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Abstract
Spike is a profile-directed optimizer for Alpha/NT ex-
ecutables that is actively being used to optimize ship-
ping products. Spike consists of the Spike Optimiza-
tion Environment (SOE) and the Spike Optimizer.
Through both a graphical interface and a command-
line interface, the Spike Optimization Environment
provides a simple means to instrument and optimize
large applications consisting of many images. SOE
manages the instrumented and optimized images as
well as any profile information collected for those im-
ages, freeing the user from many tedious and error-
prone tasks typically associated with profile-directed
optimization. SOE also simplifies the collection of
profile information with Transparent Application Sub-
stitution (TAS). With TAS, the user invokes the origi-
nal version of the application and the instrumented or
optimized version of the application is transparently
executed in its. SOE uses the Spike Optimizer to opti-
mize images. The Spike Optimizer performs code lay-
out to improve instruction cache behavior [Pettis90],
hot cold optimization [Cohn96] and register allocation.
The optimizations are targeted at large call-intensive
applications, where loops span multiple routines, and
each routine contains complex control-flow. For this
class of applications, Spike provides significant per-
formance improvement, reducing execution time by as
much as 20%.

1. Introduction
Profile-directed optimization is rarely used in practice
because of the difficulty of collecting, managing, and
applying profile information. Spike solves most of
these problems, allowing the user to easily optimize
large applications composed of many images. In this
section we describe the general procedure for using
profile-directed optimization, its difficulties, and how
Spike overcomes these difficulties.

The first step in profile-directed optimization is to in-
strument each image in an application so that when the
application is run, profile information is collected. In-
strumentation is most commonly done by using a com-

piler to insert counters into a program during compila-
tion [Multiflow], or by using a post-link tool to insert
counters into an image [Atom, Pixie]. Statistical or
sampling-based profiling is an alternative to counter
based techniques [DCPI, MORPH]. Some compiler-
based and post-link systems require that the program
be compiled specially, so that the resulting images are
only useful for generating profiles. Many large appli-
cations have lengthy and complex build procedures.
For these applications, requiring a special rebuild of
the application to collect profiles is an obstacle to the
use of profile-directed optimization.

Spike directly instruments the final production images
so that a special compilation is not required. Spike
does require that the images be linked to include relo-
cation information. However, including this extra in-
formation does not increase the number of instructions
in the image and does not prevent the compiler from
performing full optimizations when generating the
image.

Most large applications consist of multiple images, a
single executable and many dynamically linked librar-
ies (DLL). Instrumenting all the images can be diffi-
cult, especially since the user doing the profile-directed
optimization may not know all of the images in the
application. Spike relieves the user of this task by
finding all the DLLs that are used by the application,
even if they are loaded dynamically (i.e. with a call to
LoadLibrary).

After instrumentation, the next step in profile-directed
optimization is to execute the instrumented application
and collect profile information. Most profile-directed
optimization systems require that the user first explic-
itly create instrumented copies of each image in an
application. Then the user must assemble the instru-
mented images into a new version of the application,
and execute it to collect profile information. As the
profile information is generated, the user is responsible
for locating all the profile information generated for
each image, and merging that information into a single
set of profiles. Our experience with users has shown
that requiring the user to manage the instrumented
copies of the images and the profile information is a



frequent source of problems. For example, the user
may fail to instrument each image, or may attempt to
instrument an image that has already been instru-
mented. The user may be unable to locate all the gen-
erated profile information, or may incorrectly combine
the profile information.

As described in Section 2, Spike frees the user from
these tedious and error-prone tasks by managing the
instrumented copy of each image as well as the profile
information generated for each image.

After profile information is collected, the final step is
to use the profile information to optimize each image.
As with instrumentation, the typical profile-directed
optimization system requires the user to explicitly op-
timize each image, and to assemble the optimized ap-
plication. Spike uses the profile information collected
for each image to optimize all the images in an appli-
cation and assembles the optimized application for the
user.

2. Spike Optimization Environment
The Spike Optimization Environment (SOE) provides
a simple means to instrument and optimize large ap-
plications consisting of many images. SOE can be ac-
cessed through a graphical interface or a command-
line interface that provides identical functionality. The
graphical interface, called the Spike Manager, is de-
scribed in Section 2.1. The command-line interface
allows SOE to be used as part of a batch build system
such as make.

In addition to providing a simple-to-use interface, SOE
keeps the instrumented and optimized versions of each
image and the profile information associated with each
image in a database. When an application is instru-
mented or optimized, the original versions of the im-
ages in the application are not modified; instead SOE
puts an instrumented or optimized version of each im-
age into the database. SOE uses Transparent Applica-
tion Substitution (TAS) to execute the instrumented
and optimized version of an application when the user
invokes the original version, as described in Section
2.2.

The Spike Optimization Environment allows the user
to instrument and optimize an entire application using
the following procedure:

1. Register: The user selects the application(s) that
are to be instrumented and optimized. The user
only needs to specify the application’s main im-
age. Spike then finds all the implicitly linked im-
ages (DLLs loaded when the main image is

loaded) and registers that they are part of the ap-
plication.

2. Instrument: The user requests that an application
be instrumented. For each image in the applica-
tion, SOE invokes the Spike Optimizer to instru-
ment that image. SOE places the instrumented
version of each image in the database. The origi-
nal images are not modified.

3. Collect profile information: The user runs the
original application in the normal way, e.g. from a
command-prompt, from the Explorer, or indirectly
through another program. Transparent Applica-
tion Substitution invokes the instrumented version
of the application in place of the original version.
Any images dynamically loaded by the application
are instrumented on the fly. Each time the appli-
cation terminates, profile information for each im-
age is written to the database and merged with any
existing profile information.

4. Optimize: The user requests that an application be
optimized. For each image in the application, SOE
invokes the Spike Optimizer to optimize the image
using the collected profile information and places
the optimized version of each image in the data-
base.

5. Run optimized version: The user runs the original
application and TAS substitutes the optimized ver-
sion, allowing the user to evaluate the effective-
ness of the optimization.

6. Export: SOE exports the optimized images from
the database, placing them in a directory specified
by the user. The optimized images can then be
packaged with other application components.

2.1. Spike Manager
The Spike Manager is the principal user interface for
using the Spike Optimization Environment. The Spike
Manager displays the contents of the database, showing
the applications registered with Spike, the images
contained in each application, and the profile informa-
tion collected for each image. The Spike Manager en-
ables the user to control many aspects of the instru-
mentation and optimization process, including speci-
fying which images are to be instrumented and opti-
mized, which version of the application is to be exe-
cuted when the original application is invoked, etc.



2.2. Transparent Application Substitution
Transparent Application Substitution is a mechanism
for transparently executing a modified version of an
application, without replacing the original images on
disk. SOE uses TAS to load an instrumented or opti-
mized version when the user invokes the original ap-
plication. With TAS, the user does not need to do
anything special to execute the instrumented or opti-
mized version of an application. The user simply in-
vokes the original application in the usual way (e.g.
from a command prompt, from the Explorer, or indi-
rectly through another application) and the instru-
mented or optimized application is run in its place.

TAS performs application substitution in two parts.
First, TAS makes the NT loader use a modified version
of the main image and DLLs. Second, TAS must make
it appear to the application that the original images
were invoked.

TAS uses debugging capabilities provided by NT to
specify that whenever the main image of an application
is invoked, the modified version of that image should
be executed instead. In each image, the table of im-
ported DLLs is altered so that instead of loading the
DLLs specified in the original image, each image loads
their modified counterparts. Thus, when the user in-
vokes an application, NT loads the modified versions
of the images contained in the application. Some appli-
cations load DLLs with explicit calls to LoadLibrary.
TAS intercepts those calls and instead loads the modi-
fied versions.

The second part of TAS makes the modified version of
the application appear to be the original version of the
application. Applications often use the name of the
main image to find other files. For example, if an in-
strumented image requests its full pathname, TAS in-
stead returns the full pathname of the corresponding
original image. To do this, TAS replaces certain calls
to kernel32.dll in the instrumented and optimized im-
ages with calls to hook routines. Each hook routine
determines the outcome the call would have had for the
original application, and returns that result.

3. Spike Optimizer
The Spike Optimizer is used to instrument and opti-
mize images [Amitabh, Wilson96]. The optimizer is
invoked by SOE and can also be invoked directly by
the user. There are several phases when instrumenting
or optimizing an image. During the first phase, the
optimizer finds all of the code contained in an image.
NT images mix code and read-only data in the same
section, so the optimizer must analyze the flow paths

from known code to find as much of the code as possi-
ble. If it cannot be determined if part of a section is
code or data, it is handled conservatively to preserve
correctness.

Next, the optimizer finds all references to addresses
that must be updated when parts of the image are
moved. These are commonly called relocatable ad-
dresses. For Alpha/NT images, these are PC relative
branches, data in memory that refer to other data or
code, and instructions which load literals that are ad-
dresses of code or data. For references to data, the
optimizer must also identify the section to which the
address refers, so that the address can be changed as
the section is moved in memory. For a reference to
code, the optimizer must identify the specific instruc-
tion that is referenced, because the optimizer can rear-
range individual instructions.

After finding all the code, locating all the PC relative
branches and the instructions to which they refer is
straightforward. Addresses that are data or are literals
in instructions can be found because they are pointed to
by relocations. Relocations identify code and data that
contain addresses that must be adjusted if the system
must load an image in to memory at an address other
than at its preferred address.

The Spike Optimizer uses a linear list of Alpha ma-
chine instructions, annotated with a small amount of
additional information, as its intermediate representa-
tion (IR). On top of the IR, the optimizer builds a com-
plete compiler-like representation for the image, in-
cluding a call graph, flow graphs, routines and basic
blocks. Images can be very large; for example the larg-
est image in Unigraphics, a CAD application from
EDS, contains 36 Mbytes of code in 60,000 routines.
Thus, the optimizer’s representations must be ex-
tremely space efficient.

The Spike Optimizer performs an interprocedural
dataflow analysis to summarize register usage within
the image [Goodwin97].  This enables optimizations to
use and reallocate registers. The interprocedural
dataflow is very fast, requiring less than 20 seconds on
our largest applications. Memory dataflow is much
more difficult because of the limited information avail-
able in an executable, so the optimizer only analyzes
references to the stack.

Instrumentation or optimization insert, delete, or mod-
ify the IR. After instrumentation or optimization is
complete, the new IR is output as Alpha instructions
and references to relocatable addresses in data are up-
dated to reflect the new layout of the image.



3.1. Instrumentation
The Spike Optimizer instruments an image by insert-
ing counters into the image. Each counter records the
number of times a particular piece of code executes.
Using these counters, the optimizer can determine the
number of times each basic block and control-flow
edge in the image executes. Spike uses a spanning-tree
technique proposed by Knuth [Knuth73] to reduce the
number of counters required to fully instrument an
image. For example, in an if-then-else clause, counting
the number of times the if and then statements are exe-
cuted is enough to determine the number of times the
else statement is executed as well. Register usage in-
formation is used to find free registers for the instru-
mentation code, reducing the number of saves and re-
stores necessary to free up registers. Instrumentation
typically makes the code 30% larger. As part of the
profile, Spike also captures the last target of a jump or
procedure call that cannot be determined statically. We
are adding the ability to collect block counts using sta-
tistical sampling with the DCPI continuous profiler
[DCPI], which will eliminate the need to instrument an
image and will greatly reduce the cost of profiling

Spike’s profile information is persistent; small changes
to an image do not invalidate the profile information
collected for that image. Profile persistence is essential
for applications that require a lengthy or cumbersome
process to generate a profile, even when using low cost
methods like statistical sampling. For example, gener-
ating a good profile of a transaction processing system
requires extensive staging of the system. With persis-
tence, the user can collect a profile once, and continue
to use it for successive builds of a program as small
changes are made to it. It is also possible to merge a
profile generated by an older image with a profile gen-
erated by a newer image.

3.2. Optimizations
Spike performs three optimizations, code layout, hot
cold optimization, and register allocation.  Profile in-
formation is used to guide each optimization.

Code layout reduces the number of misses in the in-
struction cache and the total number of VM pages
touched by the application. Spike uses the Pettis and
Hansen algorithm [Pettis90, Hwu89], which has three
phases.  First, the basic blocks in each routine are rear-
ranged so that frequently executed paths are straight-

Program Full Name Type Code layout
workload

HCO workload

VC (c1) Microsoft Visual C compiler fron-
tend

Compiler test suite N/A

VC (c2) Microsoft Visual C compiler
backend

Compiler test suite 5000 lines of C
code

SQLSERVR Microsoft Sqlserver 6.5 database TPC-C cached
TPC-B

ACAD Autodesk Autocad mechanical cad SDUG benchmark SDUG benchmark
EXCEL Microsoft Excel 5.0 spreadsheet BAPCO BAPCO
USTATION Bentley Systems

Microstation
mechanical cad rendering rendering

WINWORD Microsoft Word 6.0 word processing BAPCO BAPCO
TEXIM Welcom Software Texim 2.0 Project man-

agement
N/A BAPCO

MPEG Digital Light & Sound Pack Mpeg decoder Mpeg file N/A
MAXEDA OrCad MaxEDA 6.0 electronic cad N/A BAPCO
PTC ProEngineer Mechanical cad Misc. N/A
EXCHANGE Microsoft Exchange Mail server Misc. N/A

VORTEX SpecInt95 database SPEC ref SPEC ref
GO SpecInt95 game SPEC ref SPEC ref
M88KSIM SpecInt95 simulator SPEC ref SPEC ref
LI SpecInt95 lisp interpreter SPEC ref SPEC ref
COMPRESS SpecInt95 compression SPEC ref SPEC ref
IJPEG SpecInt95 JPEG SPEC ref SPEC ref
GCC SpecInt95 compiler SPEC ref N/A
PERL SpecInt95 interpreter SPEC ref N/A

Table 1: Benchmark programs and their workloads



line code; a simple greedy algorithm is used. By re-
ducing the number of taken branches, the processor is
able to fetch instructions efficiently and cache lines are
better utilized. Next, each routine is separated into a
hot and cold section.  The hot section consists of the
frequently executed basic blocks while the cold section
contains the infrequently executed basic blocks.  Fi-
nally, the hot routines are placed so that frequently
called routines are near the caller and cold routines are
collected at the end of the image. Splitting and placing
routines reduces the chance that routines that call each
other will have addresses that clash in the instruction
cache.

When examining the hot paths through a routine, it is
apparent that many instructions are executed on behalf
of the cold paths and are therefore rarely necessary.
Hot cold optimization (HCO) [Cohn96] exploits this
opportunity.  After Spike partitions a routine into hot
and cold sections, HCO moves instructions that are
dynamically dead or unnecessary in the hot section into
the cold section.  Stubs are introduced to hold compen-
sation code where necessary.

Many of the opportunities exploited by HCO appear to
be poor register allocation decisions, which could be
improved with profile information.  We are currently
implementing a register allocator.  Early results show
path length reductions of up to 11% in the SPEC95
integer benchmarks.

4. Performance Results
Spike’s performance is evaluated using a set of large
NT applications that are typical of the applications run
on a high performance personal computer, and the
SPEC95 [SPEC] integer benchmarks. Table 1 de-
scribes each application. All of the programs are com-
piled with the same highly optimizing backend that is
used on Alpha UNIX and VMS systems [Blickstein92].

Figure 1 shows the execution time reduction provided
by the code layout optimization. The SPEC95 pro-
grams used the training data for profiles and speedups
were measured on the reference data. The other pro-
grams were trained and measured on the same data.
Some experimentation with Excel and VC has shown
that the speedup is not very sensitive to training data,
as long as it is chosen carefully. Spike speeds up most
large applications by at least 5%, and often gets 10%
or more. Programs that spend a significant amount of
time in inner loops usually get the least benefit, but
even the MPEG player has a 5% speedup

Figure 2 shows the speedup for each application after
applying HCO, broken down by optimization.  The
measurements and some of the programs for HCO were
done differently from the code layout measurements
because they were collected at a different time. As
noted in Table 1, the workloads for some of the appli-
cations in the HCO measurements were different from
the workloads used for code layout. All the programs,
including SPEC95, were trained and measured on the
same data. The HCO speedups are measured as path
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length reductions, which is the reduction in the number
of instructions executed. Using path length reduction
allows us measure small effects that would otherwise
be obscured by run to run variation. Speedups are in
addition to those provided by code layout. For pro-
grams that do not spend most of their time in inner
loops, HCO usually provides a 5% speedup. About half
the speedup comes from removing dynamically dead
code, which is moving operations out of frequently
executed paths.  Most of the rest comes from
save/restore, using profile information to improve some
register allocation decisions.

5. Summary and Conclusions
Spike is a complete system for optimizing Alpha/NT
executables that has eliminated most of the barriers to
using profile-directed optimization. Spike provides a
simple to use graphical interface, making it easy for a
user to instrument and optimize large applications con-
sisting of multiple images. Transparent Application
Substitution simplifies profile collection and image
management, and persistent profile information en-
ables old profiles to be used even after modifications
are made to a program. The optimizations performed
by Spike are effective in reducing execution time of
large PC applications, producing speedups of 5-20%
across a wide range of applications.
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