
Implementing IPv6
for Windows NT

Richard P. Draves, Microsoft Research

Allison Mankin, USC/ISI

Brian D. Zill, Microsoft Research



Main Points

• Windows NT is a good base

for network protocol development

• Our release is great sample code:

http://research.microsoft.com/msripv6



Outline

• Motivation

• Windows NT Networking

• Our Implementation

• Problems & Solutions

• Source Code Access

• Performance

• Conclusions



Motivation

• Primarily a learning experience

• Bootstrap Microsoft on IPv6

• Platform for further research



Windows NT Networking
Application

ws2_32.dll
Winsock 2

Winsock

wship6.dll
Winsock Helper for IPv6

WSH msafd.dll
MS’s Winsock Provider

WSP

rnr20.dll
MS’s Namespace Provider

NSP

afd.sys
Driver for Winsock

tcpip6.sys
IPv6 Protocol

TDI

ndis.sys
Device-Independent Driver

NDIS

dc21x4.sys
Device-Specific Driver

NDIS

Existing Components

Added Components
User Process

Kernel



Our Implementation

• Started with NT 4.0 TCP/IP source code

• Supports only IPv6

• Supports only NT 4.0/5.0



Our Implementation

LAN Loopback Tunnel

Neighbor
Discovery

Send/Receive Routing

TCP UDP

ICMP MLD

Link-Layer
Modules

Core

Upper-Layer
Protocols



Problems & Solutions

• NDIS receive handlers

• Adding link-layer headers

• “Pull-up” non-contiguous packet data

• Preventing deadlock with NDIS and TDI



NDIS Receive Handlers

• Asynchronous callbacks

• ProtocolReceive
– flat look-ahead buffer

– may need separate call to transfer data

• ProtocolReceivePacket
– NDIS_PACKET structure with buffer chain

– not implemented by all NICs

– miniport owns the packet/buffers



NIC Implementations

• ProtocolReceive + transfer data
– Intel EtherExpress 16

• ProtocolReceive
– SMS EtherPower II

– 3com Fast Etherlink XL

– Intel EtherExpress PRO

• ProtocolReceivePacket
– Digital DE435



Our NDIS Receive Handler

• Link-layer module hides complexity
– Pass up our own IPv6_PACKET structure

• Supports both receive handlers
– IPv4 code only supported ProtocolReceive

• Does transfer-data internally if needed
– May introduce a copy relative to IPv4



Adding Link-Layer Headers

• Must construct link-layer header
before handing packet to NDIS

• NT 4.0 IPv4 code chains a buffer
in the link-layer module
– Adds complexity
– Reduces performance

• Allocate space up front
– But how much space?
– NDIS does not support a packet offset



Our Solution

• Leave room for worse-case link-level header

• Rewrite NDIS packet to hide unused space
– Must undo this after the send completes

– Communicate offset value in the context area

– What if the unused space spans two pages?



Source Code Access

• Source for Windows NT 4.0 TCP/IP
– Sample code, UDP/TCP, TDI glue

– Replaced all link-layer, IP, ICMP, MLD code

– DDK sample code

• Source for other Windows NT components
– Not essential

– Useful for debugging & documentation

– Our only modification was a fix in msafd.dll



Performance

• Expected 1.4% slower, saw 2.5% / 1.9%

• 300Mhz P-II -> 266Mhz, SMC Etherpower II

IPv4

IPv6

10 Mb/s

1058±4

1032±3

100 Mb/s

10995±20

10790±30

TCP Throughput in KB/s



Conclusions

• Windows NT is a good base

for network protocol development

• Our release is great sample code:

http://research.microsoft.com/msripv6

– Testing, research, educational uses


