
The following paper was originally published in the
Proceedings of the USENIX Windows NT Workshop

Seattle, Washington, August 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

Parallel Processing with Windows NT Networks

Partha Dasgupta
Department of Computer Science and Engineering

Arizona State University
Tempe, AZ

Parallel Processing with Windows NT Networks1

Partha Dasgupta
Department of Computer Science and Engineering

Arizona State University
Tempe AZ 85287-5406
Email: partha@asu.edu

http://cactus.eas.asu.edu/partha

1 This research is partially supported by grants from DARPA/Rome Labs, NSF, and Intel Corporation.

Abstract
Workstation-based parallel processing is an area that is
still dominated by Unix-based systems. We have been
building new methods for shared-memory parallel proc-
essing systems on top of Windows NT based networks
of machines.

As of present we have been involved in four related
systems, called Calypso NT, Chime, Malaxis and
MILAN. All of these are middleware, that is they are
system level libraries and utility programs that allow
programmers to utilize a network efficiently for high
volume computations. Calypso was first built on Unix
[BDK95], and then ported to Windows NT. Chime and
Malaxis are NT systems and MILAN is still under the
design phase.

This paper describes the systems, the techniques used to
implement them on Windows NT and the roadblocks
from a Unix programmer’s point of view.

1. Introduction

This paper describes the experience of porting to and
programming with Windows NT (from a Unix pro-
grammer’s perspective) while implementing four related
parallel processing projects on a network of computers.
The paper also provides overview details about the par-
allel processing systems we have built. Our research
efforts have produced system-level programs and li-
braries that run under Windows NT and allow parallel
applications to utilize a network of workstations and
have access to shared memory and provided fault toler-
ance. We have been working with Windows NT since
January 1996 and have designed, implemented and
ported, considerable amount of software. All the people
involved with the projects had prior significant system
development experience with Unix. Thus we started
with our own set of biases and “set-in” ways. Therefore,
switching to Windows NT has been fun at times and
frustrating at others.

Two of the four projects under way have been imple-
mented and tested. These are:

• Calypso NT: Calypso NT is a modification and port
of a preceding Unix implementation. Calypso on
Unix supports shared memory parallel programs
that execute on a network of Sun machines and
provides an efficient execution substrate coupled
with low-cost fault tolerance and load balancing.
The porting of Calypso to Calypso NT was our first
experience with the Windows NT operating system.
The Calypso NT system is being distributed for
free and is available at www.eas.asu.edu/~calypso.

• Chime: Chime is an efficient, fault-tolerant imple-
mentation of the Compositional C++ parallel pro-
gramming language on Windows NT. Some of the
lessons learned from Calypso have migrated to
Chime, but a lot of the inner architecture is differ-
ent, due to a change in programming style from
“Unix-ish” to “NT-ish”.

Two newer NT-based projects are in progress. These
are:

• Malaxis: An implementation of a Distributed
Shared Memory (DSM) system for Windows NT.
This system uses an innovative distributed locking
mechanism that is coupled with barrier synchroni-
zation. This technique is expected to provide per-
formance better than release consistent DSM
systems. The actual performance has not been
tested yet.

• MILAN: A metacomputing environment that ex-
tends the technologies prototyped in Calypso,
Chime, Malaxis, and a Java-based system (Char-
lotte) [BKKW96], to provide a unified computing
environment for robust general purpose computing
on a networked platform.

Our current Windows NT platform consists of twelve
Pentium-Pro-200 computers, four Pentium-133 comput-
ers and five Pentium-90 computers connected by a
100Mb/s Ethernet, running Windows NT 4.0. The de-
velopment environment consists of Visual C++ 4.2.

2. From Unix to Windows NT

Like most academic research groups, we were a heavily
Unix (SunOS) oriented group. Our research was hosted
on Sun computers and all the participants were well
versed in Unix and somewhat skeptical of Windows
NT. So making the plunge into NT was venturing into
uncharted waters.

As stated earlier, we started by attempting to port the
Unix version of Calypso, to Windows NT. Since many
of the mechanisms used by Calypso are operating sys-
tem independent, we thought that porting would be a
matter of replacing some Unix system calls with Win-
dows NT system calls and recompiling. After a few
months of attempts, using several GNU tools and li-
braries, it turned out that we were wrong.

We then discovered the key differences between Unix
and NT. These differences cannot be shoved under the
rug via user-level libraries, and affects the porting of
system-level software. The differences include:

1. Windows NT does not support signals. There are a
variety of mechanisms in NT for asynchronous
events including threads, messages, events and so
on, but they do not map on cleanly to signals.

2. Windows NT uses “Structured Exception Han-
dling” (or SEH) which is quite different from what
UNIX programmers are used to.

3. Windows NT does not provide a “remote shell”
feature.

4. Threads are the mechanism of choice for handling
any form of asynchrony - including those tasks
normally done through signals in Unix.

5. Windows NT expects the applications to be inte-
grated with the windowing system and preferably
such applications should be developed with the
MFC (Microsoft Foundation Classes) library.

6. Terminology is different, making things confusing
and sometimes exasperating.

In spite of such differences, the similarities between
Unix and NT are quite striking. Due to the functional
similarities, differences are easy to overlook. Some
good articles on porting strategies from Unix to NT
exist in the documentation library that is bundled with
the development environment (a.k.a. MSDN –– Micro-
soft Developers Network).

3. Parallel Processing on Networks

In recent years, the focus of parallel processing technol-
ogy has shifted from specialized multiprocessing hard-

ware to distributed computing. The most important
factor in the favor of distributed computing is that it can
provide high performance at low cost. The computa-
tional power of a workstation cluster can surpass that of
a supercomputer, if harnessed properly.2 The advan-
tages of using a network of workstations to implement a
parallel processing system are evident from the devel-
opment of a plethora of parallel processing solutions
based on distributed platforms, in recent years.

These “distributed” parallel processing systems enable
the programmer to exploit the hidden computational
power of the networked workstations, but they do not
always address many of the important issues. Most of
these systems use their own programming models
and/or programming languages that are not always easy
to understand and require extensive modifications to
existing software. Message passing systems, for in-
stance, add a layer that facilitates data transfer and pro-
cess synchronization using messages. Some parallel
processing systems do not differentiate between the
parallelism inherent in an application and the parallel-
ism available at execution time. In such cases, the de-
gree of parallelism is an argument to the program.
However once the execution begins, the width becomes
fixed. Therefore, issues such as failure recovery or ap-
propriate distribution of the workload to account for
slow and fast machines cannot be addressed elegantly.

3.1 Prior Work

Significant numbers of parallel processing systems have
been built for use in networked environment. The nota-
ble ones are PVM, MPI and Linda.

The parallel processing systems can be loosely divided
into two types, those that depend on a message passing
scheme and those that use some form of global address
spaces. Many systems provide message passing, or Re-
mote Procedure Call facility built on top of a message
passing. These include PVM [S90, GS92], GLU
[JA91], Isis and so on. These systems provide a run-
time library (and sometimes compiler support) to enable
the writing of parallel programs as concurrently execu-
table units.

Using global memory to make programs communicate
has been established as a “natural” interface for parallel
programming. Distributed systems do not support
global memory in hardware, and hence, this feature has
to be implemented in software. While systems built

2 Effective and innovative harnessing of the computing power of
workstation networks is one of the primary research goals of the
MILAN project in general and Calypso in particular.

around Distributed Shared Memory (DSM) like IVY
[Li88] Munin [DCZ90], TreadMarks [ACD+95] and
Quarks [K96] and Clouds [DLA+90] provide a more
natural programming model, they still suffer from the
high cost of distributed synchronization and the inabil-
ity to provide suitable fault tolerance. A mature system
that uses a variant of the DSM concept is Linda
[CG89]. Piranha [GJK93] provides a feature similar to
Calypso in that is allows dynamic load sharing via the
ability to add and subtract workers on the fly. However,
the programming strategy is different, deleting workers
need backing up tuples, and fault tolerance is not sup-
ported.

The issues of providing fault tolerance have generally
been addressed separately from the issues of parallel
processing. There have been three major mechanisms:
checkpointing, replication and process groups. Such
approaches have been implemented in CIRCUS
[Coo85], LOCUS [PWC+81], and Clouds [DLA+90],
Isis [BJ87], Fail-safe PVM [LFS93], FT-Linda [BS93],
and Plinda [AS91] However, all these systems add sig-
nificant overhead, even when there is no failure.

More recently several prominent projects have similar
goals to us. These include the NOW [Pat+95] project,
the HPC++ [MMB+94] project, The Cilk project
[BL97] and the Dome [NAB+95] project. All these
projects however use approaches that are somewhat
conventional (RPC or message based systems with pro-
visions for fault detection, checkpointing, and so on.)

While the majority of the systems run on Unix, there are
a few systems that run on Windows NT. These include
Win-PVM, Win32-MPI and Brazos [SB97].

4. The Calypso System

The design of Calypso [BDK95, DKR95] addresses
efficient, reliable parallel processing in a clean and effi-
cient manner. In particular the Calypso NT [MSD97]
has the following salient features:

• Ease of Programming: The programmer writes
programs in C or C++ and uses a language inde-
pendent API (application programming interface)
to express parallelism. The API is based on a
shared-memory programming model which is
small, elegant, simple and easy to learn.

• Separation of Logical Parallelism from Physi-
cal Parallelism: The parallelism expressed in an
application, written using a high-level program-
ming language, is logical parallelism. Logical
parallelism is be kept separate from physical par-
allelism, which depends upon the number of
workstations available at runtime.

• Fault Tolerance: The execution of parallel Ca-
lypso jobs is resilient to failures. Unlike other
fault-tolerant systems, there is no additional cost
associated with this feature in the absence of
failures. 3

• Dynamic Load Balancing: Calypso automati-
cally distributes the workload among the avail-
able machines such that faster machines do more
work compared to slower machines.

• High Performance: Our performance results in-
dicate that the features listed above can be pro-
vided with minimal overhead and that a large
class of coarse-grained computations can benefit
from our system.

The core functionality of Calypso is provided by a uni-
fied set of mechanisms, called eager scheduling, col-
lating differential memory and Two-phase Idempotent
Execution Strategy (TIES). Eager scheduling provides
the ability to dynamically exploit the computational
power of a varying set of networked machines, that in-
cludes machines that are slow, loaded or have dynami-
cally changing loading properties. The eager scheduling
algorithm works by assigning tasks to free machines in a
round robin-fashion until all the tasks are completed.
The same task may be assigned to more than one ma-
chine (if all tasks have been assigned and some have not
yet terminated). Consequently, free or faster machines
end up doing more work than the machines that are
slower or loaded heavily. This results in an automati-
cally load balanced system. Secondly, if a machine fails
(which can also be regarded as an infinitely slow ma-
chine), it does not affect the computation at all. Thirdly,
computations do not wait or stall as a result of system’s
asynchrony or failures. Finally, an executing program
can utilize any newly available machines at any time.

As it is obvious the memory updates in such a system
need careful consideration, the remaining mechanisms
ensure correct executions in spite of failures, and other
problems related to asynchrony. To ensure that the in-
herent possibility of a multiplicity of executions due to
eager scheduling results in exactly-once execution se-
mantically, the TIES method is used. Furthermore, ar-
bitrarily small update granularities in shared memory
and the proper updates of memory are both supported
by the collating differential memory mechanism.

The implementation of Calypso was first done on Unix.
The Windows NT port preserves the Unix methodology

3 This claim is well justified by our performance results. See section
8.

and replaces the signal handling and memory-faulting
methods with NT specific handlers as described later.

5. The Chime System

Chime is an implementation of the shared memory part
Compositional C++ [CK92] language on a network of
Windows NT machines. The shared memory part of
CC++ is designed for shared memory multiprocessors.
It embodies many features that have been considered
impossible if not difficult to implement on distributed
machines. These include structured memory sharing
(via use of cactus stacks), nested parallelism and inter-
thread synchronization.

Chime implements these features of CC++, efficiently
on a distributed system, making the distributed system
look and feel like a real shared memory multiprocessor.
In addition, Chime adds fault tolerance and load bal-
ancing.

A complete description of how Chime works is beyond
the scope of this paper, but we will present some NT
specific considerations.

The major difference between the implementation of
Calypso and Chime is in the manner threads are used
and contexts are migrated. Every site running Chime,
runs two threads per process. The threads are called the
“Controlling” thread and the “Application” thread. The
controlling thread is responsible for all communication,
memory-fault handling, thread context migration and
scheduling. The application thread runs the code written
by the programmer of the application.

As an example, consider the case when a application
thread, running one of the parallel tasks of a parallel
application decides to spawn a subtask, which is a
nested parallel computation:
1. The application thread suspends itself and signals

an event to the controlling thread.
2. The controlling thread saves the context of the ap-

plication thread. This context will be used to create
the parallel tasks on remote machines.

3. The controlling thread registers with a manager, the
context of the application thread, the number of
new tasks to be created, the stack of the application
thread and the “continuation”, i.e. the remainder of
the application thread, that should be executed after
the parallel tasks are over.

4. The manager then schedules the new threads on
available machines.

5. A controlling thread on a worker machine picks up
a task from the manager.

6. The controlling thread on the worker now crafts an
application thread, with the same stack and context
as the parent thread, and starts the thread.

7. Via some compiler tricks, the newly created thread
executes the task it was supposed to execute.

8. Then, when the thread terminates, the updates it
made to the global data and the stack are returned
to the manager and its state is appropriately up-
dated.

The above is just one aspect of the execution behavior
implemented in Chime. The complete system supports
proper scoping of variables, execution management,
inter-thread synchronization and nested parallelism. The
system consists of the Chime runtime library and a pre-
processor that serve as a front end to the C++ compiler.

6. Malaxis and Milan

We are also building more systems using Windows NT.
The two notable ones are (i) Malaxis, a DSM (Distrib-
uted Shared Memory) system that provides data locking
and barrier synchronization (ii) MILAN, a metacom-
puting platform. Due to space constraints, the descrip-
tions of these are omitted.

7. Using NT features

In order to implement software such as Calypso, and
Chime, we needed some support from the operating
system. The support included:

• Support for user level demand paging for imple-
menting page-based distributed shared memory.

• Support for obtaining and setting thread contexts
for implementing task migration and task scope
preservation.

• Support for resetting the contents and the position
of the user stack in order to implement distributed
cactus stacks.

• Support for network communication.

• Support for asynchronous notification and excep-
tion handling.

It turned out that Windows NT supports all of these
features—and in some ways more elegantly than Unix
does. It was just necessary to expend considerable time
and effort to work out the detail of usage and semantics.

Previously, when we were developing libraries for par-
allel computing in Unix we used the ubiquitous ASCII
interface for all programs. The ASCII interface is not so
ubiquitous under NT, in fact, it is thought of as arcane.
NT programs that use textual interfacing are called
“console applications”. So far, except for some user

interfaces, most of out programs are console applica-
tions, though we intend to change this in the near future.

7.1 Memory Handling

Memory handling in Windows NT is different and in
many ways superior to UNIX. NT has various states of
memory allocation (reserved, allocated, committed,
guarded and so on). These states allow (among other
things) a set of threads to allocate address space and
then later allocate memory when the need arises.4

Windows NT memory management is designed for use
with threads and sounds like overkill to Unix program-
mers who are not heavy users of threads. We will dis-
cuss the threads issue in a later section. We found the
functionality to be useful for allocating and protecting
memory for supporting the dynamic distributed shared
memory used by Calypso. The important memory man-
agement API functions are VirtualAlloc and Vir-
tualProtect.

It is possible to protect any range of pages in memory
against read or write or execute access. Access violation
results in an exception, and the exception handler is
provided with a plethora of information about the nature
of the exception, something most Unix-based systems
do not provide. Due to the tight coupling between the
memory protection and exception handling, much of the
Calypso memory system had to be reprogrammed, but
the end result, we feel, is more elegant and extensible.

7.2 Exception handling

Exception handling was the major surprise. While
UNIX uses signals, Windows NT uses Structured Ex-
ception Handling (SEH). SEH is not the same as C++
exception handling, which makes use of C++ keywords
throw, try and catch. SEH uses the try-except
construct, which allows programmer to specify a
guarded scope to catch a hardware or software excep-
tion using the _try block. The _except block speci-
fies the exception handler that may be executed based
on the value returned by the exception filter at the time
when an exception is raised. The mechanism is quite
different from that of UNIX signals as the lexical
structure of the program rather than one-time installa-
tion of the handler specify its activation. Once, the flow
of control is out of the _try block, any raised excep-
tions can not be intercepted. While porting Calypso to

4 Allocation of address space is different from allocating memory. A
range of addresses can be allocated, without allocating the backing
store.

NT, this restriction forced us to make some structural
changes in the implementation.

In retrospect, there is nothing wrong in the NT ap-
proach. However for Unix programmers who think and
breath signals the paradigm shift can be unnerving
(it was for us). Also the lack of signals, at first made it
look like doing things like process migration would be
impossible. It is possible; it necessitates the use of
threads.

7.3 Threads

Handling process migration and process context
changes had us stumped for a bit. Without signals, a
Unix programmer is lost! However, we soon discovered
the power of threads under Windows NT.

Threads are one of Windows NT’s strongest features.
Its thread support is simple, elegant and works well. A
thread is started by calling the CreateThread routine
with a function as argument, the new thread executes
the specified function. The threads are kernel scheduled
and share all the global memory. Quite simple and in-
tuitive. We have found threads to be quite useful, in
many situations, specifically:

• Threads are very useful for process migration and
implementing distributed stacks (next section).

• Threads are useful for distributed memory service;
i.e. a thread can listen to incoming invalidations
while another thread runs the computation.

• Threads are also useful in segregating functional-
ity—even when threads are not really necessary.
For example, in Chime, after a page fault, the
faulting thread suspends itself, while a service
thread acquires the page, installs it and restarts the
faulting thread.

Windows NT support a variety of thread synchroniza-
tion and thread control facilities, including the ability of
one thread to stop another thread and load or store the
other thread’s context.

7.4 Process and Stack Migration

Task migration has been used in Calypso to implement
pre-emptive scheduling, a topic outside the scope of this
paper. Similar mechanisms have been used in Chime for
setting the correct scope of tasks.

Suppose a process is executing, and we need to freeze it
and restart it on another machine. Under Unix, we
would send it a signal and let the signal handler handle
the migration.

Under Windows NT we use two threads for this purpose
[MD97]. One thread listens to incoming messages while
the other thread executes. We send a message to the
listening thread. This thread suspends the executing
thread and extracts its context and then ships the context
over to another listening thread on the remote machine.
The remote thread sets up the context of a new thread
and starts it.

Similar mechanisms are used in Chime. In CC++ it is
necessary for two parallel computations to share vari-
able declared in the context of the function that started
the parallel computations. This requires a “distributed
cactus stack”. The overview of the implementation
steps for this case has been described in section ??. The
actual mechanisms used are events to block and restart
threads, and the API calls GetThreadContext and
SetThreadContext. We are very happy to see that
a thread context saved on one machine, can be restored
on another machine and the thread executes correctly.

However, in general thread migration is very tricky in
Windows NT due to the structure of the system. If a
thread is in a DLL and its context is saved, can this
context be restored on anther machine? We think not!
Some tests reveal that this sometimes works and some-
times does not. However, how to find a “safe” place to
save the context of an executing thread (without modi-
fying user-written code) is still an open problem for us.

7.5 Networking

Networking with TCP-IP is almost identical under Unix
and Windows NT, via the use Microsoft Windows Sock-
ets that provide a similar interface and functionality as
that of Berkeley sockets. The Calypso communication
module was compatible with the Microsoft Windows
Socket interface with the only exception being the asyn-
chronous mode of communication. The asynchronous
mode (FASYNC), on UNIX, enables the SIGIO signal
to be sent when I/O is possible. Windows socket im-
plementation has tied the asynchronous mode with the
event-driven windows programming. When a socket is
in asynchronous mode and I/O is possible, instead of
raising an exception, a message is sent to the window
specified in the WSAAsyncSelect() function call.
In effect, the mechanism is synchronous, as the thread
processing messages has to read the message synchro-
nously inside an event-loop. Moreover, a console appli-
cation can not use sockets in this mode.

7.6 Remote Execution

Creating distributed computations under Unix is simple
due to the remote shell (rsh) feature. A process can

easily spawn more processes on remote machines. Such
a feature is not available under Windows NT, making
distributed computations use some form of kludge. The
preferred way of distributing the computation is to use
RPC. While the RPC model is fine for client-server
computations, its does not work well for “push” com-
putations such as parallel processing.

We have used a temporary kludge, where a daemon
process is started on the machine that will host the tasks
of the parallel computation. This daemon listens to
commands on a port and starts a process when in-
structed to do so. A better solution is to have a Win-
dows NT “service” which starts up at boot time and
then starts processes using the user-id of the remote
user. We have experimented with such a service but
have not tested it thoroughly yet.

7.7 Graphical Interfaces

As stated earlier, we used the console application fea-
ture to write most of our applications. That is, the appli-
cation works in a “command window”, which looks like
the DOS shell, and in some ways similar to an xterm.
However, all applications under Windows NT are ex-
pected to be integrated with the Windows GUI. For our
GUI based interface, we cheated and used a Unix-like
solution. A separate process runs the GUI and commu-
nicates with the controlling process (or manager) via
messages, displaying the status and accepting com-
mands. This works well, but is not a politically correct
approach under Windows NT.

We are working on developing an event-driven frame-
work that interfaces with MFC and other features in
Windows NT to provide a better solution. We have not
yet gained enough experience to make this part work
(and we are systems programmers and not GUI ex-
perts).

8. Performance

The performance we obtained, both under Calypso and
Chime were good, and comparable to performance ob-
tained under Unix. For the speedup tests we took a
RayTrace program and compiled a sequential version
with all compiler optimization turned on. Then we took
a Calypso (parallel) version and compiled it under the
same optimizations. Then we ran the program on
Pentium 90MHz machines and noted the wall clock
times. The results are shown in Figure 1.

The Calypso program took 1042 seconds to execute on
one machine as opposed to 1037 seconds for the se-
quential program. This shows the low overhead of our
mechanisms. We obtained a speedup of 4.5 on 5 ma-
chines in spite of providing load balancing and fault
tolerance, showing these can be incorporated without
additional overhead. This compares very well with Ca-
lypso on Unix, which produced the same speedup.

The Chime system is much more complex, and hence
produces slightly lower performance. Figure 2 shows
the result of running a similar (but larger) RayTrace
program under Pentium-Pro 200MHz systems

We performed many other tests, including tests for load
balancing (mixture of slow and fast machines) and fault
tolerance (transient machines.) Many of these results
can be found in [MSD97, SD97] and on the Web site.

A particular test of Chime is interesting. We ran a trivial
program under Chime that takes a 1024 element array
and initializes each element in parallel. To make the test

rigorous, we did thread creation recursively, that is at
the top level two tasks are created, which in turn creates
two tasks each, until 1024 leaf tasks are created. The
total number of tasks created by this program is 3068.

The resulting execution times on varying numbers of
machines are shown in Figure 3.

This test shows that the task creation overhead varied
from a high of 133 msec and saturates at about a low of
75 msec. The decrease in the time as machines are
added is due to some parallelization of the overhead,
while the asymptotic value is when the central manager
saturates.

9. Further Down the NT Road

Windows NT has much more to offer than the features
we have used. Many of the features are beneficial to
application programmers and not quite to middleware
service providers like us. But many of the more basic
features are quite useful and interesting, although the
learning curve is steep.

1037 1042

548

362

290

230

1.0 1.0

1.9

2.9

3.6

4.5

-

200

400

600

800

1,000

1,200

Seq
ue

nt
ial

1-
P90

2-
P90

3-
P90

4-
P90

5-
P90

Machine

T
im

e

0

1

2

3

4

5

6

S
p

ee
d

u
p

Figure 1: Speedup of Calypso

584

639

329

174
148

240

1.0 0.9

1.8

3.4

3.9

2.4

0

100

200

300

400

500

600

700

Seq
ue

nt
ial

1-
PP20

0

2-
PP20

0

3-
PP20

0

4-
PP20

0

5-
PP20

0

Machines

T
im

e

0

1

2

3

4

5

6

S
p

ee
d

u
p

Figure 2: Speedup of Chime

Some of the features we would like to explore are:
• Microsoft Foundation Classes
• File system enhancements
• Device Drivers
• Services

The Microsoft Foundation Classes (or MFC) is indeed a
powerful, somewhat intuitive (and somewhat confusing)
array of prepackaged classes that make programming
windows easier.

All our applications were console applications. A win-
dows application has a built in message pump and event
handlers. Since the Calypso/Chime systems are essen-
tially libraries, use of a MFC based application is not
precluded—however there is need for some modifica-
tions. Currently the library provides its own “main”
program that set up the memory handling and the mem-
ory protection. This is not permissible under MFC pro-
gramming.

We are looking into how to ensure MFC compatibility.
This is not quite straightforward as our managers and
workers all have to be automatically generatable from a
user program. And the message pumps and the user
interfaces need to be created as default, if the user does
not specify them, or allow the user to build his/her own
interface. This project will be investigated in the future.

Similarly, use of asynchronous I/O, various types of
files (mirrored etc.) has advantages that we may be able

to exploit. Loadable device drivers will allow us to use
custom, lightweight, networking protocols, thus reduc-
ing parallel computation overhead.

Some of the features that we did not find a need for
include COM, MAPI/TAPI, OLE and other eclectic and
fancy support for high end application development.

10. In Retrospect

Windows NT has some very strong points. These in-
clude:
• Threads
• Structured Exception handling
• Good memory management
• Excellent program development environment.
• Huge library of online documentation.

And some shortcomings:
• No signals
• No remote execution facility. Main reasons include

the manner in which the Windows GUI is struc-
tured and the lack of any ASCII support for appli-
cations (all applications are GUI applications). This
leads to the lack of a ptty interface and hence the
lack of network logins. While this shortcoming is
expected to be fixed in the future with network-
aware GUI interfaces.

• Confusing terminology that steepens the learning
curve.

Overall, we were happy and impressed. The learning
curve was sometimes steep and mostly curvy. Termi-
nology differences were exasperating.5

We had to change a lot of programming strategies to
suit the Windows NT way of doing things. But, in retro-
spect the changes we made were for the better.

• Using threads instead of signals for asynchronous
event handling is better programming practice.

• Structured Event Handling - very weird when we
first saw it, is a nice method of handling excep-
tions.

The integrated compiler/debugger/makefile system pro-
vided by Visual C++ was a wonderful tool to use. The
debugging support for multi-threaded programs is fasci-
nating, and without it, we would not ever had process
migration to work.

5 We received a CD-ROM entitled “Microsoft Developer’s Library”.
We thought it contained some library routines that some developers
would like to re-use. “Not for us”, we thought. Turned out, it was
chock full of books and articles—some really very useful. A real
library!

133

7376
80

91

0

50

100

150

200

250

300

350

400

450

1-P
P200

2-P
P200

3-P
P200

4-P
P200

5-P
P200

Mac h ines

T
im

e
(s

ec
)

0

20

40

60

80

100

120

140

T
im

e
pe

r
T

as
k

(m
se

c)

Figure 3: Task Spawning Overhead

In addition to the program development environment, of
course NT opens up the world of PC computing appli-
cations. Office productivity tools, web development
tools, personal productivity tools, shareware and
freeware are readily available and of great quality. This
was an added bonus.

So the final word is that all of the people working on the
project unanimously state that is was a nice refreshing
move from Unix to Windows NT. NT is a lot nicer
system than what we had heard when we fist entered its
maze of twisty little passages

11. Acknowledgements

The author wishes to acknowledge the members of the
team who worked hard on making everything work on
Windows NT. They include Donald McClaughlin,
Shantanu Sardesai, Rahul Thombre, Alan Skousen, Siva
Vaddepuri and Mahesh Gundelly.

12. Sponsor Acknowledgement/Disclaimer

This research is partially sponsored by the following:
• Defense Advanced Research Projects Agency and

Rome Laboratory, Air Force Materiel Command,
USAF, under agreement number F30602-96-1-
0320.

• The National Science Foundation under grant num-
ber CCR-9505519.

• Intel Corporation.
• Microsoft Corporation (software donations).

The U.S. Government is authorized to reproduce and
distribute reprints for governmental purposes notwith-
standing any copyright annotation thereon.

The views and conclusions contained herein are those
of the authors and should not be interpreted as neces-
sarily representing the official policies or endorsements,
either expressed or implied, of the Defense Advanced
Research Projects Agency, Rome Laboratory, or the
U.S. Government.

13. Availability

The Calypso NT system is available, for free, complete
with documentation, user manual, sample programs,
instructions, user interface and remote execution dae-
mon at http://www.eas.asu.edu/~calypso. The Chime
system will be available at the same site at a later date.

14. References

[ACD+95] C. Amza, A.L. Cox, S. Dwarkadas, P. Keleher, H.
Lu, R. Rajamony, W. Yu, and W. Zwaenepoel. Tread-
Marks: Shared Memory Computing on Networks of
Workstations, IEEE Computer, December 1995.

[AS91] Brian Anderson and Dennis Shasha. Persistent Linda:
Linda + Transactions + Query Processing. Workshop on
Research Directions in High-Level Parallel Program-
ming Languages, Mont Saint-Michel, France June 1991.

 [BCZ90] J. Bennett, J. Carter, and W. Zwaenepoel. Munin:
Distributed Shared Memory Based on Type-Specific
Memory Coherence. In Proc. 2nd Annual Symp. on Prin-
ciples and Practice of Parallel Programming, Seattle,
WA (USA), 1990. ACM SIGPLAN.

[BDK95] A. Baratloo, P. Dasgupta, and Z. M. Kedem. A
Novel Software System for Fault Tolerant Parallel Proc-
essing on Distributed Platforms. In Proceedings of the
4th IEEE International Symposium on High Performance
Distributed Computing, 1995.

[BJ87] K. P. Birman, and T. A. Joseph. Reliable Communi-
cation in the Presence of Failures. ACM Transactions of
Computer Systems, Vol. 5, no. 1, pp. 47-76.

[BKKW96] A. Baratloo, M. Karaul, Z. Kedem and P.
Wyckoff. Charlotte: Metacomputing on the Web. In Pro-
ceedings of the 9th Intl. Conf. on Parallel and Distrib-
uted Computing Systems, 1996.

[BL97] R. D. Blumofe, and P. A. Lisiecki Adaptive and Reli-
able Parallel Computing on Networks of Workstations,
USENIX 1997 Annual Technical Symposium, 1997

[BS93] D. Bakken and R. Schlichting. Supporting Fault-
Tolerant Parallel Programming in Linda. Technical Re-
port TR93-18, The University of Arizona, 1993.

[CG89] N. Carriero and D.Gelernter. Linda in Context.
Comm. of ACM, 32, 1989.

[CK92] K. M. Chandy and C. Kesselman, CC++: A Declara-
tive Concurrent, Object Oriented Programming Nota-
tion, Technical Report, CS-92-01, California Institute of
Technology, 1992.

 [DKR95] P. Dasgupta, Z. M. Kedem, and M. O. Rabin. Par-
allel Processing on Networks of Workstations: A Fault-
Tolerant, High Performance Approach. In Proceedings
of the 15th IEEE International Conference on Distrib-
uted Computing Systems, 1995.

[DLA+90] P. Dasgupta, R. J. LeBlanc Jr., M. Ahamad, and U.
Ramachandran. The Clouds Distributed Operating Sys-
tem. IEEE Computer, 1990.

[GBD+94] Al. Geist, Adam Beguelin, Jack Dongarra,
Weicheng Jiang, Robert Mancheck, and Vaidy Sun-
deram. PVM: Parallel Virtual Machine. The MIT Press,
1994.

[GJK93] David Gelernter, Marc Jourdenais, and David Ka-
minsky. Piranha Scheduling: Strategies and Their Im-
plementation. Technical Report 983, Yale University
Department of Computer Science, Sept. 1993.

[GLS94] W. Gropp, E. Lusk, A. Skjellum. Using MPI Port-
able Parallel Programming with the Message Passing In-
terface. MIT Press, 1994, ISBN 0-262-57104-8.

[HPF93] High Performance Fortran Forum. High Performance
Fortran Language Specification Version 1.0, May 1993.

Also in Scientific Programming, Vol. 2, No. 1 and 2,
Spring and Summer 1993; also Tech Report CRPC-
TR92225, Rice University.

[JA91] R. Jagannathan and E. A. Ashcroft. Fault Tolerance in
Parallel Implementations of Functional Languages, In
The Twenty First International Symposium on Fault-
Tolerant Computing. 1991.

[JF92] R. Jagannathan and A. A. Faustini. GLU: A Hybrid
Language for Parallel Applications Programming. Tech-
nical Report SRI-CSL-92-13, SRI International. 1992.

[K96] Dilip R. Khandekar. Quarks: Distributed Shared Mem-
ory as a Basic Building Block for Complex Parallel and
Distributed Systems. Master’s Thesis. University of Utah.
March 1996.

[Li88] K. Li. IVY: A Shared Virtual Memory System for
Parallel Computing. In Proceedings of the 1988 Interna-
tional Conference on Parallel Processing, Volume II,
pages 94-101, August 1988.

 [LFS93] J. Leon, A. Fisher, and P. Steenkiste. Fail-safe PVM:
A Portable Package for Distributed Programming with
Transparent Recovery. Technical Report CMU-CS-93-
124, CMU, 1993.

[MD97] D. Mclaughlin and P. Dasgupta, Distributed Context
Switching: A Technique to Speed up Parallel Computa-
tions. Available via www.eas.asu.edu/~calypso

[MMB+94] A. Malony, B. Mohr, P. Beckman, S. Yang, F.
Bodin. Performance Analysis of pC++: A Portable Data-
parallel Programming System Scalable Parallel Comput-
ers. In Proceedings of the Eighth International Parallel
Processing Symposium, pp. 75-85, 1994.

[MSD97] D. Mclaughlin, S. Sardesai, and P. Dasgupta. Ca-
lypso NT: Reliable, Efficient Parallel Processing on
Windows NT Networks, Technical Report, TR-97-001,
Department of Computer Science and Engineering, Ari-
zona State University, 1997. Also available via
www.eas.asu.edu/~calypso

[NAB+95] J. Nagib, C. Árabe, A. Beguelin, B. Lowekamp, E.
Seligman, M. Starkey, P. Stephan. Dome: Parallel Pro-
gramming in a Heterogeneous Multi-user Environment.
Technical Report CMU-CS-95-137, Carnegie Mellon
University Department of Computer Science, 1995.

[Pat+94] D. Patterson et.al. A Case for Networks of
Workstations: NOW, IEEE Micro, April 1996.

[PWC+81] G. Popek and B. Walker and J. Chow and D.
Edwards and C. Kline and G. Rudisin and G. Thiel,
LOCUS: A Network Transparent, High Reliability Dis-
tributed System, Operating Systems Review, 15(5), pp.
169-177, Dec 1981.

[R95] Jeffery Richter, Advanced Windows: The Developers
Guide to the Win32 API for Widows NT 3.5 and Win-
dows 95 , Microsoft Press, Redmond, WA, 1995.

[S90] V. S. Sunderam. PVM: A Framework for Parallel Dis-
tributed Computing. Concurrency: Practice and Experi-
ence, 2(4):315-339, 1990.

[SB97] E. Speight and J. K. Bennet, Brazos: A Third Genera-
tion DSM System, USENIX Windows NT Workshop,
1997.

 [SD97] S. Sardesai and P. Dasgupta, Chime: A Versatile
Distributed Parallel Processing Environmen, Technical
Report, TR-97-002, Department of Computer Science
and Engineering, Arizona State University, 1997. Also
available via www.eas.asu.edu/~calypso

