
The following paper was originally published in the
Proceedings of the Sixth Annual Tcl/Tk Workshop

San Diego, California, September 14–18, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

wshdbg - A Debugger for CGI Applications

Andrej Vckovski
Netcetera AG

wshdbg - A Debugger for CGI Applications

Andrej Vckovski
Netcetera AG

vckovski@netcetera.ch

Abstract

This contribution discusseswshdbg , an interactive, re-
mote debugger for CGI applications written in pure or
derived Tcl-based environments such aswebsh . The
discussion covers a short overview of thewebsh envi-
ronment and an analysis of current techniques and im-
pediments of CGI debugging. The debugger presented
consists of a client-server architecture, where the server
is running on the same host as the Web browser, while
the client is included in the CGI application that needs
to be debugged. The resulting environment does not
provide the level of sophistication known from typical
source level debuggers, yet it presents a significant step
forward compared to typical CGI debugging techniques
which rely on tracing the execution by many log or de-
bug messages. The system has been in operational use in
the last two years and proved to be a great help in debug-
ging large Web-based applications, allowing high-level
software engineering for Web applications on nearly the
same level as it is being done in traditional software de-
velopment.

1 Overview

This contribution presents an interactive debugger for
CGI (Common gateway Interface [1]) applications writ-
ten in pure Tcl or derivations thereof. CGI has been
the first standardized technique that has been available
to extend Web-servers to provide dynamic content and
it is still - despite of some drawbacks - the most fre-
quently used method to interface specific applications
for dynamic content creation.

Debugging such CGI applications has always been a
difficult and cumbersome task. CGI applications are
growing in size and complexity and suitable debug-
ging techniques need to applied to support the soft-
ware engineering process. The lack of useful tools mo-
tivated the development of a simple yet powerful re-

mote debugger for CGI applications which has been pri-
marily targeted for the use in thewebsh -Framework
which will be discussed below. However, the debug-
ger can be used within other Tcl-based environments for
Web-Applications such as Don Libe’scgi.tcl [2] or
Neosoft’sNeoWebScript [3].

The first section will give a short overview on the
web++/websh -framework and motivate the use of CGI
as server extension mechanism. This is followed by a
short discussion of the generic difficulties in debugging
CGI applications and a review of debugging techniques
typically used. Then, the architecture and some imple-
mentations aspects as well as examples are discussed.
The contribution is concluded by an outlook to our fu-
ture work and some lessons learned using the debugger
in various projects.

2 The web++/websh framework

Theweb++/websh framework is a software develop-
ment and runtime environment for Web-based applica-
tions. It consists of two major components:

web++

web++ is a C++ class library which provides utility
classes for many standard tasks such as managing
the CGI protocol, logging, session management,
(HTML) template processing and so on, much sim-
ilar to the well-known packages such asCGI.pm
[4] or cgi.tcl [2].

websh

websh (pronouncedweb-shell) is a Tcl-shell
which is based onweb++ and provides most of the
functionality of web++ on a script level. The ob-
jects and methods withinweb++ are made visible
on the Tcl-level as Tcl-commands.

Whenweb++ was developed a few years ago the main
incentive was to build Web-based applications as a spe-
cialization of theweb++ class library, using the em-
bedded Tcl interpreter merely as a very comfortable
and powerful way for application configuration and
template-based page construction. However, the expe-
riences have shown, that a classical C++-development
approach with relatively long turnaround cycles and
high level of sophistication by the developers does not
meet the requirements of typical web-based applica-
tions. Therefore, the entire functionality of theweb++
class library has been exported as Tcl-commands in a
specialized shell (websh) and the application develop-
ment happens by writingwebsh - or Tcl-code, respec-
tively.

Unlike usual CGI applications in Tcl,websh processes
the code after evaluating the script file(s). The code
merely declares callback procedures or code blocks
which are called bywebsh after initializing and parsing
the CGI input. This allows a very flexible yet simple way
to write applications withmultiple states. A command
dispatcher selects the state requested by the correspond-
ing URL (given by an encoding in the so-calledquery
string) and calls (or evaluates) the appropriate callback
code.

Other features ofwebsh include:

Session management

websh implements a session management on top
of the connectionless HTTP-protocol. Sessions
can be associated with persistentdictionaryobjects
(key-value pairs) on the Web server.

URL encryption

websh provides a simple URL encryption scheme
to hide parameter passing details. This is neces-
sary because session keys and state information are
passed within the URL’s query string.

Flexible logging

websh implements a two-level logging scheme.
Every log message which is generated within an ap-
plication or the interpreter itself consists of ames-
sage text, a severity level(debug, info, error, alert)
and a free-stringfacility code. In the first stage, the
severity level and facility code are used to filter the
messages according to a user defined set of rules,
e.g.," pass all messages with levelinfo andde-
bug messages for facilityfoo" . A message that
passes the filter is then routed to a set of log out-
put channels. A log output channel can be either

a file, any opened Tcl channel (e.g., pipe, socket,
file) or, on Unix systems, thesyslog service. Ev-
ery log channel is also associated with a rule that
defines which messages to accept. E.g., it is possi-
ble to route onlyalert messages tosyslog and
having all other messages in a log file. The logging
mechanism is insofar very important as most Web-
based applications are expected to run unattended
without permanent operator control.

Template processing

The template processing used inwebsh allows
templates (e.g., HTML page templates) to be pro-
cessed with substitution of embedded directives.
Templates can be entire HTML pages or only frag-
ments thereof. The mechanism adopted is unlike
most other approaches in that it uses a tagging
which is orthogonalto SGML or HTML, respec-
tively. This allows nesting within the templates and
avoids possible name clashes with future HTML
extensions.

Database connectivity

websh andweb++ provide a lightweight database
connectivity layer calledwebdb++ . It allows sim-
ple (mostly synchronous) database connections to
relational, object-relational and inverted-list sys-
tems. The database connectivity layer is imple-
mented using database connectors that are available
in the Tcl community such asOratcl or Sybtcl
[5].

More than CGI

The main usage ofwebsh is to develop CGI ap-
plications. However, most large CGI application
do contain components which need to run indepen-
dent of a Web-server, e.g., housekeeping processes,
import and export tools and so on.websh allows
to reuse modules both within the CGI and non-CGI
part of a software system.

Development tools

A set of development tools, such as a pseudo-linker
(merely a module merger), a pseudo-compiler
(" compiles" the websh/Tcl-code into shared ob-
jects), pretty printers and so on are available.

The powerful logging mechanism does provide a step to-
wardsorganizedandcontrolledCGI debugging. How-
ever, it is still far away from the usability that is known
from traditional source level debuggers, e.g., debuggers
for C/C++ applications. For that reason, we designed
and developed a more powerful debugging approach

which is somewhat close to the ease-of-debugging found
in state-of-the-art source level debuggers. The next sec-
tion discusses some of the difficulties that have to be
overcome with a successful CGI debugging approach.

3 Debugging CGI-Applications

3.1 Why CGI?

Before discussing CGI debugging in more detail it is
worth considering the question whether CGI is at all
appropriate for the development of Web-based applica-
tions. In the last years many other approaches for dy-
namic content creation have been proposed and devel-
oped:

Server-specific APIs

Many HTTP-servers provide specific application
programming interfaces (API) to extend their func-
tionality and embed dynamic content creation, such
as NSAPI (Netscape [6], ISAPI (Microsoft) [7],
Apache modules [8] orServlets for Java-based
servers.

Server-side includes (SSI)

Some HTTP-servers provide a simple template pro-
cessing mechanism. SSI has been available with
very early releases of the NCSA-web-server. Mi-
crosoft IIS uses a similar approach calledactive
server pages.

Approaches particular to the back-ends

Web-applications that need to access mainframes or
large databases can use specific HTTP servers that
are particular to the back-end system, e.g, Oracle
Web Server [9].

Compared to these approaches CGI has a major draw-
back: It requires the HTTP server to create a process
(" fork/exec") for every request that has to be handled.
Process creation has been very expensive in older oper-
ating systems and is still expensive compared to, e.g., a
function call or thread creation which is needed in the
case of a server-specific API. That is, CGI is not an opti-
mal solution if performance is the major issue. However,
there are two fundamentally important reasons which
make CGI still the technique of choice for Web-based
applications:

� CGI application are isolated in a separate process
space. Ill-behaving CGI applications cannot impair
a HTTP server’s stability (assuming areal operat-
ing system). For many applications, long-term sta-
bility is much more important than a few perfor-
mance issues that can be solved by better and faster
hardware.

� The CGI is well-defined and standardized and
therefore, portable across many server platforms.
Dependency on a specific HTTP server products
limits scalability and flexibility.

These two issues have motivated us to stick with CGI
for most of our Web-based applications. The develop-
ment framework is, however, notfundamentallybound
to CGI. In the next section we will now discuss some of
the impediments when debugging CGI applications.

3.2 Impediments

CGI applications receive their input using two separate
mechanisms:

� Context information such as server information and
so on are made available by the server using a set
of defined variable in the process’ environment.

� Request-specific data generated by the browser
such as the content of a HTML form are passed on
the process’ standard input channel.

The response is send by the CGI process to its standard
output channel, which is either collected by the server
and sent to the browser or, already connected to the
browser socket by the server (buffered vs. direct replies).
CGI applications usually have a very short life time. The
process dies as soon as a request is handled (i.e., the
response is sent to the standard output). A multi-state
application (e.g., a shopping bag application) typically
consists of many request/response pairs, i.e., of many
calls to the CGI application. Every instance might ex-
pect some other data on the standard input and a differ-
ent context in the environment.

Therefore, a realistic debugging session needs both the
expected data on standard input and the environment
variables to be set according to the request that needs
to be handled. Assume a CGI application written in a
3rd-generation language such as C. Using standard de-
buggers for C there are basically two alternatives for de-
bugging:

� The CGI is simulated using a few environment vari-
ables and some captured data which are fed into
the process’ standard input. The process is started
manually or by the debugger, respectively, and not
by the HTTP server. This approach is very cumber-
some because it needs manual maintenance of the
input data (which can be different with every re-
quest) while having very short debugging sessions
by the nature of CGI processes [10].

� The CGI application is started as usual by the web-
server. The application is extended in a way that
it stops and waits for any signal to proceed (e.g.,
loops until some condition is true). During this wait
period, a suitable debugger can attach to the pro-
cess and force the condition to become true. There
are also tools that can be used to connect to the
debugger from the application (i.e., the other way
round). The drawback of this approach is that the
application needs to be significantly extended to al-
low such remote debugging. It is, however, still the
best method to do it. However, it requires powerful
debuggers which allow, e.g., to attach to a running
process. Also, this approach requires in the most
cases that the debugger runs on the same system
as CGI application. On productive systems, this is
most often inhibited due to security reasons.

For scripted CGI applications (Perl, Tcl, Python etc.)
the technique used most often is still the classic
"printf()" debugging style. Many log messages are
generated in the process giving information about the
state of variables and flow of control. The log messages
are either sent to a specific log file, that process’ stan-
dard error (which is often copied into the server’s error
log) or even sent to the CGI application’s output, i.e., in-
termixed with the" real" output (which works only, if
the output is ASCII-text or HTML and not some other,
binary-encoded MIME-type such as GIF images).

Often used are also wrappers that are called instead of
the CGI application. These wrappers call the CGI ap-
plications in turn and provide a formatted output of the
application’s standard input, environment and the results
of the CGI application.

Compared to" real" debugging environments these
techniques seem to be anachronisms and far from sup-
porting productive software development. Thewshdbg
(websh -Debugger) presented in the next section tries to
overcome some of these impediments and provide a bet-
ter way for debugging Tcl-based CGI applications.

4 websh-Debugger

4.1 Architecture

Thewebsh -Debuggerwshdbg is designed as aremote
debugger which consists of a client-part and a server-part
(see figure 1). The server part is awish -Application
which displays the debugger’s user interface and waits
for CGI applications to connect. The client part is
a small stub which is included in the CGI-application
when in debugging mode. When a CGI application is
launched by the HTTP-server, it connects to the debug
server and transfers all context information (environ-
ment, decoded data from standard input, decoded query
string). The debug servers typically runs on the same
platform as the Web browser and controls the further ex-
ecution of the CGI application. After the first connec-
tion to the server, the debug clients awaits further com-
mands from the server (e.g., continue execution). The
CGI application may contain a set of break points and
trace conditions (variable traces). Whenever a break-
point is reached or a trace condition is met, the exe-
cution is stopped and control is" transferred" back to
the server. In a stopped state, the CGI application ac-
cepts various commands form the server. These com-
mands can be, for example, a valid Tcl command that
can be used to query variables, temporarily evaluate ex-
pressions and so on.

This design is similar to corresponding approaches
for remote debugging known from standard debuggers
available on most platforms. Remote debugging is espe-
cially useful if disturbing the debugged platform needs
to be minimized, such as kernel programming or appli-
cations with high GUI requirements (e.g., the debugger
GUI should not interfere with the debugee’s user inter-
face). However, to our knowledge,wshdbg is the first
operationally used debugger for CGI applications which
uses a remote debugging technique. Other debuggers
have been successfully used in interactive Tcl/Tk envi-
ronments such as for example [13]

Breakpoints and trace conditions are inserted in the de-
bugged application - being a Tcl or websh-script - di-
rectly in the source code. This is a drawback which is
imposed by the interpreted nature of the environment.
Practical use has shown, however, that this does not pose
major impediments.

The debug server can simultaneously control several
CGI applications, i.e., maintain several connections to
CGI applications. This is useful if there are, for exam-

HTTP server

debug client stub

CGI application

Web browser

debug server

(berkeley) socket

HTTP

CGIUser

HCI

HCI

Figure 1: Architecture overview

ple, multiple requests needed for a response such as if
both a HTML page and an embedded image are result of
different instances of the same CGI application.

4.2 Implementation

The implementation is based on a simple bi-directional,
message-oriented protocol. The protocol is imple-
mented upon (berkeley) sockets and distinguishes two
states, namely

1. the CGI application is stopped, and

2. the CGI application is running.

The stoppedstate is entered at start, at end (optional)
and whenever a breakpoint is hit or a trace condition is
met. The stopped state is left by selecting thecontinue
action in the debug server. In a stopped state (i.e., the
CGI application is awaiting commands from the debug
server), the debugger provides following actions:

� The CGI environment (environment variables, de-
coded standard input etc.) can be inspected

� Tcl-code can be evaluated in the current context of
the CGI application, allowing variables to be in-
spected and set, expressions evaluated and so on.

� Profiling can be enabled or disabled. The profiling
can be used if the TclX [9] extension is available on
the HTTP server platform . However, unlike typical
profiling it collects profiling information over many

instances of the CGI application, allowing better
statistics for short-lived CGI applications.

� The CGI application can be prematurely termi-
nated.

� The CGI application’s execution can be continued.
The CGI application continues to run until the next
breakpoint is encountered or a trace condition is
met.

On transition from a running state to a stopped state
the client sends the server information aboutwhere it
stopped. The location indication is a user-defined text
which has been given when defining the breakpoint or
trace condition.

Breakpoints and trace condition are defined as previ-
ously mentioned directly in the source code. Abrk
command (which takes optional arguments naming the
location) defines a breakpoint. thetr variable
command declares a trace condition which is imple-
mented using the variable tracing mechanism of Tcl. In
a typical debugging session, the source modules are kept
open in an editor and break points are inserted as needed.
This requires, however, that the code is debugged in an
non-compiled or" obfuscated" state.

The following code snipplet shows the enabling of the
debug client as well the definition of some breakpoints

wpp_command showdata {

use debugger (by the default,
connect to the address where

the request came from)
usedbg

set foo {some1 data1 some2 data2}

foreach {key value} $foo {
brk having key $key

wpp_puts "$key = $value"
}

tr myvar "trace on myvar"
... some processing

brk here is breakpoint 2

... some more processing
}

Figure 2 shows a screen shot with the main debugger
control panel, the CGI inspector and expression evalua-
tor.

4.3 Log-Viewer

In thewebsh -environment, there is another useful tool
available which supports debugging with additional in-
formation. Thewebsh logviewerwshlv is a log server
which runs similar to the debug server on the same host
as the browser. When enabling the debug mode for the
CGI application, a log channel to the log viewer (if avail-
able) is opened automatically. Every log message gen-
erated in the application and framework is sent to that
log viewer. The log separates and stores log messages
from various instances of the CGI application. Various
runs can be compared without having a huge log file that
contains intermixed messages from many requests. Fig-
ure 3 shows a sample screenshot from the log viewer.

Together with the log viewer, a typical debug session
contains therefore of:

� a browser

� a debug server instance,

� an editor with the source modules, and

� a log viewer.

5 Conclusion and future work

The websh -debuggerwshdbg has been successfully
deployed in many large projects during the last two
years. We have experienced a substantial improve-
ment in debugging productivity compared to classical
printf() style of debugging. Especially, if the ap-
plication is dependent on the real server (and browser)
environment, this approach has an important advantage.
Often, such information can not be easily simulated as
it involves many other components (e.g., authentication
information provided by authentication services, main-
frame connections and so on). In these cases, it is very
helpful to debug applications in their real framework, yet
having full control and inspection at runtime of the ap-
plication. Compared to these advantages, it is acceptable
that the debugged application needs to have a few addi-
tions (such as the inclusion of the client stub).

It might seem unsatisfying that the definition of break
points and trace conditions has to happen directly in
the source code. Especially if the application con-
sists of several source modules which are merged into
a large, single executable, this involves a" make" -style
step after every breakpoint has been included or re-
moved. However, these steps are usually rather quick in
script-based environments since a build of an application
merely consists of the merging source modules (unless
there are packaging concepts used - which is usually not
acceptable in production environments).

The entire debugging system is in fact a very small piece
of code - the debug server consists of less than 500 lines
of Tcl-code, the client stub some 200 lines of Tcl-code.
Yet, it provides most of the functionality needed for the
debugging of large Web applications.

The future work on thewebsh -debugger could con-
sist of extending the protocol between debug server and
client to allow additional break conditions and a better
user interface for inspection. However, it might be sen-
sible as well to integrate the commercial debuggerTcl-
Pro Debugger from Scriptics, Inc. [12], as it cer-
tainly provides much more general debugging function-
ality thanwshdbg .

In general, we would like to have a source level debug-
ger that allows break points to be set without modify-
ing source code by specifying file name or procedure
name and line number and still is suitable for CGI de-
velopment. In an interpreted environment, however, the
help of the Tcl interpreter is needed. An possible exten-
sion towshdbg would be the possibility to use the Tcl

Figure 2: Debugger screen example

Figure 3: Log viewer screen example

library functionTcl CreateTrace() as it is used,
e.g., in TclX [11] to provide call backs that test for break
conditions. Very useful would be, however, to provide
a mechanism within Tcl that provides additional infor-
mation such as the line number within the upper stack
frame that executed the corresponding command. This
would allow the debugger to recognize break conditions
on module and line level. However, this would require
the Tcl byte code compiler to operate in a specific de-
bug mode where line number information is not only re-
tained in the case of an error.

6 References

1. The Common Gateway Interface Specification
<http://hoohoo.ncsa.uiuc.edu/cgi/
interface.html>

2. The cgi.tcl Home Page<http://expect.
nist.gov/cgi.tcl>

3. NeoWebScript<http://www.neosoft.com/
neowebscript/>

4. CGI.pm - a Perl5 CGI Library <http:
//www-genome.wi.mit.edu/ftp/pub/
software/WWW/>

5. Harrison, M. (ed.), 1997,Tcl/Tk Tools, O’Reilly
and Associates, Cambridge (MA).

6. NSAPI Programmer’s Guide <http:
//developer.netscape.com:80/docs/
manuals/enterprise/nsapi/contents.
htm>

7. Taking the Splash, Diving into ISAPI Pro-
gramming <http://www.microsoft.com/
mind/0197/isapi.htm>

8. Apache API notes<http://www.apache.
org/docs/misc/API.html>

9. Oracle Web Application Server <http:
//www.oracle.com/st/o8collateral/
html/xweb6ds.html>

10. Boutell, T., 1996,CGI Programming in C & perl,
Addison-Wesley, Reading (MA).

11. Extended Tcl<http://www.neosoft.com/
tclx/>

12. TclPro Debugger<http://www.scriptics.
com>

13. Libes, D., 1993, A Debugger for Tcl Applica-
tions, Proceedings of the 1993 Tcl/Tk Confer-
ence, (PostScript)<http://www.mel.nist.
gov/msidlibrary/doc/libes93c.ps>

