare supports standard CIFS
change-notify, while extending the change-notification
service such that it covers changes due to NFS in addi-
tion to covering changes due to CIFS.

SecureShare implements a uniform set of file-locking
semantics for the multiprotocol environment. To
achieve consistent multiprotocol locking and file-open
semantics, SecureShare manages all locks according to
a uniform lock management model. In this model, an
expedient described in Section 2.2 is used to overcome
the interoperability problem posed by the hierarchical
locking conformance mismatch between CIFS and
NFS/NLM. Uniform lock management also solves the
interoperability problem posed by the mandatory vs.
advisory mismatch. Lock enforcement under Secure-
Share depends on the lock type, the protocol that set the
lock, and the protocol performing a file access. Whole-
file locks (representing file-opens and oplocks) are en-
forced uniformly on the mandatory model for both CIFS
and NFS file accesses. Byte-range locks may be en-
forced either on the mandatory or the advisory model,
depending on which protocol created the lock and
which protocol is performing the read or write. In par-
ticular, NLM byte-range locks are treated as advisory

with respect to NFS reads and writes, in accordance
with NFS/NLM protocol standards.

The cornerstone of SecureShare is a multiprotocol lock
manager. The lock manager coordinates and manages
— in a unified set of kernel-space data structures — the
lock types needed for multiprotocol file-open and
locking support. Since it is integrated into the Data
ONTAP kernel, the lock manager is able to validate that
reads and writes of files and directories do not violate
locks. SecureShare enforces CIFS locks and file-open
semantics at the system level. By contrast, in a UNIX-
based CIFS implementation such as Samba [9], Win-
dows file-open information is maintained by a module
that is disjoint from — and has no interaction with —
the module that implements UNIX and NLM locking
functionality. Moreover, because data access functions
under UNIX do not normally check for lock conflicts,
there is nothing to stop local or NFS-based UNIX users
and applications from accessing, corrupting, or even
removing “locked” Windows files and data. Thus, it is
possible in such an environment for UNIX users or
NFS clients to write, remove, or move files that CIFS-
based Windows applications are holding open and ac-
tively accessing.

SecureShare implements a multiprotocol extrapolation
of the Windows coherent caching and networking per-
formance optimization known as “opportunistic locks”
(oplocks) [6]. By extrapolating oplocks to the multi-
protocol environment, SecureShare allows CIFS clients
to safely reap oplocks’ performance benefits of aggres-
sive client-side caching without causing Windows ap-
plications to suffer the effects of potential data corrup-
tion due to uncoordinated NFS accesses. By allowing
non-CIFS requests to break (i.e. revoke) CIFS oplocks,
SecureShare ensures that oplocked file data remains
available to NFS-based applications and users, while
simultaneously protecting the integrity and cache co-
herence of that data.

The remainder of this paper is organized as follows.
Section 2 discusses file and data locking paradigms in
the CIFS, UNIX/NFS, and (PC)NFS environments, and
presents the uniform lock-mode model in SecureShare.
Section 3 discusses multiprotocol lock enforcement.
Section 4 discusses the CIFS opportunistic locking
model and SecureShare’s multiprotocol implementa-
tion. Section 5 discusses the CIFS change-notify fea-
ture and SecureShare’s multiprotocol implementation.
Finally , Section 6 summarizes.

2. Data Locking Paradigms

A lock on a data element grants to the lock owner a
degree of exclusivity of access represented by its lock-

mode. The lock type specifies the span of data covered
by the lock. In the case of a file server, lock types are
categorized as a two-level hierarchy:

• File-locks (pertain to whole files)

• Byte-range locks (also called “record” locks)

2.1. Lock Models in CIFS and NFS

In the Windows (and CIFS protocol) model, a file-lock
is obtained as a side effect of a file-open operation. The
file opener specifies the access-mode it desires and the
deny-mode that it desires to impose on other openers of
the same file. In granting a new file-open request, the
CIFS file server validates that the access- and deny-
mode requested by the new opener do not conflict with
the access- and deny-mode granted to pre-existing file
openers. It then creates a file-lock that represents the
access- and deny-mode granted to the new file-open.

In Windows (and CIFS), the application (CIFS client)
must perform a file-open operation before attempting to
read or write data contained in the file. After the open
request has been granted, the CIFS file server validates
that reads or writes requested on the open file comply
with the access-mode granted by the file-open. CIFS
expects all clients to conform to a hierarchical locking
model. Correct application functioning and data integ-
rity under CIFS rest on the assumption that a client first
acquires a file-lock (i.e. by opening a file) before re-
questing a byte-range lock within the file.

By contrast, the UNIX file-open API does not support
the concept of a deny-mode that it desires to impose on
other openers of the same file. Lacking the concept of a
deny-mode, the UNIX opener lacks a means of speci-
fying a file-lock, since a lock by its very nature embod-
ies the specification of a degree of exclusivity of access.
Furthermore — because it was designed to be stateless
[4] and file-opens are inherently stateful — NFS does
not transmit even the access-mode declared by the
UNIX file opener to the file server. Thus, the
UNIX/NFS client cannot perform an operation that re-
sults in the acquisition of a file-lock at the server. Nor
can it pre-declare to the server its intent to issue file
reads or writes. Since the UNIX/NFS client can issue
an NLM byte-range lock request for a file (see below)
without holding a file-lock for the file, NFS/NLM is
seen to violate the CIFS hierarchical locking model.
The implications of this violation for SecureShare’s
multiprotocol lock enforcement are seen in Section 3.

(PC)NFS implementations for DOS and Windows
emulate CIFS file-open functionality through use of
NLM “share” locks, added to the NLM protocol for the
specific purpose of supporting these clients. Called
NLM “file-locks” in this paper, they are equivalent to

CIFS file-locks. (This functionality is not normally
exposed to the UNIX application environment, and so
most UNIX users are unaware of its presence). The
(PC)NFS client requesting an NLM file-lock specifies
an access-mode and a deny-mode. In granting a new
NLM file-lock, the server validates that the access- and
deny-mode requested by the new request do not conflict
with the access- and deny-mode granted to any pre-
existing file-lock on the same file. The server then cre-
ates an NLM file-lock that emulates the presence of a
new “file-open.”

Byte-range locks are used to restrict other applications’
access to sections of an open file, usually while the
holder of the byte-range lock is intending to read or
write the locked section. Byte-range locks can be either
read locks or write locks. Depending on whether en-
forcement is advisory or mandatory, read locks either
induce or enforce that other applications refrain from
writing to the specified byte-range. Similarly, write
locks either induce or enforce that other applications
refrain from reading or writing the specified byte-range.

Both Windows and UNIX provide byte-range locking
functionality. The Windows byte-range lock API is
directly propagated via the CIFS protocol to the CIFS
file server, where the resultant lock is enforced in ac-
cordance with the mandatory model. Since lock man-
agement is inherently stateful, NFS does not transmit
UNIX byte-range lock requests to the server. Because
the utility of locking in a file-sharing environment was
recognized, however, the adjunct protocol NLM was
defined to transmit UNIX byte-range lock requests to
the server. NFS treats NLM locks as merely advisory,
however.

2.2. The Uniform Lock-Mode Model

SecureShare implements a uniform lock-mode encom-
passing both file-locks and byte-range locks. The lock-
mode combines a specification of the access-mode the
lock requester desires (Read, Write, Read-Write), and
the deny-mode it desires to impose on other clients con-
currently attempting to access the same data (Deny-
None, Deny-Read, Deny-Write, Deny-All). Some ex-
amples of uniform lock-modes are Read/Deny-Write

and Read-Write/Deny-All.

When SecureShare creates a file-lock to represent a
CIFS or (PC)NFS file-open, it derives a uniform lock-
mode for the file-lock that combines the requested ac-
cess-mode and deny-mode. In granting the new request,
SecureShare validates that the derived lock-mode does
not conflict with the lock-mode granted to any pre-
existing file-lock on the same file.

CIFS or NLM byte-range locks are assigned uniform
lock-modes as follows. In the case of a write-lock (also
called an exclusive byte-range lock), the locked byte-
range is Read-Write for the holder of the lock and
Deny-All for others. Thus, the uniform lock-mode is

Read-Write/Deny-All (RW/DA), and the lock is effec-
tively “exclusive.” A write-lock is grantable to only one
“writer” of the byte-range at a time. In the case of a
read-lock (also called a non-exclusive byte-range lock),
the locked byte-range is Read for the holder of the lock
and Deny-Write for others. Thus, the uniform lock-
mode is Read/Deny-Write (R/DW), and the lock is
“sharable.” A read-lock is concurrently grantable to
multiple “readers” of the byte-range, but is incompatible
with a “writer” attempting to obtain a write-lock on the
byte-range.

UNIX/NFS clients issue NLM byte-range locks without
holding file-locks. This presents a problem for strict
hierarchical lock enforcement, in which byte-range
locks are not directly comparable to file-locks. Secure-
Share overcomes this problem through an expedient that
allows a direct compatibility check of a file-lock against
an NLM byte-range lock (see Table 2 at end of paper).
Such comparisons, of course, violate the principles of
hierarchical locking. The anomaly is circumvented by
considering the NLM byte-range lock to have a deny-
mode of Deny-None for purposes of comparison with a
file-lock. After all, a write-lock’s deny-mode — Deny-
All — applies only to the byte range, not to the whole
file. On the other hand, the write-lock’s access-mode
— Read-Write — signals the lock owner’s intention to
write to the file. In fact, since NFS provides no means
of declaring a file-open time access-mode, the
NFS/NLM client’s only means of pre-declaring an in-
tention to write the file is to acquire an NLM write-lock
on one or more of the file’s byte-ranges.

3. Multiprotocol Lock Enforcement

This section describes how SecureShare manages locks
in a multiprotocol environment. It describes Secure-
Share’s multiprotocol lock enforcement policies for
CIFS file-locks, CIFS byte-range locks, and NLM byte-
range locks. It highlights the risks to data integrity that
could arise in the multiprotocol environment if locking
were not managed in the described way. In describing
various cases of multiprotocol lock enforcement, it
points out scenarios in which oplock break protocol
(discussed in Section 4) is triggered.

3.1. CIFS File-Lock Enforcement

SecureShare fully enforces Windows mandatory file
locking across the CIFS, (PC)NFS and UNIX/NFS data

access environments. When a Windows client attempts
to open a file residing on a Network Appliance filer,
SecureShare tests whether the open request can be
granted based on the following criteria:

If other CIFS or (PC)NFS clients already have the file
open, a “file-lock compatibility check” is performed to
determine whether the access- and deny-mode of the
new open are in conflict with access- and deny-mode(s)
already granted to pre-existing opens of the same file.
Computation of the compatibility check utilizes Table 1
(at end of paper), known in database management
locking terminology as a lock compatibility matrix [8].
First, the access- and deny-mode requested by the new
open are combined into a uniform lock-mode. Next, if
there are multiple pre-existing opens, a lock conversion
matrix (as defined in [8]) is used iteratively to combine
the lock-modes implied by the access- and deny-
mode(s) of pre-existing opens into a cumulative lock-
mode. Then, Table 1 is used to test the compatibility of
the lock-mode requested by the new open with the cu-
mulative lock-mode of pre-existing opens. If the new
lock-mode is not compatible, then the file-open request
fails with a “sharing violation” error.

Suppose that — prior to the filer’s receipt of the CIFS
file-open request — a UNIX/NFS client has obtained an
NLM byte-range lock on the file being opened. In this
case, SecureShare uses Table 2 (at end of paper) to
check whether the deny-mode component of the file
lock-mode of the new open is compatible with the ac-
cess-mode component (Read or Read-Write) of the
lock-mode of the NLM byte-range lock. Note that this
check — which violates the locking hierarchy — com-
pares a file-lock with a byte-range lock. The rationale
for this check is that — in the absence of NFS file-open
functionality — the only way for a UNIX client to pre-
declare its intention to make read (write) accesses to a
file is by acquiring a read-lock (write-lock) on one or
more byte-ranges.

Once one or more Windows clients have successfully
opened a file on a Network Appliance filer, Secure-
Share coordinates subsequent NFS access to the open
file in accordance with the deny-mode(s) granted to the
openers.

SecureShare will reject any attempt by an NFS client
(UNIX or Windows) to delete or rename a file that is
being held open (after a possible oplock break se-
quence) by a Windows client. Note, however, that
CIFS provides protocol for specifying a file open op-
eration (i.e. NTCreateX with share delete mode) that
permits another CIFS client to delete or rename a file
(or directory) that is being held open.

SecureShare will reject any attempt by an NFS client to
write to a file that is being held open (after a possible

oplock break sequence) by a Windows client with a
deny-mode of Deny-Write or Deny-All.

SecureShare is able to manage NFS file access and file
system manipulation functions at the system level.
Thus, it can deny NFS operations — such as writes,
removes, renames, or moves — that could overwrite
and/or corrupt a Windows-open file, violate a CIFS
byte-range lock, or delete the file “out from under” a
Windows application.

By contrast, because data access functions under UNIX
do not normally check for lock conflicts, Windows
mandatory locks are typically not enforced in UNIX-
based CIFS implementations such as Samba. In such an
environment, there is nothing to stop local or NFS-
based UNIX users and applications from accessing,
corrupting, or even removing “locked” Windows files
and data.

On the other hand, SecureShare does allow UNIX/NFS
clients to obtain read-only access to files that are ac-
tively being held open by Windows applications, even if
those files were opened with deny-mode Deny-Read or
Deny-All. Note that we are referring here to actively
open files, as distinguished from files that temporarily
appear to be open due to breakable stale batch oplocks
(discussed in Section 4). This design decision was con-
sciously made with consideration to practicality over
technical “purity.” The ability of a UNIX/NFS client to
read files that are actively open by Windows applica-
tions cannot corrupt the file data from the CIFS point of
view, and the NFS client’s perceived cache coherence is
no worse than is normal under NFS. However, if Se-
cureShare were to deny all UNIX/NFS clients’ attempts
to read files that are open under Windows, this could
generate an unacceptably large number of seemingly
“inexplicable” errors for UNIX/NFS clients in the mul-
tiprotocol environment. This design decision is com-
patible with SecureShare’s goal of protecting Windows
data from corruption by NFS write accesses. It is ar-
guably preferable to allow an NFS read request to re-
turn “dirty” data than to fail the request with a seem-
ingly inexplicable “access violation” error.

3.2. CIFS Byte-Range Lock Enforcement

Since a file must be opened via CIFS before a byte-
range lock request can occur, a CIFS byte-range lock
request never occasions an oplock break (it would have
occurred at file open time). Enforcement of CIFS byte-
range locks in a multiprotocol environment occurs as
follows:

• If another CIFS client already holds a byte-range
lock that conflicts with the new CIFS byte-range

lock being requested, then the new lock request
will be denied.

• If a UNIX/NFS client or a (PC)NFS client already
holds an NLM byte-range lock that conflicts with
the new CIFS byte-range lock, then the new lock
request will be denied.

• If neither of the above violations is detected, then
the new CIFS lock request will be granted.

SecureShare treats CIFS byte-range locks as mandatory
with respect to NFS file access functions, assuring that
NFS reads and writes do not violate CIFS byte-range
locks. By contrast, a UNIX-based multiprotocol file
server such as Samba has no easy way to prevent viola-
tion of CIFS locks by NFS file access functions. Thus,
it would be possible — due to the advisory nature of
UNIX/NFS locking — for UNIX users and applications
to write data to the CIFS “locked” byte-ranges of files.

3.3. UNIX Byte-Range Lock Enforcement

UNIX provides an API only for byte-range locking.
When NFS-mounted data is locked, UNIX uses NLM to
transmit the byte-range lock request to the file server.
(The filer’s NLM implementation supports all of the
UNIX byte-range locking semantics, such as region
lock merging and sub-region unlocking). SecureShare
handles a new NLM byte-range lock request as follows:

• SecureShare first breaks any pre-existing oplock
that may be held on the file by a CIFS client. This
ensures that SecureShare has all of the information
on pre-existing CIFS byte-range locks for the file.
(Note: As discussed in Section 4, CIFS clients
that hold exclusive or batch oplocks do not propa-
gate lock information back to the server).

• SecureShare next uses Table 2 to check whether
the access-mode component (Read or Read-Write)
of the lock-mode of the new NLM byte-range lock
request conflicts with the deny-mode component
of any pre-existing file lock-mode. Note that this
check is anomalous with respect to the locking hi-
erarchy.

• If the NLM byte-range lock request is for an
exclusive lock (write-lock), it is incompatible
with a pre-existing CIFS open having a deny-
mode other than Deny-None.

• If the NLM byte-range lock request is for a
non-exclusive lock (read-lock), it is incom-
patible with a pre-existing CIFS open having a
deny-mode of Deny-Read or Deny-All

• SecureShare then checks whether the new NLM
byte-range lock request conflicts with any pre-

existing NLM or CIFS byte-range lock that has al-
ready been granted on the same file. If a conflict
exists, the lock request is rejected.

• If none of the above violations is detected, then
the NLM byte-range lock request is granted.

In accordance with NFS/NLM protocol standards, Se-
cureShare treats NLM byte-range locks as advisory with
respect to NFS file access functions. However, in ac-
cordance with the design goals for its multiprotocol
support, SecureShare treats NLM byte-range locks as
mandatory with respect to CIFS file access functions.

4. Multiprotocol Oplock Management

CIFS oplocks provide dramatic performance benefits to
Windows-only networks. The challenge of a multi-
protocol implementation is to provide oplock function-
ality that compromises neither on data integrity guar-
antees nor on maximizing accessibility via NFS to
oplocked data.

4.1. CIFS Opportunistic Locks

Although the sharing of files and data between multiple
Windows clients is fully supported by the CIFS proto-
col, file sharing between multiple clients is quite rare on
most networks. The CIFS protocol leverages the rarity
of file sharing in its implementation of the Windows
networking performance optimization known as “op-
portunistic locks” (oplocks). An oplock is an exclusive
(i.e. Read-Write/Deny-All) file-lock that the CIFS client
system obtains from the CIFS file server “opportunisti-
cally” at application file open time if the file being
opened is not currently being accessed by any other
application. By obtaining an oplock, the client gets a
temporary exclusive lock on the file being opened, de-
spite the fact that the application did not request an ex-
clusive open. The oplock is temporary in the sense that
it can be broken (i.e. revoked) in case another applica-
tion tries to gain access to the file. While holding the
oplock, the client system takes advantage of the fact that
the file is not currently being accessed by any other
application. The client’s operating system can then —
without compromising data integrity — optimize the
client/server network traffic needed to satisfy the file
accesses by the application. The client holding an
oplock minimizes network traffic to the file server by:

1. Performing aggressive read-ahead on open files.
Because the client knows that it is the only system
accessing the file, it can be certain that the read-
ahead data that it obtains is not being changed by
other clients back on the server.

2. Aggressively caching write operations to files.
There is no need to propagate file changes back to
a server synchronously if there are no other clients
accessing the file concurrently. Write operations
can be delayed and aggregated to optimize I/O
performance.

3. Aggressively caching lock requests. The client has
no need to inform the server of the various locks
an application may have acquired on a file if it can
be certain that no other clients are accessing the
file concurrently. The locking semantics can be
managed entirely on the client side of the connec-
tion.

When an application on a CIFS client opens a server-
resident file, the client’s operating system typically re-
quests an oplock (almost invariably, a type of oplock
known as a batch oplock that outlives the application’s
open, as described below) when it transmits a CIFS
open request to the file server. If the open was non-
exclusive, and the reply to the open did not grant an
oplock, then the client must synchronously propagate all
of the application’s interactions with the file back to the
file server. In particular, all of the application’s write
and byte-range lock operations against the file must be
synchronously transmitted to the file server. By con-
trast, if the reply to the open did grant an oplock, then
the client’s operating system can locally-cache write
and byte-range lock operations against the file, and can
perform aggressive read-ahead on the file.

Oplocks reduce the network traffic transmitted between
a CIFS client and the file server, reducing the burden on
both network and file server. Note that oplocks are not
exposed to Windows applications through the Windows
API. They are internal to the CIFS protocol, and are
requested automatically from the CIFS file server by the
client’s operating system at file-open time.

CIFS oplocks are roughly comparable in functionality
to the token-based cache synchronization mechanisms
of the OSF DCE/DFS distributed file system [10]. On
the other hand, the "callback" mechanism of Transarc's
AFS is less functional, being equivalent only to DFS
"status read" tokens. There is no mechanism for the file
server to tell the AFS client to store back to the server
any data that the client has modified locally[10].

4.1.1. Oplock Break Protocol in a CIFS-
Only Environment

When a second CIFS client attempts to open a file for
which there is an outstanding oplock held by an existing
CIFS client, the new opener is “held off” while the file
server sends the oplock holder an oplock-break mes-
sage. An oplock is actually held by a client operating

system, not by an application. Consequently, a client
system may choose to hold an oplock for a file even
after the application that caused that oplock to be ob-
tained has closed the file and exited. Upon receiving the
oplock-break message from the server, the CIFS client
operating system can respond in one of two ways:

1. Close the file (after possibly flushing any locally
cached write operations on the file back to the
server). This would be the client’s response in the
case of a batch oplock when no local opens of the
file remain.

2. Flush all outstanding CIFS write and lock opera-
tions on the file back to the server, and discard any
read-ahead data that it may have obtained for the
file. The read-ahead data must be discarded be-
cause the second client may subsequently write to
the file, invalidating data that the first client origi-
nally obtained via read-ahead operations. After it
flushes all the cached operations to the server, the
client sends the server an oplock-break-
acknowledgement message, completing the oplock
break sequence.

In Case 2, the file remains open. However, the lock-
mode of the file-lock representing the open is down-

converted [8] from lock-mode Read-Write/Deny-All to
a lock-mode that corresponds to the access- and deny-
mode of the original open request. After acknowledg-
ing the oplock break, the client must revert to a mode of
operation in which it synchronously transmits writes and
byte-range lock operations on the file to the server, and
in which it refrains from performing file read-ahead.

4.1.2. Exclusive, Batch, and Level II
Oplocks

The CIFS protocol defines three types of oplocks:
(1) exclusive, (2) batch, and (3) level II.

If a client operating system requests an exclusive or
batch oplock when an application opens a file — and
the client is the first and only opener — then the server
may grant the client an exclusive or batch oplock. The
oplock is represented as a temporary (i.e. breakable)

file-lock with Read-Write/Deny-All lock-mode.

In the case of an exclusive oplock, the server then sus-
pends subsequent attempts to open the same file while it
breaks the oplock owner’s oplock. The oplock break
protocol is complete — and the suspended open can
proceed (given that its lock-mode is compatible with
any file-lock remaining after the oplock break) — once
the oplock owner has flushed any outstanding writes to
the file server, and has either acknowledged the oplock-
break, or has closed the file. Only older CIFS clients

appear to use exclusive oplocks. Most CIFS clients use
only batch oplocks, a functional superset of exclusive
oplocks.

In the case of a batch oplock, the server suspends not
only subsequent attempts to open the file, but also at-
tempts to remove, rename, or otherwise modify file
system metadata associated with the file, while it breaks
the oplock owner’s oplock. A significant difference
between exclusive and batch oplocks is that the latter
can outlive file open and close API calls by applications
running on the client system. That is, applications on
the client system can go through multiple file-open file-
close cycles without the client’s having to transmit the
CIFS open and close requests to the file server. It has
been observed that a Windows client will typically re-
quest a batch oplock in its CIFS file open request, re-
gardless of the application’s requested access- and
deny-mode. Acquisition of a batch oplock obviates the
client’s need to transmit CIFS open and close messages
to the server as local applications open and close the
file. Unfortunately, some clients will keep a batch
oplock indefinitely — pending receipt of an oplock
break — long after all local openers of the file have
exited. This paper terms such a batch oplock “stale.”

A level II oplock is — in SecureShare uniform lock-
mode terms — a file-lock with lock-mode

Read/Deny-Write. Holders of level II oplocks on a file
— potentially multiple Windows NT clients that may
have opened the file for write access, but none of which
has been issuing writes — can aggressively cache file
read-ahead data. However, they cannot cache file byte-
range locks. A client cannot explicitly request a level II
oplock at file-open time. However, a Windows NT
client opening a file, and requesting an exclusive or
batch oplock, can instead be granted a level II oplock.
This might occur, for example, if there are multiple
concurrent openers, none of which has been issuing any
writes. When the first write occurs, all level II oplock
openers are broken to none; that is, each is sent an
oplock break message that revokes its level II oplock,
leaving it with no oplock. Alternatively, a former ex-
clusive or batch oplock owner that had originally re-
quested read-only access can be broken to level II; that
is, it can be sent an oplock break message that revokes
its exclusive or batch oplock, leaving it with a level II
oplock.

4.2. Extrapolating Oplocks to Multiprotocol

SecureShare extrapolates oplock management to the
multiprotocol environment, where UNIX/NFS and/or
(PC)NFS clients concurrently access files oplocked by
CIFS clients. SecureShare’s innovation is to allow non-
CIFS accesses to oplocked files — both NFS and NLM

requests — to initiate oplock break protocol. The ra-
tionale for enabling NLM byte-range lock requests to
break oplocks is as follows. Lock-compliant applica-
tions issue NLM requests prior to issuing NFS reads or
writes. If the NLM request encountered an oplock that
it was unable to break, then it would fail, making the
file unnecessarily unavailable to the NFS/NLM client.
By allowing NFS and NLM accesses to break oplocks,
SecureShare ensures that file data remains available to
non-CIFS clients while protecting its integrity. A mul-
tiprotocol file server that did not enable non-CIFS ac-
cesses to break oplocks would have a choice between
(1) unnecessarily enforcing a potentially breakable
oplock, thereby diminishing file availability, or (2)
ignoring the oplock, thereby imperiling file data integ-
rity. Unnecessary enforcement would cause unreason-
able unavailability of the file to NFS/NLM applications
in cases where (1) there are no more active openers on
the client (i.e. the common case of a stale batch oplock),
or (2) there is still an active opener, but its open was
non-exclusive. In the case where the oplock is errone-
ously ignored, the non-CIFS access could lead to data
corruption.

4.2.1 Oplock Break due to (PC)NFS

If, after an oplock has been granted to a CIFS client, a
(PC)NFS client sends an NLM file-lock request in an
attempt to open the file, SecureShare breaks the oplock
held by the CIFS client. To complete the oplock break,
the first client either closes the file; or else it keeps the
file-open, but flushes all its outstanding write and lock
operations on the file back to the filer. At this point, the
(PC)NFS client’s NLM file-lock request can be granted
— if it compatible with any file-lock remaining after the
oplock break. The (PC)NFS client may then access the
file.

4.2.2 Oplock Break due to UNIX/NFS

If, after an oplock has been granted to a CIFS client, a
UNIX/NFS client attempts to read or write the open
file, SecureShare breaks the oplock held by the CIFS
client. If the CIFS client completes the oplock break by
closing the file, or else if the file-lock remaining after
oplock break completion without a close is compatible
with the NFS operation, the NFS request will complete
without error. If the NFS request was a read, the read
will now access the latest version of the data, as flushed
to the filer as a result of the oplock break. If, in the case
of an NFS write, the oplock break did not result in the
file’s being closed, and if the file was opened with
Deny-Write or Deny-All, then the NFS request will fail.

If, after an oplock has been granted to a CIFS client, a
UNIX/NFS client attempts to remove or rename the
open file, SecureShare breaks the oplock held by the
CIFS client. If the CIFS client completes the oplock
break by closing the file (i.e. because it was a “stale”
batch oplock), then the NFS request is allowed to pro-
ceed. If the oplock break did not result in the file’s be-
ing closed (i.e. because a running Windows application
is holding the file open), then the NFS request will fail.

4.2.3 Multiprotocol Oplock Issues

It is worth noting the difference in how SecureShare
breaks CIFS oplocks in the contexts of UNIX/NFS data
access and (PC)NFS data access to a file. When a
UNIX/NFS client attempts to access a file for which an
oplock is held by a CIFS client, SecureShare performs
the oplock break at the time of the first NFS read or
write to the file. However, when a (PC)NFS client at-
tempts to access such a file, SecureShare performs the
oplock break at the time the client opens the file. This
difference in behavior is due to the fact that, unlike
UNIX/NFS clients, (PC)NFS clients request an NLM
file-lock at the time a file is opened by a Windows ap-
plication. Thus SecureShare can detect a (PC)NFS cli-
ent’s intent to access a file at an earlier stage than is
possible with a UNIX/NFS client. As the NFS protocol
contains no “file-open” operation, SecureShare can only
detect a NFS/NLM client’s intent to read or write a file
at the time that the application actually requests an I/O,
or — in lock-compliant applications — requests a byte-
range lock.

Without multiprotocol oplock break support in the file
server, it would be possible for an NFS client – either
UNIX or (PC)NFS based — to corrupt the contents of
oplocked files. Such a client could also receive stale,
out-of-date data when accessing an oplocked file, even
if the Windows application that modified the file exited
hours ago (i.e. case of a stale batch oplock). Further-
more, an NFS client could potentially corrupt an
oplocked file by NFS-writing into “stale” areas of the
file that will later be overwritten when the oplock
holder flushes its locally cached file data back to the
file. Correct oplock management in a multiprotocol
environment is thus seen to be critical to the mainte-
nance of data integrity and cache-coherence.

5. Multiprotocol Change-Notify

The CIFS protocol contains a feature, change-notify,
that enables an application running on a CIFS client to
request that the server notify the client whenever a
change occurs in one or more directories that the client
wishes to monitor. The application can monitor either a

single directory or the entire file system subtree under a
directory. The application supplies a parameter speci-
fying the kinds of changes to be monitored. Examples
of directory-relative events that can be monitored are
file/directory creation, deletion, rename/move, attribute
change, modification time change, etc. The notification
takes the form of a server-to-client message containing
potentially multiple entries, each of which specifies the
name of a changed file or sub-directory within the
monitored directory, together with the type of change.
When one client changes a directory that is being
monitored by other clients, the monitoring clients are
notified of the change so that they can take appropriate
action, such as updating a GUI display.

SecureShare extrapolates change-notify to the cross-
platform, multiprotocol environment. With multiproto-
col change-notify, modification to a monitored directory
by either CIFS or NFS triggers the asynchronous trans-
mission of change notification messages to the change-
notify clients.

SecureShare’s cross-platform change-notify facility
enables independent software vendors to utilize Net-
work Appliance filers in developing cooperating, cross-
platform applications that communicate through the
filer’s file system. UNIX applications can process files,
and then “hand them off” to Windows NT applications
for further processing. Cross-platform change-notify
allows these applications to accomplish the “hand-off”
simply by copying the files into monitored directories.

The change-notify mechanism is implemented using a
SecureShare-proprietary type of file-lock, a change
monitoring file-lock. When a Windows NT application
uses the change-notify API, CIFS sends a directory file-
open, followed by a CIFS change-notify request. These
CIFS requests cause SecureShare to generate a change
monitoring file-lock on the monitored directory. The
change monitoring file-lock allows Data ONTAP to
efficiently test for the potential need to send change
notifications whenever the kernel executes a CIFS or
NFS request that makes changes within a directory.

6. Summary

SecureShare’s approach to multiprotocol network stor-
age fully effectively addresses the data integrity, cache-
coherence, and file-sharing issues inherent in a cross-
platform file-sharing environment. SecureShare pro-
tects shared data from the various challenges to data
integrity and cache-coherence that arise when the same
files and directories are being read and written concur-
rently by CIFS and NFS/NLM clients. It does this by
reconciling the different and incompatible semantics
utilized by CIFS and NFS/NLM clients for file locking,

file-open, and file sharing. By allowing NFS and NLM
requests to break CIFS oplocks, it ensures that file data
remains available to NFS clients while simultaneously
protecting the integrity and cache-coherence of that
data. SecureShare accomplishes these goals by means
of a uniform approach to managing all the locking
paradigms in the UNIX and Windows environments.

7. Acknowledgement

I am deeply indebted to Pei Cao, Assistant Professor of
Computer Science, University of Wisconsin, Madison,
who served as my conference paper "shepherd." She
reorganized this paper, greatly improving the presenta-
tion of the material.

8. References

[1] Brown, K., A. Borr: "SecureShare: Guaranteed
Multiprotocol File Locking," Technical Report
3024, Network Appliance, Inc., November 1997.

[2] Hitz, D.: "An NFS File Server Appliance," Techni-
cal Report 3001, Network Appliance, Inc., 1995.

[3] Sun Microsystems, Inc: "NFS: Network File System
Protocol Specification," RFC-1094, DDN Network
Information Center, SRI International, March 1989.

[4] Sandberg, R., D. Goldberg, S. Kleiman, D. Walsh,
B. Lyon: “Design and Implementation of the Sun
Network Filesystem," USENIX Conference Pro-
ceedings, USENIX Association. Summer 1985.

[5] X/Open Company, Ltd.: "X/Open CAE Specifica-
tion: Protocols for X/Open Interworking: XNFS,”
X/Open Company, Ltd., 1991.

[6] Internet Engineering Task Force Network Working
Group: “A Common Internet File System (CIFS/1.0)
Protocol”, ftp://ds.internic.net/internet-drafts/draft-
leach-cifs-v1-spec-01.txt, December 1997�

[7] X/Open Company, Ltd.: "X/Open CAE Specifica-
tion: Protocols for X/Open Interworking: (PC)NFS,”
X/Open Company, Ltd., 1991.

[8] Gray, J: "Notes on Data Base Operating Systems,"
IBM Research Report RJ2188, IBM San Jose Re-
search Laboratory, February 1978.

[9] The Samba Team: “Samba: A LanManager like
SMB fileserver for UNIX,” home page:
http://samba.anu.edu.au/samba.

[10] Kazar, M., et. al.: "DEcorum File System Archi-
tectural Overview," USENIX Conference Proceed-
ings, USENIX Association, June 1990.

Existing file lock-mode
NULL A: R

D: DN
A: R
D: DR

A: R
D: DW

A: W
D: DN

A: W
D: DR

A: W
D: DW

A: RW
D: DN

A: RW
D: DR

A: RW
D: DW

A: Any
D: DA

A: R
D: DN 9 9 X 9 9 X 9 9 X 9 X

A: R
D: DR 9 X X X 9 X 9 X X X X

A: R
D: DW 9 9 X 9 X X X X X X X

A: W
D: DN 9 9 9 X 9 9 X 9 9 X X

A: W
D: DR 9 X X X 9 9 X X X X X

A: W
D: DW 9 9 9 X X X X X X X X

A: RW
D: DN 9 9 X X 9 X X 9 X X X

A: RW
D: DR 9 X X X 9 X X X X X X

A: RW
D: DW 9 9 X X X X X X X X X

N
ew

 m
od

e
be

in
g

re
qu

es
te

d

A: Any
D: DA 9 X X X X X X X X X X

Table 1
Lock Compatibility Matrix

Used to check whether a requested lock-mode is compatible with a pre-existing file-lock.

A = Access-Mode (R = Read, W = Write, RW = Read-Write, Any = any one of R or W or RW)

D = Deny-Mode (DN = Deny-None, DR = Deny-Read, DW = Deny-Write, DA = Deny-All)

99 = New open request will be granted. X = New open request will be denied.

Existing file lock-mode
None A: R

D: DN
A: R
D: DR

A: R
D: DW

A: W
D: DN

A: W
D: DR

A: W
D: DW

A: RW
D: DN

A: RW
D: DR

A: RW
D: DW

A: Any
D: DA

NLM
Write
Lock

9 9 X X 9 X X 9 X X X

NLM
Read
Lock

9 9 X 9 9 X 9 9 X 9 X

Table 2
Compatibility of NLM Byte-Range Locks with CIFS File-Locks
99 = New request will be granted. X = New request will be denied.

