
The following paper was originally published in the
Proceedings of the USENIX Windows NT Workshop

Seattle, Washington, August 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

UWIN—UNIX for Windows

David G. Korn
AT&T Laboratories
Florham Park, N.J.



UWIN – UNIX* for Windows

David G. Korn (dgk@research.att.com)

AT&T Laboratories
Florham Park, N. J. 07932

Abstract

This paper describes an effort of trying to build a
UNIX interface layer on top of the Windows NT[1]

and Windows 95[2] operating system. The goal was
to build an open environment rich enough to be both
a good development environment and a suitable
execution environment.

The result of this effort is a set of libraries, headers,
and utilities that we collectively refer to as UWIN.
UWIN contains nearly all the X/Open Release 4[3]

headers, interfaces, and commands. An earlier paper
on porting to Windows NT[4], describes alternative
porting strategies and presents some performance
results for UWIN. In this paper we discuss some of
the design decisions behind UWIN and some of the
results so far as well as some of the remaining
challenges.

1. INTRODUCTION

The marketplace has dictated the need for software
applications to work on a variety of operating system
platforms. Yet, maintaining separate source code
versions and development environments creates
additional expense and requires more programmer
training.

The Software Engineering Research department at
AT&T Labs writes and distributes several widely
used development tools and reusable libraries that are
portable across virtually all UNIX platforms.[5] To
enhance reuse of these tools and libraries, we wanted
to make them available on systems running Windows
NT and/or Windows 95. We did not want to spend
the cost needed to support multiple versions of these
libraries, and we wanted to minimize the amount of
conditionally compiled code.

__________________

* UNIX is a registered trademark, licensed exclusively through X/Open, Limited.

One way to lower this cost is to use a middleware
layer that hides the differences among the operating
systems. The problem with this approach is that it
forces one to program to a non-standard, and often
proprietary, interface. In addition, it often limits one
to the least common denominator of features of the
different operating systems.

An alternative is to build a middleware layer based
on existing standards. This has been the approach
followed by IBM with the introduction of
OpenEdition[6] for the MVS operating system, URL
http://www.s390.ibm.com/products/oe.
OpenEdition is X/Open compliant so that a large
collection of existing software can be transported at
little cost.

Windows NT is an operating system developed by
Microsoft to fill the needs of the high-end market. It
is a layered architecture, designed from the ground
up, built around a microkernel that is similar to
Mach.[7] One or more subsystems can reside on top
of the microkernel which gives Windows NT the
ability to run different logical operating systems
simultaneously. For example, the OS/2 subsystem
allows OS/2 applications to run on Windows NT.
The most important subsystem that runs on Windows
NT is the WIN32 subsystem. The WIN32 subsystem
runs all applications that are written to the WIN32
Application Programming Interface (API)[8]. The
API for the WIN32 subsystem is also provided with
Windows 95, although not all of the functions are
implemented. In most instances binaries compiled
for Windows NT that use the WIN32 API will also
run on Windows 95.

The POSIX subsystem allows applications that are
strictly conforming to the IEEE POSIX 1003.1
operating system standard[9] to run on Windows NT.
Since the POSIX standard contains most of the



standard UNIX system call interface, many UNIX
utilities are simple to port to any POSIX system.
Because most of our tools require only the POSIX
interface, we thought that it would be sufficient to
port them to the POSIX subsystem of Windows NT.
Unfortunately, this is not a viable alternative for
most applications. Microsoft has made the POSIX
subsystem as useless as possible by making it a
closed system. There is no way to access
functionality outside of the 1990 POSIX 1003.1
standard from within the POSIX subsystem, either at
the library level or at the command level. Thus, it is
impossible to invoke the Microsoft C compiler from
within the POSIX subsystem. Softway System, Inc.,
URL http://www.softway.com, has an
agreement with Microsoft to enhance the POSIX
subsystem. Softway claims that they will open up
the POSIX subsystem so that it can access WIN32
applications. They have built the OpenNT product
with this enhanced subsystem. However, it is still
not possible to mix UNIX API calls and WIN32
calls in a single application. A final drawback to
this approach is that the POSIX subsystem is not
available for Windows 95.

We investigated alternative strategies that would
allow us to run programs on both UNIX and
Windows NT based systems. After looking at all the
alternatives, we decided to write our own library that
would make porting to Windows NT and Windows
95 easy. We spent three months putting together the
basic framework and getting some tools working.
Realizing that the task was larger than a one person
project, we contracted a small development team of 2
or 3 to do portions of the library, packaging, and
documentation. This paper discusses the
implementation of our POSIX library and current
status. Version 1.2 of UWIN has been freely
available in binary form for non-commercial use on
the internet from the web site
http://www.research.att.com/sw/tools/uwin.
Version 1.3, described here, should be available from
this site by the time of this conference.

2. GOALS

We wanted our software to work with Windows 3.1,
Windows 95, and Windows NT. A summer student
wrote a POSIX library for Windows 3.1 and we were
able to port a number of our tools. However, the
limited capabilities of Windows 3.1 made it a less
than desirable platform. We instead focused our
goals on Windows NT and Windows 95. We
decided to use only the WIN32 API for our library
so that the library would work on Windows 95 and

so that all WIN32 interfaces would be available to
applications.

Initially, our goal was to provide the IEEE POSIX.1
interface with a library. This would be sufficient to
run ksh and about eighty utilities that we had
written. It soon became obvious that this wasn’t
enough for many applications. Most real programs
use facilities that are not part of this standard such as
sockets and/or IPC.

We needed to provide a character based terminal
interface so that curses based applications such as vi
could run. After the initial set of utilities was
running, we wanted to get several socket based tools
working. Several projects at AT&T that became
interested in using our libraries, required the System
V IPC facilities. The S graphics system[10] and
ksh–93[11] required runtime dynamic linking. As
the project progressed, the need for privileged users,
such as root on UNIX systems, surfaced. We
decided that it was important to have setuid and
setgid capabilities. It soon became clear that we
needed full UNIX functionality and we set our goal
on X/Open Release 4 conformance.

We needed to have a complete set of UNIX
development tools since we didn’t want to get into
the business of rewriting makefiles or changing build
scripts. Most code written at AT&T, including our
own, uses nmake[12], (no relation to the Microsoft
nmake), but we also wanted to be able to support
other make variants. We didn’t want to do manual
configuration on tools that have automatic
configuration scripts.

A second measure of completeness is the degree to
which all the system services can be accessed
through the UNIX API. Our goal was to be able to
perform as many of the Windows NT tasks as
possible via traditional UNIX commands. For
example, it should be possible to reboot the system
when logged in through a telnet session by calling
the UNIX shutdown program. We should also be
able to access the Windows registry database with
standard UNIX utilities such as grep.

One important goal that we had from the beginning
was to not require WIN32 specific changes to the
source to get it to compile and execute. The reason
for this is that we wanted to be able to compile and
execute UNIX programs without having to
understand their semantics. In addition we wanted to
limit the number of new interfaces functions and
environments variables that we had to add to use our
library. It is difficult to manage more than one or



two environment variables when installing a new
package.

Another goal that we had was to provide a robust set
of utilities with minimal overhead. If utilities written
to the X/Open API were noticeably slower than the
same utilities written to the native WIN32 API, then
they were likely to be rewritten making our library
unnecessary in the long run.

A final and important goal was interoperatability
with the native Windows NT system. Integration
with the native system not only meant that we could
use headers and libraries from the native system, but
that we could pass environment variables and open
file descriptors to commands written with the native
system. There couldn’t be two unrelated sets of user
ids and separate passwords. If write permission were
disabled from the UNIX system, then there should be
no way to write the file using facilities in the native
system and vice versa.

We have not as yet achieved all of our goals, but we
think that we are close. The rest of the paper will
discuss some of the issues we needed to deal with
and our solutions.

3. PROBLEMS TO SOLVE

The following problems need to be understood and
dealt with in porting applications to Windows NT.
These are some of the issues that need to be
addressed by POSIX library implementations.
Section 6 describes how UWIN solved most of these
problems.

3.1 Windows NT File Systems

Windows NT supports three different file systems,
called FAT, HPFS, and NTFS. FAT, which stands
for File Access Table, is the Windows 95 file
system. It is similar to the DOS file system except
that it allows long file names. There is no
distinction between upper and lower case although
the case is preserved. HPFS, which stands for High
Performance File System, was designed for OS/2.
NTFS, the native NT File System, is similar to the
Berkeley file system.[13] It allows long file names (up
to 255 characters) and supports both upper and lower
case characters. It stores file names as 16 bit
Unicode names.

The file system namespace in Win32 is hierarchical
as it is in UNIX and DOS. A pathname can be
separated by either a / or a \. Like DOS, and
unlike UNIX, disk drives are specified as a colon
terminated prefix to the path name, so that the

pathname c:\home\dgk names the file in
directory \home\dgk on drive c:. Many UNIX
utilities expect only / separated names, and expect a
leading / for absolute pathnames. They also expect
multiple /’s to be treated as a single separator.

Even though NTFS supports case sensitivity for file
names, the WIN32 API has no support for case
sensitivity for directories and minimal support for
case sensitivity for files, limited to a
FILE_FLAG_POSIX_SEMANTICS creation flag for
the CreateFile() function. Certain characters
such as *, ?, >, |, :, ", and \, cannot be used in
filenames created or accessed with the WIN32 API.
The names, aux, com1, com2, nul, and
filenames consisting of these names followed by any
suffix, cannot be created or accessed in any directory
through the WIN32 API.

Because Windows 95 doesn’t support execute
permission on files, it uses the .exe suffix to decide
whether a file is an executable. Windows NT
doesn’t require this suffix, but some NT utilities,
such as the DOS command interpreter, require the
.exe suffix.

3.2 Line Delimiters

Windows NT uses the DOS convention of a two
character sequence <cr><nl> to signify the end of
each line in a text file. UNIX uses a single <nl> to
signify end of line. The result is that file processing
is more complex than it is with UNIX. There are
separate modes for opening a file as text and binary
with the Microsoft C library. Binary mode treats the
file as a sequence of bytes. Text mode strips off
each <cr> in front of each new-line as the file is
read, and inserts a <cr> in front of each <nl> as
the file is written. Because the number of characters
read doesn’t indicate the physical position of the
underlying file, programs that keep track of
characters read and use lseek() are likely to not
work in text mode. Fortunately, many programs that
run on Windows NT do not require the <cr> in
front of each <nl> in order to work. This
difference turned out to be less of a problem that we
had originally expected.

3.3 Handles vs. file descriptors

The WIN32 API uses handles for almost all objects
such as files, pipes, sockets, processes, and events,
and most handles can be duped within a process or
across process boundaries. Handles can be inherited
from parent processes. Handles are analogous to file
descriptors except that they are unordered, so that a
per process table is needed to maintain the ordering.



Many handles, such as pipe, process, and event
handles, have a synchronize attribute, and a process
can wait for a change of state on any or all of an
array of handles. Unfortunately, socket handles do
not have this attribute. One of the few novel
features of WIN32 is the ability to create a handle
for a directory with the synchronize attribute. This
handle changes state when any files under that
directory change. This is how multiple views of a
directory can be updated correctly in the presence of
change.

3.4 Inconsistent Interfaces

The WIN32 API handle interface is often
inconsistent. Failures from functions that return
handles return either 0 or -1 depending on the
function. The CloseHandle() function does not
work with directory handles. The WIN32 API is
also inconsistent with respect to calls that take
pathname arguments and calls that take handles.
Some functions require the pathname and others
require the handle. In some instances, both calls
exist, but they behave a little differently.

The WIN32 API is also inconsistent with respect to
reporting errors when commands fail. Many
commands return a boolean value for success or
failure and the exit code for failure can be found by
calling GetLastError(). However, a number of
commands return the exit code with 0 indicating
success.

3.5 Chop Sticks Only

The WIN32 subsystem does not have an equivalent
for fork() or an equivalent for the exec*()
family. There is a single primitive, named
CreateProcess() that takes 10 arguments, yet
still cannot perform the simple operation of
overlaying the current process with a new program
as execve() requires.

3.6 Parent/Child Relationships

The WIN32 subsystem does not support parent/child
relationships between processes. The process that
calls CreateProcess() can be thought of as the
parent, but there is no way for a child to determine
its parent. Most resources, such as files and
processes, have handles that can be inherited by child
processes and passed to unrelated processes. Any
process can wait for another process to complete if it
has an open handle to that process. There is a
limited concept of process group that affects the
distribution of keyboard signals, and a process can be
placed in a new group at startup or can inherit the

group of the parent process. There is no way to get
or set the process group of an existing process.

3.7 Signals

The WIN32 API provides a structured mechanism
for exception handling. Also, signals generated from
within a process are supported by the API.
However, signals generated by another process have
no direct method of implementation. In addition to
being able to interrupt processing at any point, a
signal handler might perform a longjmp and never
return.

3.8 Ids and Permissions

Windows NT uses subject identifiers to identify users
and groups. A subject identifier consists of an array
of numbers that identify the administrative authority
and sub-authorities associated with a given user. A
UNIX user or group id is a single number that
uniquely identifies a user or group only within a
single system. Information about users is kept in the
a registry database which is accessible via the
WIN32 API and the LAN manager API.

Windows NT uses an access control list, ACL, on
each file or object to control the access of the file or
object for each user. UNIX uses a set of permission
bits associated with the three classes of users; the
owner of the object, the group that the object belongs
to, and everyone else. While it is possible to
construct an access control list that more or less
corresponds to a given UNIX permission, it is not
always possible to represent a given access control
list with UNIX permissions.

Windows NT has separate permissions for writing a
file, deleting a file, and for changing the permission
on a file. The write bit on UNIX systems determines
all three. Thus, it is possible to encounter files that
have partial write capability.

UNIX processes have real and effective user and
group id’s that control access to resources. Windows
NT assigns each process a security token that defines
the set of privileges that it has. UNIX systems use
setuid/setgid to delegate privileges to processes.
Windows NT uses a technique called impersonation
to carry out commands on behalf of a given user.
There is no user that has unlimited privileges as the
root user does with UNIX. Instead the special
privileges of root have been broken apart into
separate privileges that can be given to one or more
users. One of the biggest challenges we faced was
providing the UNIX model of setuid/setgid on top of
the WIN 32 interface.



The implementation of WIN32 for Windows 95 does
not support the NT security model and calls return a
not implemented error.

3.9 Terminal Interface

Windows NT and Windows 95 allow each character
based application to be associated with a console
which is similar to an xterm window. Consoles
support echo and no echo mode, and line at a time or
character at a time input mode, but lack many of the
other features of the POSIX termios interface.
There is no support for processing escape sequences
that are sent to the console window. In echo mode,
characters are echoed to the console when a read call
is pending, not while they are typed. There are
separate console handles for reading from the
keyboard and writing to the screen.

3.10 Special Files

The WIN32 API supports unnamed pipes with the
UNIX semantics. Named pipes are also supported
but have different semantics than fifos and occupy a
separate name space. There is no /dev directory to
name special files such as /dev/tty and
/dev/null. The WIN32 does support special
names of the form \\.\PhysicalDrive for disk
drives and tape drive devices.

Windows NT supports hard links to files, but there is
no WIN32 API call to create these links. They do
not support symbolic links in the file system directly,
but on Windows 95 and on Windows NT 4.0, the file
browser does support short cuts which are very
similar to symbolic links.

3.11 Shared libraries

The WIN32 API supports the linking of shared
libraries at program invocation and at run time. The
libraries are called dynamically linked libraries or
DLL’s and are represented by two separate files.
One file provides the interface and is needed at
compile time to satisfy external references. The
second file contains the implementation as is needed
at run time.

There are some restrictions on DLL’s that are not
found on UNIX system shared library
implementations. One restriction is that you cannot
override a function called by a DLL by providing
your own version of the function. Thus, supplying
your own malloc() and free() functions will
not override the calls to malloc() and free()
made by other DLL’s. Secondly, the library can
only contain pointers to data, not data itself. Thus,
making a symbol such as errno part of a DLL is

impossible. Even making symbols such as stdin
point to data in a DLL invites trouble since it is not
possible to compile code that uses

static FILE *myfile = stdin;

3.12 Compilers and libraries

Microsoft sells the Visual C/C++ compiler for
Windows NT and Windows 95. This compiler has
both a graphical and command line interface.
Microsoft also sells a software developers kit (SDK)
that contains tools, including the Microsoft nmake.
The compiler and linker use a different set of flags
than standard UNIX compilers, and C files produce
.obj files by default, rather than .o files.
Fortunately, the linker can handle both .obj and .o
files. The linker has options to choose a starting
address and to specify whether the application is a
console application, a GUI application, a POSIX
application, or a dynamically linked library.

3.13 Environment Variables

The WIN32 API supports the creation and export of
environment variables in much the same way that
UNIX systems do. Some environment variables,
such as PATH are used by both WIN32 and by
UNIX, yet have different formats. UNIX uses a :
separated list of pathnames; WIN32 uses a ;
separated list.

4. UWIN DESIGN AND
IMPLEMENTATION

We started work on writing our own POSIX library
at the beginning of 1995 after being dissatisfied with
the existing commercial products. We were able to
put together a useful subset of functions in about 3
months. However, to be successful, it was necessary
to provide as complete a package as possible. The
library needed to handle console and serial line
support, sockets, UNIX permissions, and other
commonly used mechanisms such as memory
mapping, IPC, and dynamic linking. In addition, to
be useful, the libraries had to be documented and
supported. This put the scope of the project outside
of the reach of a small research department such as
ours.

We subcontracted some of the development to Wipro
in India to help complete this project. We jointly
designed the terminal interface and the group in
India implemented it. They also worked on
completing the sockets library. They packaged the
software for installation and are providing
documentation. This section describes the UWIN
implementation and how we solved many of the



problems described in Section 4.

4.1 UWIN Architecture

The current implementation of UWIN consists of two
dynamically linked libraries named posix.dll and
ast52.dll that more or less implement the
functions documented respectively in section 2 and
section 3 of UNIX manuals. In addition, a server
process named UMS runs as Administrator (the
closest thing to root). UMS generates security
tokens for setuid/setgid programs as needed. It also
is responsible for keeping the /etc/passwd and
/etc/group files consistent with the registry
database. The Architecture for UWIN is illustrated
in Figure 1. The UMS server does not exist for
Windows 95.

The posix.dll library maintains an open file table
that is shared by all the currently active UNIX
processes in a memory mapped region. This region
is writable by all processes so that an ill-behaved
process could affect another process. Even though
all processes have read and write access to the shared
segment, secure access to kernel objects in Windows
NT is not compromised by this model because a
process must have access rights to an object to use
it; knowing its address or value doesn’t give
additional access rights. Some initial measurements
indicated that the alternative of having a server
process update the shared memory region, would
have had a performance penalty that we did not
believe was worth the cost. However, this is an area
for future investigation.

The open file table is an array of structures of type
Pfd_t as illustrated in Table 1.

_ __________________
Pfd_t_ ___________________ __________________

long refcount_ __________________
int oflag_ __________________
char type_ __________________
short extra_ __________________ 
















TABLE 1. File Table Structure

The refcount field is used to keep track of free
entries in this table. The Win32
InterlockedIncremenet() and
InterlockedDecremenet() functions are used
to maintain this count so that concurrent access by
different processes will work correctly. The oflag
field stores the open flags for the file. The type
field indicates what type of file, regular, pipe, socket,
or special file. The function that is used read from

or to write to the file depend on the value of type.
For certain types, the extra field stores an index
into a type-specific table that stores additional
information about this file.

The posix.dll library also maintains a per
process structure, Pproc_t. The per process
structure contains information required by UNIX
processes that is not required by Win32 processes
such as parent process id, process group id, signal
masks, and process state as illustrated in Table 2.

Like the open file table, the process table maintains a
reference count so that process slots can be allocated
without creating a critical region. The meaning of
most of the fields in the process structure can be
deduced by its name. The Psig_t structure
contains the bit mask for ignored, blocked and
pending signals. When the first child process is
invoked by a process, a thread is created that waits
for this and subsequent processes to complete. The
waitevent field contains an event this thread also
waits on so that additional children can be added to
the list of children to wait for.

_ __________________________________
Pproc_t_ ___________________________________ __________________________________

long refcount_ __________________________________
HANDLE proc,thread_ __________________________________
HANDLE sigevent_ __________________________________
HANDLE waitevent_ __________________________________
HANDLE etok,rtok_ __________________________________
ulong ntpid_ __________________________________
pid_t pid,ppid,pgrp,sid_ __________________________________
id_t uid,gid_ __________________________________
Psig_t siginfo_ __________________________________
mode_t umask_ __________________________________
ulong alarmremain_ __________________________________
int flags_ __________________________________
time_t cutime,cstime_ __________________________________
Pprocfd_t fdtab[OPEN_MAX]_ __________________________________ 












































TABLE 2. Process Table Structure

The process structure contains an array of up to
OPEN_MAX structures of type Pprocfd_t that is
indexed by file descriptor. The Pprocfd_t
structure contains the close-on-exec bit, the index of
the file in the open file table, and the corresponding
handle or handles as illustrated in Table 3.

The posix.dll library implements the
malloc(), realloc(), and free() interface
using the Vmalloc library written by Kiem-Phong



Application

WIN32 API

POSIX.DLL

AST52.DLL

UMS

Figure 1. – UWIN Architecture

Vo[14]. The Vmalloc library provides an interface
to walk over all memory segments that are allocated
which is needed for the fork() implementation
described later.

_ _________________________
Pproc_t_ __________________________ _________________________

short index_ _________________________
char close_exec_ _________________________
HANDLE primary_ _________________________
HANDLE secondary_ _________________________ 
















TABLE 3. Process file structure

The asta52.dll library provides a portable
application programming interface that is used by all
of our utilities. The interface to this library is named
libast.a, for compatibility with its name on
UNIX systems. The 52 is used to indicate that it is
version 5.2 of this library, the latest version number
on UNIX systems. libast.a provides C library
functions that are not present on all systems so that
application code doesn’t require #ifdefs to handle
system dependencies. libast.a is built using the
iffe command [15] to feature test the host system
and determine what interfaces do not exist in the
native system.

libast.a relies on the Microsoft C library for
much of the ANSI-C functionality. The most
significant exception to this, other than malloc()
which is provided by posix.dll, is the stdio

library. libast.a provides its own version of the
stdio library based on calls to Sfio[16]. The
Sfio library makes calls to posix.dll rather than
making direct calls to the WIN32 API as the
Microsoft C library does so that pathnames are
correctly mapped.

The use of Sfio also provides a simple solution to
the <cr><nl> problem. When a file is explicitly
opened for reading as a text file, an Sfio discipline
for read() and lseek() can be inserted on the
stream to change all <cr><nl> sequences are to <nl>.
The lseek() discipline uses logical offsets so that
the removal of <cr> characters is transparent. We
did not provide a discipline to change <nl> to
<cr><nl> since we discovered that most Windows 95
and Windows NT utilities worked without the <cr>s.
The <cr>s could be inserted by a filter such as sed
if required.

4.2 Files

The posix.dll library performs the mapping
between handles and file descriptors. Usually, each
file descriptor has one handle associated with it. In
some cases, two handles may be associated with a
file descriptor. An example of this is a console that
is open for reading and writing which uses separate
handles for reading and writing.

The posix.dll library handles the mapping
between UNIX pathnames and WIN32 pathnames.
Many UNIX programs assume that pathnames that



do not begin with a / are relative pathnames. In
addition, only / is recognized as a delimiter. There
is only a single root directory; the operation of
changing to another drive does not change the root
directory. The posix.dll library maps all file
names it encounters. If the file name begins with a
/ and the first component is a single letter, then this
letter is taken as the drive letter. Thus, the UNIX
filename /d/bin/date gets translated to
d:\bin\date. The file name mapping routine
also recognizes special file names such as
/dev/tty and /dev/null. A / not followed by
a drive letter is mapped to the drive that UWIN has
been installed on so that programs that embed
absolute pathnames for files in /bin, /tmp, /dev,
and /etc work without modification. The file name
mapping also solves the problem caused by the
WIN32 interface special treatment of the names,
aux, com1, com2, nul, and filenames consisting
of these names followed by any suffix,

Version 1.3 of UWIN adds support for Universal
Naming Conversion (UNC) naming. UNC uses
names of the form //hostname/filename to access
files on a given host. In addition, Version 1.3 adds
the name /sys as a way of naming the system
directory. This makes it easier to write shell scripts
that are portable across windows machines.

Finally, the path search algorithm was modified to
look for .exe and .bat suffices.

One problem introduced by the pathname mapping is
that passing file name arguments to native NT
utilities is more difficult since it understands DOS
style names, not UNIX names. A library routine was
added to return a DOS name given a UNIX name.

The posix.dll library pathname mapping function
also takes care of exact case matching on file
systems that require it. One of the most troublesome
aspects of the WIN32 API is its lack of support for
pathname case distinction. It is not uncommon to
have files named Makefile and makefile in the
same directory in UNIX. UWIN handles case
distinction by calling the WIN32 CreateFile()
function both with and without the
FILE_FLAG_POSIX_SEMANTICS function. If
they compare equal, it executes the function
internally, otherwise it spawns a POSIX subsystem
process to carry out the task.

4.3 fork/exec

The fork() system call was implemented by
creating a new process with the same startup
information as the current process. Before executing

main(), it copies the data and stack of the parent
process into itself. Handles that were closed when
the new process was created are duplicated into the
new process. The exec*() family of functions was
much harder to implement. The problem is that
there is no way to overlay the calling process. Some
commercial products have the current process wait
for the child process to complete and then exit.
There are two problems with this approach. First, a
process that execs repeatedly will fill up the process
table. More importantly, resources from the parent
process are not released. Our method causes the
child process to be reparented to the grandparent and
the process that calls exec*() to exit. The process
id returned by the getpid() function will be the
process id of the process that invoked the exec*()
function. In other cases, it will be the same process
id as the WIN32 uses. To prevent that process id
from being used again by WIN32, a handle to the
process is kept by the grandparent process.

Even though we implemented fork() and the
exec*() family of functions, our code rarely uses
them. Because the CreateProcess() function
doesn’t have an overlay flag, two processes need to
be created in order to do both fork() and
exec*(). libast provides a spawn*() family
of functions that combines the functionality of
fork()/exec*() on systems that don’t have the
spawn*() family. All functions in libast that
create processes such as system() and popen()
are programmed with this interface. On most UNIX
systems, the spawn*() family is written using
fork() or vfork() and exec*(). We
implemented spawn*() in our posix.dll library
to call CreateProcess() directly.

The CreateProcess() function has the ability to
specify information and startup options that cannot
be specified with fork() and exec(). The
Version 1.3 of UWIN supplies a function
uwin_spawn() that takes an argument that
contains additional information for
CreateProcess(). This should make it
unnecessary for an application to call
CreateProcess() directly.

4.4 Signals

Signals are handled by having each process run a
thread that waits on an event. To send a signal to a
process, the bit corresponding to the given signal
number is set in the receiving process’s process
block, and then its signal thread event is set. The
signal thread then wakes up and looks for signals. It
is important for the signal handler to be executed in



the primary thread of the process, since the handler
may contain a longjmp() out of the handler
function. Prior to calling main(), an exception
filter is added to the primary thread that checks for
signals. The signal thread does this by suspending
the primary thread raising an exception that will
active the exception filter of the primary thread, and
then resuming the primary thread.

4.5 Terminals

The POSIX termios interface is implemented by
creating two threads; one for processing keyboard
input events, and the other for processing output
events and escape sequences. These threads are
connected to the read and write file descriptors of the
process by pipes. The same architecture is used for
socket based terminals and serial I/O lines. Initially,
these threads run in the process that created the
console and make it the controlling terminal. These
threads service all processes that share the
controlling terminal. New threads will be created if
the process that owns the threads terminates and
another process is sharing the console. When a
process is created, these threads are suspended and
the console handles are passed down to the child.
This enables a native application to run with its
standard input and output as console handles. If the
application has been linked with the posix.dll,
then these threads are resumed before main() is
called so that UNIX style terminal processing takes
place. The result is that UNIX processes will echo
characters as they are typed and respond to special
keys specified by stty, whereas native WIN32
applications will only echo characters when they are
read and will use Control-C as the interrupt
character.

4.6 Ids and Permissions

Permissions for files are only available on Windows
NT. Calls to get an set permissions return not
implemented errors on Windows 95. Creating a
Windows NT ACL that closely corresponds to UNIX
permissions isn’t very difficult. The ACL needs
three entries; one for owner, one for group, and one
that represents the group that contains all users.
Windows NT allows separate permission to delete a
file and to change its security attribute. These
permissions are give to the owner of a file. The
UNIX umask() command sets the default ACL so
that native applications that are run by UWIN will
create files with UNIX type permissions.

Mapping of subject identifiers to and from user and
group ids is more complex. UWIN maintains a table

of subject identifier prefixes, and constructs the user
id and group id by a combination of the index in this
table and the last component of the subject identifier.
The number of subject identifier prefixes that are
likely to be encountered on a given machine is much
smaller than the number of accounts so that this table
is easier to maintain.

4.7 Special files and Links

Special files such as fifos and symbolic links require
stat() information that is not kept by the NT or
FAT file systems. Also, the file system does not
store the setuid and setgid permission bits.
With the NT file system, this extra information has
been stored by using a poorly documented feature
called multiple data streams that allows a file to have
multiple individually named parts. A separate data
stream is created to hold additional information about
the file. The SYSTEM attribute is put on any file or
directory that has an additional data stream so that
they can be identified quickly with minimal overhead
during pathname mapping.

Using multiple data streams requires the NT file
system. On other file systems, fifos and symbolic
links are implemented by storing the information in
the file itself. The setuid, setgid functionality is not
supported on these file systems.

UWIN treats Windows 95 and Windows NT 4.0
short cuts as if they were symbolic links. However,
these links can be created with any of the UWIN
interfaces. This was done by reverse engineering the
format of a short cut file and finding where the
pathname of the file that it referred to was stored.

Fifos are implemented by using WIN32 named pipes.
A name is selected based on the creation date of the
fifo file. Only the first reader and the first writer on
the fifo create and connect to the named pipe. All
other instances duplicate the handle of either the
reader or the writer. This way all writers to a fifo
use the same handle as required by fifo semantics.

A POSIX subsystem command is also invoked to
create hard links since there is no WIN32 API
function to do this. Hard links fail for files in the
FAT file system.

4.8 Sockets

Sockets are implemented as a layer on top of
WINSOCK, the Microsoft API for BSD sockets.
Most functions were straight forward to implement.
The select() function proved more difficult than
we had anticipated because socket handles could not
be used for synchronization, and because the



Microsoft select() call only worked with socket
handles. The posix.dll select() function
allows different types of file descriptors to be waited
for.

Our first implementation of select() created a
separate thread that used the Microsoft select()
to wait for socket handles, and created an event for
the main thread to add to the list of handles to wait
for. Our second implementation used a library
routine to convert input/output events on sockets to
windows messages and then waited for both
windows messages and handle events simultaneously.
This method had the added advantages that it was
possible to implement SIGIO and that it was easy to
add a pseudo file device named /dev/windows
that could be used to listen for windows messages.
Adding this pseudo device made it possible to use
the UNIX implementation of tcl to port tksh[17]

applications to Windows NT.

4.9 Invocation

When UWIN invokes a process, it does not know
whether the process is a UWIN process or a native
process. It modifies the PATH variable so that it
uses the ; separated DOS format. It also passes open
files in the same manner that the Microsoft C library
does so that programs that are compiled with this
library should correctly inherit open files from
UWIN programs. The initialization function also
sees whether a security token has been placed in its
address space by the UMS server, and if so, it
impersonates this token.

The POSIX library has an initialization routine that
sets up file descriptors and assigns the controlling
terminal starting the terminal emulation threads as
required. The posix.lib library also supplies a
WinMain() function that is called when the
program begins. This function initializes the stdin,
stdout, and stderr functions and then calls a
posix.dll function passing the address of another
posix.lib function that actually invokes main().
The posix.dll function starts up up the signal
thread and sets the exception filter for signal
processing as described above. The reason for this
complexity is so that UNIX programs will start with
the correct environment, and so that argv[0] will
have UNIX syntax without the trailing .exe since
many programs use argv[0]. Much of the
complexity occurs inside the posix.dll part
because programs do no require recompilation when
changes are added there.

The current version of UWIN provides partial
support for files larger than two gigabytes. The
underlying NTFS file system supports 64 bit file
offsets. However, the size of off_t is stored as a
32 bit integer because some programs would
otherwise break. The type off64_t is defined and
the functions ftruncate64(), lseek64(), and
truncate64() have been implemented. The
current stat structure actually fills in a 64 bit file
size, but only the low 32 bits are accessible. The
current version of Sfio supports 64 bit file offsets,
but this option has not as of yet been enabled.

5. CURRENT STATUS

At the time of this writing, most interfaces required
by the X/Open Release 4 standard have been written
and work as described in the standard. The X/Open
standard requires full ANSI C functionality as well.
In addition, interfaces for the curses library, the
sockets library, and the dynamic linking library, are
also working.

A C/C++ compiler wrapper has been written that
calls either the Microsoft Visual C/C++ 2.x, 4.x or
5.x compiler. This compiler supports the most
commonly used UNIX conventions and implicitly
sets default include files and libraries. In addition it
has an added hook for specifying native compiler
and linker options. Applications compiled with our
cc command can be debugged with native debuggers
such as the Visual C/C++ debugger. Several auto
configuration programs use the output of the C
preprocessor to probe the features of the system.
The output format of the Microsoft C compiler
caused some of the configuration programs to fail.
To overcome this, a filter is inserted when running
the compiler to generate preprocessor output so that
existing configuration programs work. Our compiler
wrapper can be invoked as cc for ANSI-C
compilation, as CC for C++ compilation, and as pcc
to build POSIX subsystem applications.

Our compiler wrapper follows the normal UNIX
defaults for suffixes rather than using the Microsoft
conventions; .o’s rather than .obj’s. The .exe
suffix is not required for Windows NT since it uses
permission bits to distinguish executables. However,
since we also want binaries to run on Windows 95,
the .exe suffix is added to the name of the output
file if no suffix is supplied when the compiler is
invoked as cc or CC.

The tools have been enhanced to make building
dynamically linked libraries easier. The ar
command has been extended with an option to



generate an export file from a definition file (.def).
The ld command has a flag to build dynamically
linked libraries.

The lastest version of ksh, ksh–93 was ported.
The implementation supports all features of ksh–93
including job control and dynamic linking of built-in
commands at run time. While no changes to the
code should have been necessary, changes were
made to ksh specifically for NT. The hostname
mapping attribute, typeset –H, which has no
effect on UNIX systems, was modified to call the
posix.dll function that returns the WIN32
pathname corresponding to a given UNIX pathname.
The ability to do case insensitive matching for file
expansion was also added. A compile time option to
allow <cr><nl> in place of <nl> was added to the
shell grammar to avoid the overhead of text file
processing.

About 175 UNIX tools have been ported to Windows
NT, the vast majority required no changes. Common
software development tools such as yacc, lex,
make and nmake have also been ported. Most of
the utilities are versions that we have written at
AT&T over the last ten years and are easily portable
to all UNIX platforms. Other utilities, such as
make, bc, and gzip we compiled from the GNU
source using autoconfig to generate headers and
makefiles. The yacc and less utilities and the
new vi program were ported from freely available
BSD source code. In most cases, no changes were
made to the original source code.

The X Windows code has two parts, the client and
the server. The server had already been ported to
Windows NT and Windows 95 by commercial
vendors and there was no need to build UWIN
version for it. In addition, the server is often
running on a UNIX host. The most difficult part of
porting the X Windows client code was the fact that
it had #ifdefs for WIN32 that selected native
WIN32 calls, bypassing the UWIN calls. Once this
was straightened out, the compilation was
straightforward.

6. UNSOLVED PROBLEMS

It would be nice to say that all of UNIX could be
implemented with WIN32, but this isn’t the case.
One problem, which is an artifact of using the the
WIN32 API rather than the POSIX subsystem, is that
there is no way to create or access a file whose name
ends in ’.’, even by using the
FILE_FLAG_POSIX_SEMANTICS flag with
CreateFile().

A second problem is that the way authentication
works in Windows NT differs from that on UNIX
systems. On UNIX systems, the password is
encrypted and compared to the encrypted password
in the user accounts database. On Windows NT, a
function that takes the user name and password is
called, and this function returns a token the can be
used to defined the access privileges of a process.
Since there was no access to the encrypted
passwords with WIN32, we had to make changes to
programs such as ftp that require authentication or
programs such as telnetd that need to create
processes on behalf of the user.

A third problem for which we were not able to find a
satisfactory solution was how to fchmod() a file
whose handle was opened with read permission only.
If the handle was opened by another process the
name is not known, so a separate open is not
possible. One solution would be to always try
opening the file with permission to change the mode.
The problem with this solution is that the open will
fail for any file that is not owned by the user
opening the file, and a second open attempt would be
required. This would practically double to time
needed to open a file for opening a readonly only,
which we felt was unacceptable.

We encountered a number of problems relating to
concurrency restrictions that do not occur on UNIX
systems. For example, if a file was memory
mapped, an attempt to open it for truncation would
fail. We could not find a way around this problem
so we had to change the vi code that we were using
to not use memory mapping. We are unable to
change the access permissions of a dynamically
linked library that is in use. We are also unable to
rename a directory any another process has this
directory, or a subdirectory as its current working
directory. In Windows 95, we are unable to move or
rename files that are open, even when these have
been opened for maximum sharing.

Finally, we encountered numerous problems with the
permission system. We were unable to add a new
group to an existing process. It is often difficult or
impossible to map access control lists to UNIX
permissions in a meaningful way.

7. FUTURE WORK

We currently are using the Microsoft Developers
Studio debugger. Unfortunately, this requires us to
be logged in on the console. We often have several
users logged onto a single NT workstation and only
one user at a time can use this debugger. In



addition, the debugger can’t be used when logged in
from home via a telnet session. We hope to write
the nub for the deet debugger[18] so that it can be
used as a command line and/or graphical debugger.

In addition, we are trying to decide how to port the n
dimensional file system, n-DFS[19], to Windows NT.
n-DFS provides a mechanism to add file system
services such as viewpathing and versioning. The
difficulty in porting n-DFS is that it must also
capture native WIN32 API calls to provide a
transparent interface.

We would like to add support for asynchronous I/O
as defined by the POSIX realtime standard[20].
Unfortunately, unlike the POSIX API, the WIN32
API requires that you make the decision about
whether the I/O is synchronous or asynchronous
when the file is opened as well as when it is read. A
file opened for synchronous reads cannot be read
asynchronously, and a file opened for asynchronous
reads cannot be read synchronously. This makes it
impossible to use asynchronous I/O on a file that
has been redirected by the shell.

The current version of UWIN does not handle many
of the internationalization issues well. The current
implementation has been compiled for ASCII rather
than UNICODE. We plan to use UFT8 encoding of
UNICODE for the system call interface, and to
convert to UNICODE on the NT file system. This
way we do not need to build separate binaries for
UNICODE.

Another issue worth investigating is whether it is
possible to run Linux binaries under UWIN. This
would only make sense for dynamically linked
programs.

Finally there are some WIN32 interfaces that could
be handled through the file system interface such as
the Windows NT registry and the clipboard.

8. CONCLUSIONS

There appear to be few if any technical reasons to
move from UNIX to Windows NT. The
performance of Linux exceeds that of NT 4.0 and
Linux appears to be more reliable. However, if you
want to or need to move an application to Windows
95 or Windows NT, we believe the POSIX library
we developed to be superior to any of the existing
commercial libraries.

The code for the posix.dll library is fairly small,
about 15K lines including the terminal emulator.
This library runs in the WIN32 subsystem using the

WIN32 API and runs under Windows 95 as well.

The UWIN binaries are freely available for non-
commercial use from the web site
http://www.research.att.com/sw/tools/uwin.
We hope that this will encourage contributions of
applications that have been built with UWIN.
Licenses for commercial use of UWIN are available
from Global Technologies, Ltd.,
http://www.gtlinc.com.



REFERENCES

1. Microsoft Win32 Programmer’s Reference,
Volume 2 Microsoft Press, 1993.

2. Matt Pietrek, Windows 95 System Programming
Secrets, IDG Books, 1995.

3. The X/Open Release 4 CAE Specification, System
Interfaces and Headers , Issue 4, Vol. 2, X/Open
Co., Ltd., 1994.

4. David Korn, Porting UNIX to Windows NT ,
Proceedings of the Anaheim Usenix, pp. 43-58,
1997.

5. Practical Reusable UNIX Software, Edited by
Balanchander Krishnamurthy, John Wiley &
Sons, 1995.

6. The OpenEdition MVS Users Guide ,IBM,1996.

7. M. Accetta et al., Mach: A New Kernel
Foundation for Unix Development, Usenix
Association Proceedings, Summer 1986.

8. Jeffrey Richter, Advanced Windows – The
Developers Guide to the Win32 API for Windows
NT 3.5 and Windows 95 , Microsoft Press, 1995.

9. POSIX – Part 1: System Application Program
Interface, IEEE Std 1003.1-1990, ISO/IEC
9945-1,1990.

10. Richard A. Becker, John M. Chambers, and Alan
R. Wilks, The New S Language : A
Programming Environment for Data Analysis
and Graphics , Wadsworth & Brooks/Cole, New
Jersey, 1988.

11. Morris Bolsky and David Korn, The New
KornShell Command and Programming
Language , Prentice Hall, 1995.

12. Glenn S. Fowler, A Case for Make, Software –
Practice and Experience, Vol. 20, No. S1, pp.
30-46, 1990.

13. M. McKusik, W. Joy, S. Leffler, and R. Farbry,
A Fast File System for UNIX , ACM Transactions
on Computer Systems, Vol. 2, No. 3, August,
1984, 181-197.

14. Kiem-Phong Vo, Vmalloc - A General and
Efficient Memory Allocator , Software – Practice
and Experience, Vol. 26, No. 3, pp 357-374,
March 1996.

15. Glenn S. Fowler, David G. Korn, John J. Snyder,
and Kiem-Phong Vo, Feature Based Portability ,
Proceedings of the USENIX Symposium on Very

High Level Languages, 1994.

16. David Korn and Kiem-Phong Vo, SFIO - A
Safe/Fast String/File I/O, Proceedings of the
Summer Usenix, pp. 235-255, 1991.

17. Jeffrey Korn, Tksh: A Tcl Library for
KornShell , Fourth Annual Tcl/Tk Workshop,
Monterey, CA, July 1996, pp 149-159.

18. David R. Hanson and Jeffrey L. Korn, A Simple
and Extensible Graphical Debugger , Proceedings
of the Anaheim Usenix, pp. 173-184, 1997.

19. Glenn Fowler, David Korn and Herman Rao, "n-
DFS The Multiple Dimensional File System",
Trends in Software – Configuration
Management, pp. 135-154, 1994.

20. POSIX – Part 1: System Application Program
Interface, Amendment 1: RealTime Extension
IEEE Std 1003.1b-1993 ,1993.


