
The following paper was originally published in the
Proceedings of the Sixth Annual Tcl/Tk Workshop

San Diego, California, September 14–18, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

Using Tcl to Script CORBA Interactions in a Distributed System

Michael L. Miller
Advanced Micro Devices

Srikumar Kareti
Honeywell Technology Center

Using Tcl to Script CORBA Interactions in a
Distributed System

Michael L. Miller
aAdvanced Micro Devices, MS 608, 5204 E. Ben White Blvd., Austin, TX 78741

Srikumar Kareti
bHoneywell Technology Center, 3660 Technology Dr., MN 65-2600,

Minneapolis, MN 55429

Further author information -

a Email: michael.miller@amd.com; Telephone: 512-602-3959; Fax: 512-602-5299
b Email: skareti@htc.honeywell.com; Telephone: 612-951-7302; Fax: 612-951-7438

ABSTRACT

In this paper we present the extensive use of a
scripting language (Tcl) to run human
readable/editable scripts in a CORBA distributed
batch environment. The developed system is the
“Advanced Process Control Framework” as outlined
in the “APC Framework Initiative” which is a
research and development project undertaken by
AMD and Honeywell under the support of the U.S.
Department of Commerce, National Institute of
Standards and Technology. The APC Framework
System has been deployed in AMD’s fab 25 and is
fully functional. The paper discusses the issues
involved in developing scripting mechanism which is
capable of both interacting with other CORBA
components and handling various data structures
which are otherwise not addressable by the underlying
scripting language. The flexibility and extendibility of
the Tcl scripting language makes it easy to extend the
core language. The paper also establishes the need for
thread-safeness of Tcl. Examples of various data
manipulation operations, calls to different CORBA
components, and calls that help in synchronization are
discussed.

1. BACKGROUND

In order to fully describe how Tcl is being used in our
CORBA environment, it is first necessary to give
some background into the project and the distributed
system that we are developing. Starting in 1994,
AMD identified the need for an extension to our

current Manufacturing Execution System (MES) that
would support deployment of Advanced Process
Control applications quickly and easily into our
semiconductor manufacturing facilities (fabs). AMD
internally developed a functional specification for
such a system, which was completed in mid-1995.
The National Institute for Standards and Technology
(NIST), a section of the Department of Commerce,
announced shortly thereafter an Advanced
Technology Program (ATP) competition. Under this
ATP, NIST would cost-share up to 49% of a research
and development project that would further
development in the area of MES systems and
integration. The NIST program provides multi-year
cost-share funding to industry-led joint ventures to
pursue research and development (R&D) projects with
high-payoff potential for the nation. Its goal is to
accelerate technologies that are unlikely to be
developed in time to compete in rapidly changing
world markets without such a partnership between
industry and the Federal government.

AMD, in partnership with Honeywell, a leading
control systems supplier, and SEMATECH, the
consortium of US semiconductor manufacturers,
proposed the APC Framework Initiative (APCFI).

1.1 APCFI Project

The goals of the Advanced Process Control
Framework Initiative project (APCFI) were outlined
in the program proposal presented to NIST (National
Institute for Standards and Technology) in October,
1995. These goals were to: enable effective integration

of “Advanced Process Control” applications into a
semiconductor fab to improve manufacturing capital
productivity, product consistency, and product yields;
establish integration technology for multi-supplier
“Plug-and-play” APC applications; and to
demonstrate commercial viability of the APC
Framework and its components. To sum up, the main
goal of the APCFI projects was to develop a system
that would significantly reduce the time, cost, and
integration efforts needed to deploy APC solutions.

The scope of the APCFI projects includes support for
Feedforward and Feedback Run-to-Run control and
Fault Detection applications spanning multiple
processes and fab tools and utilizing 3rd-party control
software, such as Modelware®, Matlab®, Matlab
Toolkits, Mathematica®, and LabView®.

In order to validate the design and implementation of
the APC Framework, a number of control projects
were selected for early deployment into one of AMD’s
semiconductor fabs using initial versions of the APC
Framework.

1.2 CORBA

CORBA (Common Object Request Broker
Architecture) is a specification of an “architecture for
an open software bus on which object components
written by different vendors can interoperate across
networks and operating systems” (Orfali et. al., 1996).
It is used by the APC Framework to allow the
distributed components of the framework to
communicate. In specific we used Orbix, IONA’s

implementation of CORBA to develop APC.

1.3 Overview of the APC Framework

The APC Framework has been designed to work along
with a fab’s MES (Manufacturing Execution System –
in AMD’s case, this it WorkStream by Concilium)
and CEIs (Configurable Equipment Interface) to
provide APC functionality. It is composed of not one
large program, but a number of smaller, specialized
pieces that work together. The “interchangeable parts”
of the APC Framework are called components. These
components are analogous to stereo components,
where each component is

�� An independently running entity

�� Provides a subset of the overall APC
Framework functionality

�� May be provided by a different vendor

The APC Framework standard describes the
functionality, interface, and behavior of each
component. The central component at run-time is the
Plan Execution Manager, which utilizes Tcl and is
described in the next section.

2. THE PLAN EXECUTION
MANAGER

To support the goals of the APCFI project, it was
necessary to develop a system that would be flexible
enough to support just about any supervisory-level

APC
Framework

Fab
Tool

Configurable
Equipment
Interface

(CEI)

Manufactur-
ing

Execution
System
(MES)

Sensors

3rd party
control

software

Components of the
APC Framework

 Figure 1: The relationship of the APC Framework to other software systems.

(e.g. Run-to-Run) control application. To this end,
rather than trying to pre-define a generic sequence of
system interactions that would be used at run-time, the
project chose to use a scripting approach to allow the
maximum flexibility in how the system was used.

The Plan Execution Manager (PEM or PE)
component is the “choreographer” of the APC
Framework. It is in charge of doing “APC” at runtime
for a particular process or metrology tool. To do this,
it has the ability to access all of the capabilities of
each of the other components in the APC Framework.
It executes, or interprets, APC Plans (a collection of
Tcl scripts), which specify the actions to be taken
before and/or after a lot is processed on a fab tool. The
Tcl scripts define not only what the APC Framework
does, but in what order they are carried out.

2.1 Why Tcl?

When the project needed to define the scripting
language that would be used to drive the system
activities at run-time, a number of possibilities were
evaluated. Tcl, Perl, and Python were examined, as
well as developing a custom language. The latter was
quickly dropped because of the rich set of well tested
scripting languages readily available and the fact that
project resources could be better spent developing
other functionality in the system.

Some of the comparison criterion used were: ease-of-
use, ability to embed in a C++ application,
extensibility, support for CORBA, and support for C
structures. The first criterion, ease-of-use, was
perhaps the most important. Since the script writers
would be programming novices, ease-of-use and a
shallow learning curve were critical to the project’s
success among the users. As the scripting language
was to be embedded into a CORBA C++ server, the
chosen scripting language had to be able to be
embedded into a C++ application. Extensibility was
an important consideration, since the chosen language
was unlikely to have all of the functionality that would
be required. Finally, since the scripts would need to
access CORBA functionality and manipulate data in
C-like structures, the ability of the language to
accommodate these was important.

Python, while it had many features that lent itself to
use in an object-oriented environment such as was
being defined for the APC Framework, also carried
some drawbacks. Foremost amongst these drawbacks
was the fact that the scripting language itself is very
object-oriented. The users that would become the
main users of this scripting language were not object-

savvy, and so Python represented a language that
would require much more up-front learning on the
part of the users before it could be used effectively.
The basic Python language, however, did have some
support for more sophisticated C & C++ data
structures, and was well-suited for use as an embedded
language in a C++ application. Python also seemed
extensible, although some of the overhead of reference
counting, etc., would add some additional work to any
extensions being built. Finally, Python did not have
any support for CORBA communications in its core,
but there was some work ongoing in this area by
others.

Perl also had good facilities to support custom user
extensions to the language. However, it suffered as
well in ease-of-use – the reviewers felt that Perl was
syntactically more complex than some other
languages, like Tcl, and hence would be more difficult
to learn by the script writers. Perl also lacks key
facilities which make its use in an embedded
application much more complex than either Tcl or
Python. Finally, even though Perl seemed to have
sufficient capabilities to support some of the more
complex data structures that the APC Framework
would use, it lacked any CORBA capabilities.

Tcl had an advantage over both Perl and Python in its
simpler syntax and hence easier learning curve for
new users. Even better was its support for use as an
embedded interpreter in a C/C++ application. Since it
was developed from the start for use as an embedded
language, its facilities were better than both Perl and
Python. While there was not any support for CORBA
or data structures per-se in the Tcl core language,
there were already-developed extensions that would
provide this functionality. Even though the project
made the decision not to use these extensions in favor
of creating our own, the fact that some form of this
capability existed already made it easier for the project
to roll our own. Overall, Tcl’s ease-of-use and
embeddability made it the best choice for the APC
Framework.

2.2 Use of Tcl in the Plan Execution Manager
Component

When the fab process or metrology machine informs
the PEM that a specific lot has been brought in for
processing, the PEM pulls up a Plan Executor (PE)
object to execute the “APC Plan” for that run. The
Plan Executor runs various scripts designed by the
“Process Engineer” (a.k.a. script writer) and feeds
back correction information to the machine to help
maintain consistent performance of the machine. The

process engineer is typically a chemical engineer and
hence it greatly helps to have the scripting language to
be readable and English like. There are three types of
Scripts: Main Scripts, Sub Scripts, and Event Scripts.
These scripts are used in an APC application to define
the sequence of actions that the APC Framework
performs. The scripts are bundled together in an APC
Plan: one (and only one) Main Script, zero or more
Sub Scripts, and zero or more Event Scripts. The
Main Script is used like the main function in C – it is
the first script run by the system when it executes a
Plan. The subscripts are used to define procedures that
the main or event scripts may use. The event scripts
are executed in response to certain events should they
happen in the system.

When the PE is called to execute a Plan, it begins by
creating a Tcl interpreter for the main script in a new
process thread. This interpreter is initialized and the
APC extension loaded. Next, the PE defines all of the
procedures by evaluating all of the subscript files
(using Tcl_EvalFile), one at a time. These
subscripts contain routines common to all the scripts.
Finally, the PE executes the main script, one
line/command at a time. This is done so that the PE
can respond to other requests that may interrupt the
execution of the main script between execution of
each Tcl command. We allow the user to be able to
write the command in more than one line as long as
he maintains “Tcl-like” syntax.

While the main script is executing, the PE may
receive notification of certain events happening in the
system. If there is an event script defined for that
event, the PE will execute it in a manner similar to the
execution of main scripts. Each of the main script and
the Event scripts has an interpreter of their own. Each
Interpreter runs in its own process thread and can
communicate via shared data and mutex-like locks.
This clearly marks the need for a thread safe scripting
tool. In the previous versions of Tcl, we were forced to
use simple mutex locks around the Tcl library, rather
than spending the time modifying the Tcl core to be
thread-safe. The latest version of Tcl (8.1) promises to
be thread safe, which will make the use of multiple
interpreters in separate process threads much easier to
use. This is a performance gain for the APCFI system
because the locks we used to make Tcl thread safe
were very coarse grain. It is not very uncommon to
have about five plans running at a time, each in
parallel and each of the PEs having a main script and
multiple event scripts all running in parallel. The
need for thread safeness was high enough to consider

porting ptTcl from unix to NT, but the eminent
release of Tcl 8.1 made this unnecessary.

When the main script completes, all of the Tcl
interpreters are deleted.

3. TCL EXTENTIONS FOR APC

Even though Tcl was chosen to be the scripting
language used in the PEM component, in its basic
form it did not have all of the functionality needed by
this project. Among the added functionality was: Tcl
scripts needed to be able to be run in parallel (1 main,
multiple sub and event scripts); they needed to
communicate data and synchronization information
with each other; these scripts needed to create,
understand and interpret complex data structures; the
scripts needed to communicate to the rest of the world
via CORBA; and, finally, since some setup tasks
(CORBA calls) might take a considerable amount of
time, there was a need to include the capability to run
such tasks in the “background” (another Tcl
interpreter run in another process thread) and let the
calling script continue until it was in need of the data
from the background task. Existing Tcl extensions,
along with the possibility of building our own, were
evaluated. The extensions/modifications to Tcl that
supported all of this functionality is discussed below.

3.1 Complications using Tcl

In its core form, Tcl utilizes all data in the form of
strings. This makes life simple for the scriptwriter, but
causes complications when trying to interoperate in a
distributed CORBA environment that uses more
complex data structures. Extensions do exist for
creating/handling other data structures, but they
lacked the ability to handle the CORBA data types
that we required. Also, these extensions were built to
allow the script writer to construct new data structures
“on the fly”. While this is desirable in the general
sense, the APC Framework utilizes a fixed set of data
structures, so this added flexibility is not needed and
in fact adds to the learning curve for the script writer.
It is for these reasons that the decision was made to
write a fixed set of new commands from scratch,
which had the added advantage of being able to
incorporate features that would allow the data
structures to be shared between scripts running in
separate interpreters. Our extensions are based on
using the Tcl_SetAssocData and
Tcl_GetAssocData calls to store and retrieve the
data structures when needed.

In addition, the Tcl core does not have the ability to
perform CORBA invocations. We were aware of
initial developments extending Tcl to allow CORBA
calls, but these packages were either not on the needed
version of Tcl or on the necessary platform. Also, as
was the case with the data structure extensions, the
CORBA extensions provided general facilities for
constructing and making a CORBA call to a server.
While this provides more capability to the script
writer, it carries with it a high price in terms of script
complexity. Again, the set of CORBA methods that
the script would need to access would be finite and
fixed, so this type of general CORBA capabilities was
not needed. Finally, we wanted to have a higher level
of abstraction where we would make multiple CORBA
calls in the same Tcl command rather than have one
call to each CORBA invocation. By writing our own
CORBA extension specifically for this project, we had
that flexibility.

Finally, Tcl has no simple mechanism to support
communication between Tcl interpreters running in

different threads. In fact, until recently the Tcl core
itself was not thread-safe. ptTcl, a multi-threaded
version of Tcl, was available for Sun Solaris. It
provided not only the ability to launch multiple
interpreters in separate threads, but to also
communicate with those separate interpreters,
However, we did not try to port it to NT due to lack of
time and resources. Instead, we built into our
extensions the ability to use mutex locks between
interpreters and to copy data into and out of a
common memory space.

3.2 Data object-related commands

The first additions to the Tcl language made by this
project were commands that give the script writer the
ability to create, manipulate, and delete all of the
different data structures/objects that the APC
Framework uses. In general, there are two types of
data objects: pure structures and sequences of
structures. One new command was defined for each

Value

PrimitiveValue SequenceValue

sequence<short>
sequence<long>
sequence<ushort>
sequence<ulong>
sequence<float>
sequence<double>
sequence<boolean>
sequence<char>
sequence<octet>
sequence<string>

is one of these types ...

short
long
ushort
ulong
float
double
boolean
char
octet
string

is one of these types ...

is one of these types

ContextSequence
a.k.a. DataTagSequence

value

DataTagPair
a.k.a. Tag

a.k.a. DataTag

String PrimitiveValue

name

<seq>

2a 2b

Figure 2: Value (a), DataTagPair (b) and DataTagSequence (b) data structures

Command Arguments Returns Comments
DTPair

create Name Type value
DTPkey

Create DataTagPair

get DTPkey Name
[Prim./
Seq.] Type
value

Return the contents of DataTagPair

getvaluekey DTPkey Vkey Put the contents of the DataTagPairs’s
PrimitiveValue in a new Value called
Vkey

set Name Type value
DTPkey

Set contents of existing DataTagPair

delete DTPkey Delete the DataTagPair

Table 1: The DTPair Command

data object type. This command uses the first
argument as a switch to define what to do with that
object: in general, to create it, get its contents, set its
contents, and delete it. A particular instance of a data
object is referenced by a unique name – like a variable
name. This name, or key, is passed as an argument to
each of the new commands.

Figure 2 shows an example of some of the data objects
used by the APC Framework – the Value,
DataTagPair, and DataTagSequence structures. Tables
1 and 2 list the commands used to access the
DataTagPair and DataTagSequence as an example.

Example code to pass non-string variables in Tcl

DTPair create “Length” “long” 50
testTag1

DTPair create “Width” “float”
25.5 testTag2

DTSeq create “testTag1 testTag2”
testDTSeq

set n [DTSeq length testDTSeq]

puts "Length of DTSeq (should be
2): $n"

The first two lines create “DataTagPairs” with keys
(variable names) ‘testTag1’ and ‘testTag2’. Line 3
recalls from memory the ‘testTag1’ and ‘testTag2’
DataTagPairs and forms the DataTagSequence with
the tag ‘testDTSeq’. Lines 4 and 5 show some simple
steps to do an operation on a data structure and
display the results; in this case, get the length
(number of elements) of the DataTagSequence and
print it out.

Infrastructure for accessing different data
structures

APC has a well defined hierarchy of well defined data
types. To be able to handle all these different types of
data structures, we have a global map (an object that
keeps a list of names and associated data) for each of
the different data types. When create operation is
called for any particular data type, the created data
type is stored in the map against the name/key passed
in as an argument. The key is then used in any routine
to pull the data from the map. The mechanism is local
to each script executor and there is no naming conflict
across scripts in the same plan. Also, each data
structure has its own map and hence no naming
conflict exists across different data types. Finally, to
support sharing data between scripts in the same APC

Command Arguments Returns Comments
DTSeq

create <DTPkey> DTSkey Create a DataTagSequence using a list of
DataTagPair keys

createbyvalues <Name Type
value> DTSkey

Create a DataTagSequence using a list of
contents of DataTagPairs

length DTSkey Length Return the number of elements
names DTSkey <names> Get all names of DataTagPairs in the

DataTagSequence
geti Index DTSkey

DTPkey
Name
[Prim./
Seq.] Type
value

Return the contents of DataTagPair at
index

getdtpairkey Name DTSkey Create a new DataTagPair using the
element at the index

getvalue Name DTSkey Name
[Prim./
Seq.] Type
value

Return the contents of the DataTagPair
from DataTagSequence with Name

getvaluekey DTPkey Vkey Same as above but store the Value against
the key

add DTSkey Add a DataTagPair to the sequence
remove [Index | Name]

DTSkey
Remove the DataTagPair at index I or with
name N and store it back

delete DTSkey

Table 2: DTSeq (DataTagSequence) command

Plan, a plan-level map is used, and each script can
copy data to and from that map.

3.3 CORBA method invocation commands

The second major category of new Tcl commands
provides the script writer with the ability to invoke
methods on other components of the APC Framework
via CORBA. In a manner similar to the way data
object commands were defined, one command per IDL
interface was created. Each command uses the first
argument as a switch to select what functionality of
that component will be accessed. In general, one
switch was defined for each logical interaction. These
logical interactions were defined at the granularity
that a script writer would need, and no finer. In some
cases, there is a one-to-one correspondence between
command + option and CORBA method, and in other
cases many CORBA calls are wrapped together in one
option.

Table 3 below shows an example command – this
command handles interactions with the DataStore
component. This is a good example where one option,
for instance ‘store’, results in multiple CORBA
calls. In the case of ‘store’, the script uses the
‘store’ option to put data into a database in a specific
way. The C++ implementation of that command first
invokes a ‘find’ command on the Data Store
component to find if there is any similar data already
stored in the database. If there is data already there,
then the command uses a second CORBA method to
replace the existing data with the new data. On the
other hand, if nothing appropriate is in the database,
the command uses an alternative CORBA method on
the Data Store to create a new data set in the database.

By combining CORBA method invocations into a
logical function, the extended scripting language can
be kept relatively simple. The script writer doesn’t
deal directly with CORBA methods, just functionality
that he/she needs to use.

3.4 Miscellaneous commands

In addition to commands to manipulate data objects
and invoke methods on distributed objects, other
utility commands were added. One need was for
synchronization and communication between the
main and event scripts. For synchronization the PE
uses simple mutex locks – one script can set a lock
and wait for another script (running in another
process thread) to release the lock. In addition, the PE
controls a global memory area that is separate from
the memory used by each of the scripts. In order to
exchange data, the scripts use this global memory
through a new command which was added to allow
the scripts to copy data to or from this global memory.

The example below illustrates two scripts using locks
to synchronize their activities.

Example scripts

<main script>

Lock create AlarmEventLock

Lock wait AlarmEventLock 180

if([Lock status]) {

event received

...

} else {

Command/Option Arguments Returns Description
DataStore

store [temp | perm]
DTSKey NVSKey

stores data in DataStore

retrieve [temp | perm]
DTSKey [N |
NVSKey]

{[Prim./
Seq.]
Type
value}

retrieves only the exact matching data from the
DataStore

query [temp | perm]
DTSK

“contents
of stored
data”

returns all partially-matching data stored in the
DataStore

delete [temp | perm]
DTSK

deletes data stored in the DataStore

Table 3: Example CORBA method invocation command from the APC Framework

timed out

...

}

<event script>

do some processing

Lock unlock AlarmEventLock

In this example, the main script needs to wait until the
event script has run past a certain point before it
continues executing. To accomplish this, the main
script creates a lock called ‘AlarmEventLock’ and
then waits for it to be released. When the event script
reaches the Lock unlock command, it releases the
‘AlarmEventLock’, which allows the main script to
continue. In case the event script never releases the
lock for whatever reason, the main script times out
after 180 seconds and continues with the rest of the
script.

In some cases, there are time-consuming activities
that the scripts need to perform. These time-
consuming commands typically contain CORBA calls,
but in general can be any activity. In order to provide
potential performance improvements, these time-
consuming activities can be performed in the
“background” for the cases where the command needs
to be completed before some point is reached, but not
necessarily in a deterministic order. A new command
was written that allows a script writer to execute a Tcl
command in a separate Tcl interpreter. This new
interpreter is created and executed in a separate
process thread from the calling script. This gives the
calling script the ability to continue executing, while
the separate interpreter handles the slower activities.
Only a single command is allowed to be executed in
this manner, but that command can be a procedure
call, so just about any activities can be performed.
This mechanism is ideal for slow setup processes and
database access.

Example code

<sub-script>

proc setup_plugin {name} {

set ex_plugin [PlugIn Setup
$name]

Move global ex_plugin
ex_plugin_global

}

<main script>

set fork_wait [Fork setup_plugin
“example_plugin”]

do other things

...

now wait for the background
task to finish

#(if it hasn’t already)

Lock wait $fork_wait

The command Fork runs “setup_plugin
“example_plugin” ” in the separate Tcl shell.
Prior to executing the command in the separate Tcl
interpreter, the subscript file is evaluated in order to
define any needed subroutines. The command also
returns the name of the lock which will be released
once the command has completed execution.

4. SUMMARY AND CONCLUSIONS

Tcl has proven to be a great base language upon
which to build a CORBA scripting language. While
the fact that in general Tcl deals only in strings may
seem to hamper its use in such a distributed
environment, the addition of specific commands that
deal with the data types of interest keeps the command
syntax and scripting simple and easy to learn.

The biggest drawback of embedding Tcl in such a
multi-threaded component as the PE is its lack of
thread-safety, which has begun to be addressed,
eliminating the need for extensive modification of the
Tcl core or locks around the library calls.

While this project started with Tcl 7.6, we have kept
up to date with the recent Tcl releases. However, we
have not been able to rewrite the extensions to utilize
the object interfaces added in Tcl 8.0, so much
improvements could be made to the APC extensions.

ACKNOWLEDGEMENTS

Portions of this work was performed under the support
of the US Department of Commerce, National
Institute of Standards and Technology.

REFERENCES

1. Orfali, R. , Harkey, D., Edwards, J., The Essential Distributed Objects Survival Guide, (Wiley, 1996).

