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Abstract

The University of California, Santa Barbara, is de-

veloping a 40 gigabit per second ATM switch as

part of its Thunder and Lightning network project.

To use the high bandwidth e�ciently, new network

protocols are being developed and simulated on the

Thunder and Lightning network protocol simulator.

Due to the extreme memory and computational re-

quirements of the simulator, the display, unlike most

Tcl/Tk interfaces, must be implemented as a dis-

tinct process capable of running on a remote ma-

chine. This paper discusses some of the issues that

arise with such a physical separation of application

and interface, and describes the implementation of

the simulator's display application, with an empha-

sis on the use of the Tcl language. One module of the

GUI for the simulator is discussed in detail, demon-

strating the use of XDR (external data representa-

tion) with Tcl sockets to provide for cross-platform

binary data exchange between the simulator and its

display application. We also discuss our experience

in building the simulator GUI and propose ways in

which XDR might be incorporated into Tcl. We

discuss some shortcomings of the canvas widget and

describe mechanisms to overcome them.

1 Introduction

Advances in �ber-optic and VLSI technology have

led to the emergence of very high-speed networks

based on Asynchronous Transfer Mode (ATM) [1].

The Electrical and Computer Engineering Depart-

ment of the University of California, Santa Barbara,

in conjunction with Rockwell International Science

Center, is currently building a 40 gigabit per second

�This work was supported by DARPA Contract No.
DABT63-93-C-0039, a National Science Foundation Gradu-

ate Research Fellowship, and a University of California Dis-
sertation Year Fellowship.

ATM switch as part of its Thunder and Lightning

network project [2].

With the rapid increase in network bandwidth

come new challenges for protocol development. Con-

sider, for example, the situation in Figure 1 in which

a user wishes to transmit data from San Diego, Cal-

ifornia to Boston, Massachusetts. In a typical ATM

network, the user makes a request to reserve band-

width from San Diego to Boston. The user's request

traverses the network from San Diego to Boston, re-

serving bandwidth, and then returns to San Diego,

informing the user of the capacity reserved, at which

point the user can begin transmission. Due to the �-

nite speed of light, this process takes approximately

40 milliseconds during which time 200 megabytes of

data could have been transmitted into the Thun-

der and Lightning network if adequate capacity had

been available.

Similarly, an ATM cell which is lost due to bu�er

overow imposes a minimum delay of 40 ms before

the retransmitted cell can be received at the destina-

tion. During this time, the sender could have trans-

mitted another 200 megabytes of data into the net-

work. To insert the retransmitted cell into the data

stream properly (ATM guarantees in-order delivery

of cells), the receiver must bu�er this 200 megabytes

of data while it waits for retransmission of the one

lost cell. The sender faces similar bu�ering require-

ments as it must be able to retransmit a cell it sent

at least 40 ms in the past (or 200 megabytes prior in

the data stream). This is not a problem if the data

source is a stable storage device, but may become a

problem if, for example, the source of the data is a

real-time measuring instrument.

As part of the Thunder and Lightning project,

we are developing protocols [7, 8, 13, 14] that allow

a sender to begin transmission without the lengthy

reservation delay and yet provide lossless transmis-

sion. A network simulator [6] developed speci�cally
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Figure 1: Connection establishment in a typical ATM network.

for Thunder and Lightning provides a testbed for

the rapid prototyping, development, debugging and

demonstration of these protocols.

To aid the protocol developer further, we have de-

veloped a graphical interface application which pro-

vides a view into the simulated environment. The

display allows the user to manipulate the simulation

in progress by inserting new events and altering ex-

isting events. Detailed protocol state information is

also made available for debugging the protocol. This

paper describes the design and development of this

display program, emphasizing the use of Tcl/Tk. In

addition to describing how Tcl/Tk has been an in-

valuable tool in rapidly developing this interface, we

outline the mechanisms we developed to overcome

the absence of certain features in the language.

2 Design Issues for the Display

Application

The Thunder and Lightning protocol simulator has

stringent memory requirements as it must track ev-

ery ATM cell in the simulated network to ensure

that no cells are lost. When simulating a relatively

simple 4 � 2 mesh of ATM switches and the data

sources connected to it, the network simulator must

keep track of over 2 million ATM cells, or 100 MB of

data. While novel data representation techniques [6]

allow us to reduce the memory requirements of the

simulator signi�cantly, it is clear that, while simu-

lating more complex networks, the simulator may

consume all of the available memory in its host ma-

chine. In addition, the simulation process is entirely

compute-bound. Thus, any extra computation the

host machine must perform negatively impacts the

speed of the simulation.

Therefore, in designing the simulator display, we

had the following goals:

� The display should reduce the memory available

to the simulator as little as possible,

� The computational impact on the simulator

should be negligible when the display is not in

use,

� The display should be as exible as possible so

as to allow features to be added or modi�ed as

the protocol speci�cation is changed, and

� The display should be reusable as a monitor for

the real Thunder and Lightning switch.

We minimized the memory requirement of display

code within the simulator by making the user in-

terface a separate application. Whereas a typical

Tcl/Tk application integrates the user interface into

the application, we split the application and the user

interface into two separate processes using TCP/IP

sockets to provide the interprocess communication.

As a result, the display process can run on a sepa-

rate machine. This not only reduces the size of the

simulation code but also implies that the window

system (e.g., X Windows) does not have to run on

the machine performing the simulation, thereby in-

creasing the amount of memory available for use in

the simulation.
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Figure 2: Sample simulation display.

While executing the user interface on a sepa-

rate machine helps reduce the computational load

on the machine running the simulation, employ-

ing a client/server relationship between the display

and the simulator further reduces the computational

cost. The simulation does not constantly send status

information to the display over the communication

channel. Instead, the display requests (only) the in-

formation needed to satisfy the user demands. The

simulator responds to display requests with the ap-

propriate information, and the display process then

manipulates the received data into a form suitable

for display. In this way, the simulator is interrupted

from normal processing only when a speci�c request

is received; if the display is idle or not running, no

processing time is wasted.

Finally, display exibility is provided through the

use of the Tcl/Tk scripting language [4]. As de-

scribed in Section 3 below, almost all of the graphics-

related code is written as compact Tcl/Tk scripts,

which allow for rapid coding of new window types.

The display uses only a small amount of C code to

initiate requests and to convert the binary response

data into string lists that the scripts can use.

3 Implementation Details

To provide as much exibility as possible, the dis-

play application is implemented as multiple nearly-

independent modules. Each module is responsible

for the display of a particular kind of data and is im-

plemented using both a C �le and a Tcl/Tk script.

Transmission of requests and reception of responses

related to that display type are handled in the C �le.

The C code converts the simulator response into a

form useful by Tcl and then invokes a Tcl proce-

dure to perform the display action. The Tcl �le

implements the user interface for the data display

maintained by the module.

One such display module is used to illustrate the

path a simulated connection takes through the net-

work, as shown in Figure 2. These path displays are

either transient, in which case they are automati-

cally removed from the display after a short delay,
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Figure 3: Mapping D PATH response data into function call arguments.

or persistent. Because multiple routes may be dis-

played simultaneously, the path module automati-

cally chooses a di�erent color for subsequent path

displays. A small control panel provides a means to

change the persistence and color of displayed routes.

In the following sections, we describe both the Tcl

and C code for the path module to provide a con-

crete example of the ease with which modules can

be created.

3.1 Simulator-Display Interface

When the user wishes to display a particular piece

of information, the display sends a request to the

simulator. Each request consists of a single inte-

ger request-type �eld followed by a request-type-

speci�c number of arguments. Figure 3 illustrates

the format of the request message used to obtain

session routing information from the simulator. The

request-type �eld holds the constant integer value,

D PATH, assigned to path requests. Routing infor-

mation requests have two arguments. The ags �eld

argument indicates whether the path display should

be persistent or transient, while the session ID �eld

indicates the simulated connection that should be

displayed.

To aid in the concurrent development of the simu-

lator and the display, the display application is state-

less with respect to communication. When the dis-

play makes a request on behalf of the user, it does

not maintain any record of the request. This en-

ables the simulator to ignore unrecognized requests,

while not causing the display to hang awaiting a re-

sponse that will never be received. Similarly, if the

display cannot handle a response from the simula-

tor, the response may be discarded without a�ecting

the simulator.

Stateless communication also allows the display

application to be used virtually unchanged with the

real Thunder and Lightning switch. The Thunder

and Lightning switch runs a small daemon process

which implements the subset of simulator responses

that apply within the context of a real switch. For

example, the daemon responds to bu�er occupancy

requests, but silently ignores requests to edit or cre-

ate simulation events. The interface presented to the

user is the same whether the display is connected to

a simulation process or a real switch.

The fact that communication is stateless, how-

ever, requires all responses from the simulator to

contain su�cient information about the original re-

quest to enable the display to process the response

appropriately. Figure 3 shows the format of a path

response message from the simulator. Because no

request state is maintained, the response includes

both the session ID and the ags �elds transmitted

in the original request message. In fact, the simula-

tor completely ignores the ags �eld when processing

the request; the persistence information for the path

display must be transmitted to the simulator in the

request message for the sole purpose of returning it

in the response message. In addition to information

from the original request, the response also contains

the source and destination IDs of the path, a set of

triples containing information about each hop along

the path, and a �eld indicating the length of the set.

Each triple identi�es the switch ID and the ports on



which the session enters and exits that switch. As

described later in Sections 3.2 and 3.3, the display

converts these integers to Tcl lists in C code and

then to display-speci�c alphanumeric canvas tags in

order to choose the correct canvas items to highlight

on the topology display.

3.2 Implementation of the Path Module
in C

The purpose of a module's C code is to handle com-

munication with the simulator over the socket. Un-

like other remote display applications, such as [9],

which exchange text messages over a socket, the sim-

ulator and display exchange binary data. We use

XDR (external data representation) [10] routines to

convert data to and from network form. This al-

lows the display and simulator to be run on archi-

tectures with di�erent binary representations. The

initialization code, not shown here, installs a chan-

nel handler for the socket that reads raw data from

the socket into an XDR bu�er. The channel han-

dler then passes the XDR bu�er to the appropriate

module's handler based on the response type. (Re-

call that simulator responses must be self-identifying

because the display is stateless.)

The path module initialization code is shown in

Figure 4. The initialization code simply registers a

new command with the Tcl interpreter to allow a

Tcl script to request a path display.

Figure 5 illustrates the code for the request pro-

cedure. We create an XDR bu�er with a call to

xdrmem create, and then encode each element of

the request using XDR functions. In this case, the

request consists of the request type, D PATH, a ag

indicating the path's persistence, and the session ID

to be displayed. When the request has been assem-

bled, we send the entire XDR bu�er to the simulator

over the Tcl socket (PORT.socket) between them.

When a response is received from the simulator,

the channel handler servicing the socket reads the

data from the network into an XDR bu�er. Based

on the response type, the appropriate module's han-

dler function will be invoked. The code in Figure 6

will be invoked for all responses of type D PATH. The

path module expects responses to be in the format

indicated in Figure 3. HandlePath reads all of the

data from the XDR bu�er and then parses it into

Tcl strings by printing into temporary character ar-

rays. Lists are assembled as shown in Figure 3 be-

fore invoking the Tcl procedure to display the path

information.

3.3 Implementation of the Path Module
in Tcl

As is the case with all modules in the simulator dis-

play, all of the graphical work is done in Tcl scripts.

This provides for quick development, as no recompi-

lation is necessary when making changes to a module

under development. In most cases, we can even test

changes in a module on the y, without restarting

the display process, simply by re-sourcing the Tcl

�le.

The Tcl code for the PerformUpdatePath proce-

dure, which displays a route on the network topol-

ogy display, is shown in Figure 7. It is called by

the HandlePath C function described in Section 3.2.

The display's path module relies on the fact that the

network topology display module is implemented in

a Tk canvas window and assigns tags to all of the

routing arrows on the display as follows. Each line

segment associated with switch x has a tag of the

form \switchx." In addition, each segment on the

path leading from input port y to output port z at

a switch has a tag of the form \inyoutz."

As indicated in Figure 3, the switchInfo ar-

gument to PerformUpdatePath contains a list of

hswitch ID, input port, output porti triples. To high-

light a path, we �nd all canvas items (line segments)

tagged with both the switch tag for the appropri-

ate switch ID and the in/out tag for the given in-

put/output ports. Note that Tcl/Tk does not pro-

vide a direct means of locating canvas items based

on two or more speci�ed tags. We could have mod-

i�ed the network topology module to add an addi-

tional tag of the form \switchxinyoutz" so a search

could be done for a single tag. Instead, we chose to

implement the canvasMultiMatch procedure to pro-

vide this missing functionality so we wouldn't need

to modify the network topology module each time

a search on a di�erent group of tags was required.

We then duplicate each item found and copy all at-

tributes of the original line segment to the newly

created segment, which by default is now on top of

the canvas stacking order. We set the new segments

to a color from a prede�ned color list, increase the

line width, and tag the new elements with a unique

tag so they can be easily distinguished later. In ad-

dition, we set a mouse binding to allow the user to

change the color or persistence of the path. Finally,

if the path is not persistent, we create a timer call-

back to delete the path after a prede�ned interval.

Although it is not shown here, the path mod-

ule also contains a few other Tcl procedures.

PathControlWindow implements a palette-like con-



int PathInit(Tcl Interp *interp) f
Tcl CreateCommand(interp, \RequestUpdatePath", RequestUpdatePath,
(ClientData) NULL, (Tcl CmdDeleteProc *)NULL);

return TCL OK;
g

Figure 4: Path module initialization procedure.

int RequestUpdatePath(ClientData clientData, Tcl Interp *interp,
int argc, char *argv[]) f

char bu�er[BUF SIZE];
XDR xdrs, *xdrsend = &xdrs;
int temp, ags = 0;
if (argc < 2 jj argc > 3) f
/* error handling omitted */

g
xdrmem create(xdrsend, (void *)bu�er, BUF SIZE, XDR ENCODE);
temp = (int)D PATH;
xdr int(xdrsend, &temp);
if (argc > 2 && strcmp(argv[2], \persistent") == 0)

ags j = (int)PERSISTENT;
xdr int(xdrsend, &ags);

temp = atoi(argv[1]);
xdr int(xdrsend, &temp);

Tcl Write(PORT.socket, (char *)bu�er, xdr getpos(xdrsend));
xdr destroy(xdrsend);
return TCL OK;

g

Figure 5: C code to request path information from simulator.

trol panel interface allowing the user to change the

color or persistence properties of a displayed route.

Additional procedures are used to notify other mod-

ules of the posting and removal of path displays,

should they wish to annotate their displays accord-

ingly. For example, a session route displayed in black

causes the corresponding entry in the session list

window to be highlighted in black, as shown in Fig-

ure 2.

4 Experiences

Tcl/Tk has saved us countless hours in the devel-

opment of the graphical display for the Thunder

and Lightning protocol simulator. In fact, with-

out Tcl/Tk, it is likely that the display application

would never have come into existence, because our

primary research involves developing protocols for

high-speed networks, not designing graphical inter-

faces! Only the ease and rapidity of design provided

by Tcl/Tk have a�orded us the opportunity to de-

velop the display interface. Nonetheless, we have

uncovered several areas in the language that we be-

lieve could use further development. We present

these shortcomings in this section, along with the

techniques we used to circumvent them.

4.1 Sockets between Heterogeneous
Platforms

When this work began, sockets were not an o�cial

part of Tcl 7.3 and Tk 3.6. It is partly for this rea-

son that the speci�cation for interprocess commu-

nication between simulator and display uses binary

data and not strings, which would be more natural

for Tcl. Nonetheless, we retro�tted both the simu-

lator and display to use Tcl sockets when they be-

came available in Tk 4.1. Taking advantage of the

cross-platform advances in Tcl/Tk 8.0 has allowed

us to port both the simulator and the display to

various platforms on which Tcl is supported. Both

applications should be capable of running on any

Tcl-supported platform and have been tested suc-

cessfully on Solaris 2.x, MacOS 8.x, and MkLinux

DR3 on a PowerPC.

Despite the uniform, cross-platform access to

sockets that Tcl provides, problems arise when the

simulator is run on one architecture and the display

is run on another. When both applications are run

on the same architecture, each safely interprets in-

coming binary data in its native format. However,

when one application is run on a little endian archi-

tecture (e.g., Windows on x86 processors) and the



int HandlePath(XDR *xdrrecv) f
int numSwitches, sessionID, source, dest, *switchInfo;
int sw, item, result, i;
int ags;
char bu�er[10];

/* read in path ags, session ID, # of switches, source ID */
if (!(result = xdr int(xdrrecv, &ags)) jj

!(result = xdr int(xdrrecv, &sessionID)) jj
!(result = xdr int(xdrrecv, &numSwitches)) jj
!(result = xdr int(xdrrecv, &source))) f

/* error handling omitted */
g

/* read in all the switch information (hID, in port, out porti triples) */
switchInfo = (int *)malloc(3 * numSwitches * sizeof(int));
if (!switchInfo) f
/* error handling omitted */

g
for (i = 0; i < 3 * numSwitches; i++)
if (!(result = xdr int(xdrrecv, &switchInfo[i]))) f
/* error handling omitted */

g
/* read in destination ID */
if (!(result = xdr int(xdrrecv, &dest))) f
/* error handling omitted */

g
/* now we need to parse all of this information into:
* session, source, list of switch info lists, destination
*/

sprintf(bu�er, \%d", sessionID);
Tcl SetVar(gInterp, \pathTmpSession", bu�er, 0);

sprintf(bu�er, \%d", source);
Tcl SetVar(gInterp, \pathTmpSource", bu�er, 0);

sprintf(bu�er, \%d", dest);
Tcl SetVar(gInterp, \pathTmpDest", bu�er, 0);
Tcl UnsetVar(gInterp, \pathTmpSwList", 0);

for (sw = 0; sw < numSwitches; sw++) f
Tcl UnsetVar(gInterp, \pathTmpList", 0);

for (item = 0; item < 3; item++) f
/* build up switch sublist */

sprintf(bu�er, \%d", switchInfo[(sw * 3) + item]);
Tcl SetVar(gInterp, \pathTmpList", bu�er,

TCL APPEND VALUE j TCL LIST ELEMENT);

g
/* append sublist to switch list */
Tcl SetVar(gInterp, \pathTmpSwList",

Tcl GetVar(gInterp, \pathTmpList", 0),

TCL APPEND VALUE j TCL LIST ELEMENT);
g
/* Finally, invoke the update command */
Tcl VarEval(gInterp, \PerformUpdatePath ", \ .switch.c ",

\$pathTmpSession $pathTmpSource $pathTmpSwList $pathTmpDest ",
(ags & PERSISTENT) ? \persistent" : \",
(char *)NULL);

return 1;
g

Figure 6: HandlePath: C code to process a Path response from the simulator.



proc PerformUpdatePath fcanvas session source switchInfo dest argsg f
global pathTmpNum pathColors

foreach switch $switchInfo f
set itemList [canvasMultiMatch $canvas [list \switch[lindex $switch 0]" n

[format \in%dout%d" [lindex $switch 1] [lindex $switch 2]]]]
foreach item $itemList f
#create a copy of the original, alter it, and tag it

set newItem [eval .switch.c create [.switch.c type $item] [.switch.c coords $item]]
foreach attribute [.switch.c itemcon�gure $item] f
.switch.c itemcon�gure $newItem [lindex [lindex $attribute 0] 0] n

[.switch.c itemcget $item [lindex [lindex $attribute 0] 0]]
g
set color [lindex $pathColors [expr $pathTmpNum % n

[llength $pathColors]]]
.switch.c itemcon�gure $newItem -�ll $color -width 4 -tag pathTmp$session

g
g
PathPostColor $session $color
.switch.c bind pathTmp$session<Button-3> n

\PathControlWindow pathTmp$session $session"
# if not persistent, schedule delete timer and store timer ID as a tag

# so it can be cancelled later if need be

if f[lsearch -exact $args persistent] == -1g f
# We use eval and escape the fg so the variables will be

# expanded now and not when the timer expires

set timerID [eval after 5000 \nf
catch nf$canvas delete pathTmp$sessionng
catch nfdestroy .pathTmp$sessionng
catch nfeval upvar #0 pathPersistpathTmp$session pathPersistng
catch nfunset pathPersistng
PathUnpostColor $session
ng"]

.switch.c addtag timer$timerID withtag pathTmp$session

g
incr pathTmpNum

g

Figure 7: Tcl code to post path trace on network topology canvas.

other is run on a big endian architecture (e.g., So-

laris on SPARC processors), this is no longer the

case. When one interprets an integer sent by the

other, the receiver will \see" the integer as a di�er-

ent value than the sender intended because the or-

dering of the bytes comprising the four-byte integer

are stored (and therefore transmitted) in a di�erent

order. A similar situation occurs with the Thunder

and Lightning switch processor, which uses a non-

standard oating point format for e�ciency.

The binary socket option combined with the bi-

nary command in Tcl 8.0 provides only a partial so-

lution to this problem. Using the binary command,

integer data can be converted to a known byte or-

dering, and the simulator and display could each

convert from the agreed upon order to their plat-

form's native order. However, the binary command

cannot be used in this way for oating point data,

which is used by other display modules. In addi-

tion, the binary command would be unavailable for

use within the Thunder and Lightning switch pro-

cessor, as the daemon does not have access to a Tcl

interpreter.

Instead, we solved this binary data representation

problem by using the XDR (external data represen-

tation) standard, which imposes a common network

byte ordering (and size) for all simple data types.

XDR provides functions of the form xdr type for en-

coding or decoding data of type type. The preced-

ing section presented code examples using the func-

tion xdr int to read integers from an XDR bu�er.

Because all data exchanged between simulator and

display are converted into network form by XDR

routines, we are guaranteed that there will be no

\misunderstanding" between the two.

Unfortunately, XDR is not available on every Tcl-

supported platform. Most UNIX variants support



enum xdr direction fXDR DECODE, XDR ENCODEg;
typedef struct xdr struct f

enum xdr direction direction;
void *bu�er;
void *next;
int bufLen;

g XDR;

#de�ne easyxdr(typename) n
int n
xdr ##typename(XDR *xdr, typename *value) f n

if (!xdr->bu�er) n
return 0; n

if ((int)xdr->next + sizeof (typename) > (int)xdr->bu�er + xdr->bufLen) n
return 0; n

switch (xdr->direction) f n
case XDR ENCODE: n

memcpy(xdr->next, (void *)value, sizeof(typename)); n
break; n

case XDR DECODE: n
memcpy((void *)value, xdr->next, sizeof(typename)); n
break; n

default: n
/* error handling: unimplemented features of XDR */ n
break; n

g n
xdr->next = (void *)((int)xdr->next + sizeof(typename)); n
return 1; n

g

Figure 8: General template for creating XDR functions for simple data types on big endian architectures.

XDR because it is used by RPC, but the MacOS is

one platform without XDR support. To enable com-

pilation on the Macintosh platform, we have had to

implement the XDR routines we use. As most simple

data types are already in network form, we can sim-

ply use the C macro shown in Figure 8 to create the

missing XDR functions for most datatypes. For ex-

ample, the simple macro invocation easyxdr(long)

will de�ne the C function xdr long, which converts

long integers to and from network form.

Although implementing XDR functionality on big

endian architectures such as the MacOS is rela-

tively straightforward, more work is required to im-

plement XDR on a little endian architecture. Be-

cause the typical Tcl/Tk programmer should not

have to worry about such di�erences in a cross-

platform language such as Tcl, we strongly be-

lieve that XDR should be incorporated into the

Tcl language. With the introduction of sock-

ets, Tcl has provided an elegant, uniform inter-

face to the di�ering TCP/IP stacks on the var-

ious Tcl-supported architectures. The addition

of XDR (or a similar network byte-order stan-

dard for all primitive data types) would provide

seamless interplatform communication and thereby

greatly extend the power of the Tcl socket abstrac-

tion.

There are several ways in which XDR could

be incorporated into Tcl. The most obvious

is an xdr Tcl command similar to the binary

command added in Tcl 8.0. Encoding an in-

teger could then be as simple as executing a

command such as set dataToSend [xdr encode

integer $myInteger]. Decoding a message would

require reading the message into a bu�er (string)

and executing a command such as set decodedInt

[xdr decode integer myBuffer]. Note that the

xdr command must consume data from myBuffer

so the variable name and not its value must be

passed.

Another alternative for incorporating XDR would

be to use a method similar to the stream �lters

provided by TclDP [5]. TclDP allows the user to

register a �lter mechanism with a Tcl channel such

that all reads and writes for the channel �rst pass

through the �lter. TclDP �lters are very exible and

work well when all data passing through the channel

must be transformed in the same way (e.g., uuen-

coding). However, XDR data are processed di�er-

ently depending on the type of data the user wishes



to read from the channel. Unless the �lter proce-

dure knows in advance the kind of data to be read,

TclDP �lters don't help with XDR. Instead, we need

a mechanism that allows the user to pass a �lter to

each read/write call on the channel. For example, to

read an XDR-encoded integer from the channel, we

would call the channel read procedure, instructing it

to use the integer XDR �lter. This would result in

exactly four bytes being read from the channel, and

the returned data bu�er would contain one XDR-

decoded integer. Of course, Tcl would still have to

provide XDR �lter functions for each of the standard

C types, but implementing XDR in this way would

also provide the general exibility of TclDP �lters.

4.2 Canvas Improvements

Another area of Tcl that we would like to see im-

proved is the canvas widget. Canvases are of crucial

importance to our project, as they provide the most

important part of our display: the network topology

window. In the course of developing the topology

display, we found several areas of the canvas that

could be improved.

4.2.1 Relief E�ects

One omission in canvas functionality is the lack of

relief e�ects for canvas objects. This makes anything

drawn on a canvas seem at in comparison to the re-

lief e�ects incorporated in the surrounding widgets.

In the case of the network topology window shown

in Figure 2, we use sunken rectangles to represent

the three bu�ers at each switch output port. To sim-

ulate this e�ect, we embed other canvas windows in

the main canvas. This allows us to set a sunken re-

lief e�ect on the embedded canvas, which gives the

e�ect of a sunken bar graph. While this works for

creating reliefed rectangles, other shapes cannot be

created in this way. In addition, the complete canvas

window can no longer be printed through the canvas

postscriptmethod because embedded windows are

ignored. The generated PostScript has holes wher-

ever an embedded window appears on the screen.

4.2.2 Selection Based on Multiple Tags

Another weakness in the canvas widget involves the

handling of multiple tags. The ability to associate

multiple tags with canvas items has proven invalu-

able in implementing the display application. As

described in the previous section, tags are used to

implement the path display. However, the canvas

�nd method is only capable of dealing with one

tag at a time. There are often times when items

need to be selected on the basis of multiple tags.

We have implemented this functionality with the

canvasMultiMatch procedure shown in Figure 9,

but it would be far more e�cient if this function-

ality were added to the canvas �nd function or if a

list commandwere added that returned the intersec-

tion of two or more lists.

4.2.3 Megaitems

The Tcl community has expressed a desire to have

megawidget support added to Tk. Megawidgets

[3, 11, 12] are new widgets created entirely with Tcl

code from more basic widgets. No C programming

is required to construct megawidgets, and they are

indistinguishable from native widgets. A SuperWid-

get megawidget can be created with Tcl code such as

SuperWidget .myWidget and con�gured with code

like .myWidget configure -relief sunken. Be-

cause megawidgets have the same interface as a na-

tive widget, they can be replaced by native widgets,

if they become available, without changes to the

code that uses them. Although megawidget support

is not yet an o�cial part of Tk, the Tcl community

has addressed this need.

We believe there is a similar need for

\megaitems," the canvas equivalent of a mega-

widget. \Megaitems" are canvas item types created

from more basic canvas item types. Like mega-

widgets, \megaitems" should be indistinguishable

from native canvas items so they can be replaced by

native canvas items should they become available.

\Megaitems" would have been invaluable in the

implementation of the network topology display.

Both the rate meters and the bu�er occupancy bars

are comprised of several native canvas items. We

would have liked to have de�ned these to be new

canvas types (\megaitems") and then used them in

de�ning a new \megaitem" type: the ATM switch.

While we did write procedures to abstract the con-

struction of these items, it is clear from the code

that they are not native canvas types, and signi�-

cant sections of code would have to be changed to

use a native rate meter item, were it to become

available. Incorporating \megaitem" support into

the Tk canvas would allow the Tcl/Tk programmer

to take advantage of the bene�ts of object-oriented

design and would make the Tk canvas more exi-

ble.



#procedure to �nd items with multiple tags in a canvas

proc canvasMultiMatch fcanvas tagListg f
# �nd all items with the �rst tag

set itemList [$canvas �nd withtag [lindex $tagList 0]]
#delete �rst element (used to build initial list)

set tagList [lreplace $tagList 0 0]

set resultList [list]
foreach item $itemList f

# Get all tags for this item

set itemTags [$canvas itemcget $item -tags]
set isCandidate 1

# Check to see if the item has all of the tags

foreach curTag $tagList f
if f[lsearch -exact $itemTags $curTag] == -1g f

# missing one of the tags; so this item doesn't match

set isCandidate 0
break

g
g
if f$isCandidateg f

# the item matched all tags

lappend resultList $item

g
g
return $resultList

g

Figure 9: Procedure to select canvas items matching a set of tags.

5 Conclusion

In this paper we have presented the design and

implementation of the graphical display program

for the Thunder and Lightning network protocol

simulator. The display application, unlike other

Tcl/Tk applications of which we are aware, has

the unique requirement that it must be imple-

mented as a separate program running on a ma-

chine other than the computer hosting the simu-

lation process. The display and simulator must,

therefore, exchange data through the use of sock-

ets. The fact that the display and simulator may

be running on dissimilar architectures poses new

challenges, despite the portability that Tcl pro-

vides. We have used code from the working dis-

play application to present the use of XDR in over-

coming these inter-platform binary data represen-

tation issues. Finally, we have described several

areas of Tcl/Tk that could use further develop-

ment. In particular, we have identi�ed several

weaknesses in the canvas widget and described how

XDR might be incorporated into Tcl. We believe

that the modest e�ort required to include XDR

functionality in Tcl would extend Tcl's socket ab-

straction beyond that of comparable scripting lan-

guages.
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