
The following paper was originally published in the
Proceedings of the USENIX Windows NT Workshop

Seattle, Washington, August 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

The RTX Real-Time Subsystem for Windows NT

Bill Carpenter, Mark Roman, Nick Vasilatos and Myron Zimmerman
VenturCom, Inc.
Cambridge, MA

The RTX Real-Time Subsystem for Windows NT

Bill Carpenter, Mark Roman, Nick Vasilatos and Myron Zimmerman
VenturCom, Inc.

215 First St.
Cambridge, MA 02142

{carp, marcus, boxer, myron}@vci.com

Abstract

This paper describes a subsystem for the Windows NT
4.0 Operating System which implements a kernel-mode
execution environment for Win32 compatible tasks and
threads that have hard real-time performance character-
istics (deterministic interrupt response and dispatch la-
tencies). This subsystem is a proper OS extension which
requires no modifications to the standard OS kernel and
limited modifications to the NT Hardware Abstraction
Layer (HAL). This gives the motivation for the ap-
proach, describes the design and evaluates the success
of the implementation in the context of other strategies
for extending general purpose OS kernels.

1. Introduction

Real-time features have been moving from special pur-
pose operating systems into general purpose operating
systems for at least 10 years. VenturCom has produced
a succession of real-time UNIX versions going back
as far as 1984. Other implementations are described in
[Furht et al. 91 and IEEE 93].

These were responses to the extremely reasonable de-
sire to leverage the features of the underlying general
purpose operating system in real-time applications de-
velopment. This included both accessing the rich feature
set of the general purpose OS and accessing available
off the shelf applications, utilities and services in devel-
oping the particular real-time application at hand.

This is even more so with Windows NT based applica-
tions. The system services are rich, diverse and wildly
popular with the programming cognoscenti. The avail-
able base of applications is vast and growing rapidly.

This is about how real-time computing can be facilitated
for a particular general purpose operating system –
Windows NT 4.0 with the addition of a subsystem that
supports the execution of very low latency real-time
threads with Win32 compatible system services. This
approach reflects lessons learned about the costs of

massive source code whacking – and the benefits of
modularity vis a vis the separation of functionality in
systems engineering.

2. Real-time Extensions

Requirements for real-time extensions were developed
in a process of consultation with company partners
whose applications are concentrated in industrial auto-
mation and telephony domains. These however span
nearly the full range of functionality traditionally asso-
ciated with hard real-time systems. Windows NT 4.0
has significant real-time features but gating limitations
as well [Sommer 96, VENTU 96, Timmerman & Mon-
fret 96, MICRO 95]. The problems most often cited are
priority inversion, the paucity of real-time thread priori-
ties and unbounded system response times.

It was further clear from the consultation process that
real-time extensions to the system should conform as
closely as possible to the standard interfaces of the host
OS. It was therefore stipulated that operations in com-
mon between real-time objects and normal objects
should be accessible via a common interface.

This lead to the definition of a subset of the Win32 API
which includes all basic execution control, memory
management, communications, synchronization, I/O and
configuration operations to be supported by the added
real-time threads and to the definition of added inter-
faces for real-time operations (stack/heap pre-allocation
and locking, interrupt and i/o port attachment, clocks
and timers) to be provided for both real-time and nor-
mal objects. The result is a unified – Real-time Appli-
cation Programming Interface (RTAPI) with which ap-
plication elements intended for both the normal Win32
environment and the extension real-time environment
can be designed – and with which design and code can
be shared.

The implementation of these extensions spans two com-
ponents. The first implements the real-time operation

extensions for normal Win32 objects. The second im-
plements the Real-Time Subsystem (RTSS). Both ex-
ploit limited modifications developed for the NT HAL
(which primarily provide extensions for clock and timer
device programming and interrupt management).

Figure 1 illustrates how the Real-Time Subsystem inter-
faces to NT. The HAL and the RTSS driver provide the
Real-Time Application Interface (RTAPI) to real-time
processes, which are linked and loaded as NT drivers.
The difference between an NT driver and the real-time
process is that the real-time process uses RTAPI calls
instead of the NT device driver interface.

2.1 Thread Scheduling
The real-time thread manager offers 128 thread priori-
ties and controls priority inversion. The threads are
scheduled by priority and within a priority, in round
robin order. There is no sharing of processors based on
a fixed time slice. All RTSS threads must give up the
processor by waiting, changing thread priority or other-
wise completing execution. All RTSS threads run be-
fore any NT threads can run.

Win32 Process
using RTAPI

User Mode

Standard HAL Real-Time Extensions to HAL

Kernel Mode

Real-Time Subsystem
and RTAPI (Driver)

Real-Time Process strictly
using RTAPI (Driver)

Windows NT Kernel

Various NT Managers IO Manager

NT Executive

System Services

Figure 1 Real-Time Subsystem

The thread manager gets control of the processor in
response to interrupt processing by the HAL. Two of
these interrupts, the clock and the RTSS software inter-
rupt are fixed interrupt sources. The clock interrupt
handler handles timer expirations and the RTSS soft-
ware interrupt causes the RTSS to examine the queue of
messages from NT. The last type of interrupt is from a

device for which an RTSS process registered an inter-
rupt handler.

The net effect of these interrupts is that some number of
RTSS threads will become ready to run. When all of
the threads have finished their immediate work, the
thread manager becomes idle, the RTSS switches back
to the HAL stack and normal NT processing occurs.

2.2 Interrupt Handling
Interrupt objects are used to claim system interrupt re-
sources and handle interrupt events. The interrupt ob-
ject is an abstract type which captures the resource us-
age and the service routine associated with an interrupt.

All interrupt service routines in RTSS are realized as
real time threads. In designing the system in this way, a
small performance tradeoff was made. For a given in-
terrupt, the handler latency increases to include thread
switching time. This is a relatively small increase in
latency, however. The benefit to this approach is that
all real time system activities are captured as real time
threads, which provides a simple, coherent approach to
setting priority across the real time subsystem, and al-
lows for a more robust and verifiable implementation of
the subsystem.

Interrupt masking is achieved through lazy or optimistic
interrupt masking. This technique manages the inter-
rupt level in software to reduce the overhead of hard-
ware programming. Actual hardware masking occurs
only in the event of an actual hardware interrupt, at
which point the mask is set to prevent further interrupts,
and the hardware event is noted so that it can be dealt
with at the end of the critical code section. This tech-
nique is described in [Stodolsky et al. 93].

2.3 Communication with NT
In order for NT and the RTSS to communicate, two
message queues are maintained by the RTSS. One
queue is for messages passing from NT to the RTSS and
the other queue is for messages passing from the RTSS
to NT. The queues are implemented as circular buffers
of messages. This organization is necessary because at
this lowest level, NT and the RTSS are not synchro-
nized except for the ability to atomically write the index
of the last message written to the queue.

RTSS processes request NT services through this chan-
nel. Although the NT device driver interface is in the
same address space of the RTSS process, the process
must not call these interfaces. This restriction is neces-

sary because the RTSS thread must wait at the message
queue instead of being suspended by the NT executive.

3. RTSS Objects

Beside thread performance, the most important feature
of the RTSS is the duplication of NT objects and the NT
object technology. The NT object technology is de-
scribed in [Custer 1993]. Adhering to the NT object
technology gives Win32 fluent programmers immediate
familiarity with the RTSS objects and interface.

For instance, the RTSS implements a real-time sema-
phore. The RTSS semaphore calls are listed in the table
below with along with their Win32 equivalents.

Table 1 Semaphore Call Comparison

RTAPI Semaphore
Calls

Win32 Semaphore
Calls

RtCreateSemaphore CreateSemaphore
RtOpenSemaphore OpenSemaphore
RtReleaseSemaphore ReleaseSemaphore

The RtCreateSemaphore call creates a semaphore and
returns an RTSS object handle to the RTSS process.
RTSS processes have a process specific object table.
The RTSS object handle is an index into the object table
which contains the pointers to an instance of an RTSS
object.

The RTAPI calls also contain the generic object func-
tions such as RtCloseHandle, RtDupHandle, and for
objects having a signaled state, RtWaitForSingleObject.

The RTSS maintains other features of the NT object
technology, such as name space and object retention.
However, in order to keep our development effort
within reasonable limits, we have not implemented re-
source accounting or protection. The RtCreateXxx calls
retain the LPSECURITY arguments found in their
Win32 counterparts so that security may be added in the
future without changing the interfaces.

While leaving out the security and resource accounting
simplifies the RTSS object technology, the RTSS has an
additional feature not found in NT systems, which is
that a class of the RTSS objects are remotely accessible
from the Win32 environment and that some NT objects
are remotely accessible from the RTSS environment.

Remote access to an object depends upon which of the
following categories an object belongs.

3.1. Subsystem Specific Objects

In terms of remote access, a subsystem specific object is
not remotely accessible by processes in the other sub-
system. The prime example of this type of object is the
thread and objects derived from the subsystem threads,
the RTSS timer and interrupt objects. This not a serious
restriction since other process’ threads are not accessed
except when a debugger controls a process. In the case
of the two subsystems under consideration, debugging
techniques are drastically different.

Denying remote access to the subsystem specific objects
does not limit the usefulness of interfaces in either envi-
ronment. This is the case with the interrupt handler
object. The interfaces, RtAttachInterruptVector and
RtReleaseInterruptVector were implemented first in the
Win32 environment and later in the RTSS environment.
The RTSS interrupt object gives deterministic response
while the Win32 interrupt object allows easier debug-
ging.

3.2. NT System Objects

The NT system objects are those objects to which the
RTSS processes have remote access. The typical object
here is the file system object. Interfaces to these objects
are supported by a local RPC which passes over the
communication channel described in section 2.3. The
RtCreateDirectory call is one such example.

Because the NT endpoint is in the RTSS driver, the
driver must perform the further step of translating the
remote RtCreateDirectory into the NT device driver
interfaces. As noted earlier, these calls are currently in
the address space of the RTSS process, however, calling
these directly will lead to scheduling disaster in the real-
time subsystem.

This category of remote access easily admits equivalent
functionality in the Win32 environment. For instance,
the Win32 version of RtCreateDirectory is simply
wrapper around the Win32 CreateDirectory call.

3.2. Shared Objects

This is the most interesting class of objects. The shared
objects provide synchronization and communication
between Win32 and RTSS processes. There are three
objects available: the semaphore, the mailslot and the
shared memory object. The semaphore and mailslot are
implementations of the Win32 objects. The intent of
adding a shared memory object and interface is to
lessen the complexity associated with creating shared
memory using the Win32 calls CreateFile and
MapViewOfFile.

Win32 and RTSS applications have identical access to
these objects through the RTSS driver and across the
NT-RTSS communication channel. In fact, two Win32
programs can perform synchronization with an RTSS
semaphore in exactly the same way as two processes
would use a Win32 semaphore. This also means that a
Win32 program that restricts itself to using only the
RTAPI interface will synchronize without modification
when it is compiled with the RTSS libraries and exe-
cuted in that environment.

Using the mutex object admits unbounded priority in-
version into the system when a Win32 process must run
in order to release the mutex. We expect that the typical
use of this class of object will be either the shared
memory or the mailslot. We also expect that priority
inversion by NT and starvation of NT will not be an
issue in dual and multi-processor systems where at least
one processor always runs NT.

4. Conclusions

To be honest, large scale modifications to the NT OS
kernel were not an option since the source code is not
distributed by the vender. That notwithstanding, our
total effort to implement the features described is not
dramatically larger for having produced a well isolated
subsystem than it would have been for having made
corresponding modifications to the facilities of the host
OS. Furthermore, our maintenance burden going for-
ward will be reduced dramatically.

Our implementation benefits as well from NT’s consis-
tent object semantics which provide useful guidance on
how new objects or alternate implementations of exist-
ing objects should proceed. The effort to stay as com-
patible with Win32 as possible makes the features of the
RTSS attractive to Win32 programmers and reduces the

burden of dividing an application into cooperating com-
ponents for host and RTSS execution environments to
very acceptable levels.

4.1. Future Directions

First customer applications based on the current system
have been developed and are being readied for deploy-
ment. These require manual verification of sys-
tem/application timing characteristics. There is rich
literature on real-time scheduling which we plan to ex-
ploit for automating the scheduling design for applica-
tion components on the RTSS. Approaches where a
priori processor requirements are known (deadline
scheduling – [Sommer & Potter 96 and Tokuda et al.
90]) or adaptive schedule generation based on dy-namic
system state such as in [Jones et al 96] are un-der con-
sideration.

There are no provisions for process partitioning and
protection in the current implementation. There is lit-
erature on safely allowing untrusted programs to exe-
cute in protected environments such as the kernel ad-
dress space. How the VINO kernel protects itself is
described in [Seltzer et al. 96] and an overview is given
in [Small and Seltzer 96]. Another way of creating a
safe environment would limit the RTSS run-time envi-
ronment to a safe language such as JAVA.

References

[Custer 93] H. Custer, “Inside Windows NT.” Red-
mond, Washington, Microsoft Press, 1993.

[Furht et al. 91] B. Furht, D. Gorstick, D. Gluch, G.
Rabbat, J. Parker and M. McRoberts, "Real-Time
Unix® Systems, Design and Application Guide" Klu-
wer Academic Publishers, Boston 1991.

[IEEE 93] IEEE, "Portable Operating System Interface
(POSIX™) Part 1: System Application Interface
Amendment 1: Realtime Extension." IEEE, 1993.

 [Jones et al. 96] M. Jones, J. Barrera, A. Forin, P.
Leach, D. Rosu and M. Rosu, "An Overview of the
Rialto Real-Time Architecture." In Proceedings of the
Seventh ACM SIGOPS European Workshop, Septem-
ber, 1996.

[Khanna et al. 92] S. Khanna, M. Sebr\gr{e}e and J.
Zolnowsky, "Realtime Scheduling in SunOS 5.0." In
Proceedings of the USENIX Winter 1992 Technical
Conference, January, 1992.

[MICRO 95] Microsoft, "Windows NT and Real-Time
Operating Systems" Available at http://www.
microsoft.com/kb/articles/q94/2/65.ht
m, 17 Jan. 1995.

[Seltzer et al. 96] M. Seltzer, Y. Endo, C. Small, K.
Smith, "Dealing With Disaster: Surviving Misbehaved
Kernel Extensions." In Proceedings of the USENIX
Second Symposium on Operating Systems Design and
Implementation, Seattle, October, 1996.

[Small & Seltzer 96] C. Small and M. Seltzer, "A Com-
parison of OS Extension Technologies." In Prodceed-
ings of the USENIX 1996 Annual Technical Confer-
ence, January, 1996.

[Stodolsky et al. 93] D. Stodolsky, J. Chen and B. Ber-
shad, "Fast Interrupt Priority Management in Operatin-
ing System Kernels." In Proceedings of the USENIX
Symposium on Microkernels and Other Kernel Archi-
tectures, September, 1993.

[Tokuda, et al. 90] H. Tokuda, T. Nakajima, P. Rao,
"Real-Time Mach: Towards a Predictable Real-Time
System," In Proceedings of the Usenix First Mach
Symposium, October, 1990.

[Sommer 96] S. Sommer "Removing Priority Inversion
from an Operating System. Proceedings of the Nine-
teenth Australasian Computer Science Conference
(ACSC’96), January, 1996.

[Sommer & Potter 96] S. Sommer and J. Potter, "An
Overview of the Real-Time Dreams Extensions." In
Proceedings of The Third Australasian Conference on
Parallel and Real-Time Systems (PART’96), September,
1996.

[Timmerman & Monfret 96] M. Timmerman and J.
Monfret, "Windows NT as Real-Time OS?" From
Real-Time Magazine and reprinted at
http://www.realtime-info.be/encyc/
magazine/articles/winnt/winnt.html ,
1996.

[VENTU 96] VenturCom, "High Frequency Clock and
Timer Facilities." Available at http://www.vci.
com/prod_serv/nt/interim.html, 1996.

