
The following paper was originally published in the
Proceedings of the Sixth Annual Tcl/Tk Workshop

San Diego, California, September 14–18, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

Mobile Streams

M. Ranganathan, Laurent Andrey, and Virginie Schall
National Institute of Standards and Technology

Anurag Acharya
University of California, Santa Barbara

Mobile Streams

M.Ranganathan, Laurent Andrey, Virginie Schaal {mranga,andrey,schaal}@nist.gov
National Institute of Standards and Technology, Gaithersburg, MD 20899

Anurag Acharya
Dept. of Computer Science, University of California, Santa-Barbara, CA93106

Abstract

We present a toolkit for building event-driven, re-
configurable distributed systems. An event-driven ap-
plication is driven by asynchronous inputs that cause
event-handlers to be invoked. A large class of distrib-
uted collaborative, testing, monitoring and control ap-
plications fit this paradigm - for example, conferencing
and conference control applications, distributed control
and testing applications and many others. In each case
the notion of an “event” varies. In a collaborative sys-
tem, events are user inputs; in a distributed monitoring
and control system, events are changes in transducer
inputs; in a distributed testing scenario, events are test
outputs, timer alarms and so on. In such systems, it may
be useful to have the ability to dynamically extend and
re-configure the system. For example, in a collaborative
system, different users may be interested in getting noti-
fication of different events that may not be known to the
system designer a-priori – necessitating dynamic exten-
sion while the system is in execution. There are also
situations where system design and performance may be
enhanced by dynamic re-configuration - that is dynamic
re-mapping of the system functionality while the system
is in execution. Our goal is to build a system that en-
ables the scripting of such event-driven applications.

Our basic abstractions consist of Mobile Streams
(MStreams) and event handlers. A Mobile Stream is a
named communication end-point in a distributed system
that can be moved from machine to machine as compu-
tation is in progress while maintaining a well-defined
ordering guarantee. The closest analogy to an MStream
is an “active mobile mailbox”. Like a mailbox, mes-
sages may be sent asynchronously to the MStream and
are consumed in the same order in which they were
sent. By attaching event handlers, message arrivals trig-
ger Handler executions and hence the MStream be-
comes an “active mailbox”. An MStream has a globally
unique name and may be located on any machine that
runs an execution environment for it and allows it to be
moved there. The ability to move an MStream around
makes it a "mobile mailbox". Handlers may be dynami-

cally attached to (and detached from) an MStream and
are independently and concurrently invoked for each
event. Handlers operate in an atomic fashion. By
“atomic” we mean that changes in the state of the
MStream (which includes various attributes such as its
location, the set of Handlers attached to it and so on) are
deferred until the time when the Handlers complete
execution. Handlers may append messages to other
MStreams - triggering Handler executions at the target
MStream when the message is delivered. Handlers are
organized into groups (called Agents) with each group
having its own interpreter and thread of execution and
an MStream may have several Agents associated with
it.

A distributed system is organized around its communi-
cation end-points i.e. MStreams, and by associating
Agents with these end-points, which, in turn, attach
Handlers for specific events. An Agent may specify a
portion of its global state as being in its briefcase – in-
dicating to the system that this state needs to be re-
located to the new location when an MStream is moved.

Using the mechanism we have just described, an entire
distributed system can be scripted and deployed from a
single point of control and dynamically extended and re-
configured while it is in execution. To set up such a
system, the controller simply defines MStreams, associ-
ates handlers with the MStreams and moves the
MStreams to the desired locations. This is useful in
various scenarios such as web-based testing of distrib-
uted systems and conferencing where the web-server
can set up the distributed test script for the entire test
from a single point of control.

In scenarios involving multi-party collaboration, it is
necessary to be able to place controls on how the system
may be extended and re-configured. To allow this we
have incorporated a resource-control mechanism. Each
MStream can be created with its own resource-
controller that allows the user to place restrictions on
MStream opens, close, movement and so on. The sys-
tem relies on daemons started at each participating site

to host an execution environment for MStreams. Each
of these may be started with a script that permits con-
trols to be placed on the resource usage at that site. In
addition, we have a System Resource Controller for the
entire system that allows the system designer to place
controls on MStream creations, deletions and new peer
additions.

Our prototype system called AGNI (Agents at NIST) is
a Tcl-based multi-threaded system based on un-
modified Tcl 8.1 (a2). Each group of handlers runs its
own interpreter and has its own thread. Message deliv-
ery to Streams is via a custom reliable peer-to-peer
message protocol built on top of UDP that preserves
FIFO delivery order despite dynamic re-configuration.
AGNI is currently operational and has been used to im-
plement three fairly substantial applications – a toolkit
for collaboratively sharing unmodified Tk applications
(adapted from the TK-Replay code developed by Char-
les Crowley [Cr95]), a debugger for MStream programs
(based on the freely available Tcl-Debug debugger de-
veloped by Don Libes [Li93]) and a monitor for visual-
izing an MStreams-based distributed system. Using our
Tk-sharing toolkit, we were able to share a Tk-Drawing
application[T98]. We have also developed a closely
related application to record the interactions that occur
in a collaborative conference and replay these interac-
tions later. We have applied this technology to record
and replay the user-GUI interactions that occur during
the use of the MITRE XCVW collaborative tool. We
are currently in the process of building a web-based
tester for peer-to-peer applications that uses Mobile
Streams as a run-time system. Other applications we are
considering include a collaborative system for viewing
of images from a large image data repository in tele-
pathology applications and support for mobile proxys in
ubiquitous computing applications.

References

[Cr95] C. Crowley, “Tk-Replay: Record and Replay in
Tk”, USENIX Third Annual Tcl/Tk Workshop, 1995.

 [L93] D. Libes, “A debugger for Tcl ” Tcl/Tk work-
shop, 1993.

[T98]http://www.inftechnik.tu-
ilmenau.de/~silvio/research/soft.htm
Tk-Draw web page.

