
The following paper was originally published in the
Proceedings of the Sixth Annual Tcl/Tk Workshop

San Diego, California, September 14–18, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

NeoWebScript: Enabling Webpages with Active Content Using Tcl

Karl Lehenbauer
NeoSoft, Inc.

NeoWebScript: Enabling Webpages with Active Content Using Tcl

Karl Lehenbauer
NeoSoft, Inc.

karl@NeoSoft.com

Abstract

NeoWebScript marries the world’s most popular web-
server, Apache, with the Tcl programming language to
create a secure, efficient, server-side scripting lan-
guage that gives webpage developers simple-yet-
powerful tools for creating and serving webpages with
active content.

The ability to embed NeoWebScript code into existing
webpages, without requiring a URL name change,
leverages work done with webpage creation tools such
as Netscape Communicator and Net Objects Fusion,
while not disturbing links from remote sites and search
engines.

A mature application, NeoWebScript-equipped web-
servers are currently in production on the Internet,
serving real-world loads of millions of webpage “hits”
per day.

This paper describes the driving forces behind the
creation of NeoWebScript, and how those forces
shaped its design and evolution into its current-day
form. NeoWebScript’s software architecture is de-
scribed, and its capabilities are demonstrated using
numerous examples, including webpage “visitor
counters”, rotating banner ads, queuing email, posting
news, storing form submissions into Berkeley-style
“dbopen” databases, and creating graphical images on
the fly.

Finally, NeoWebScript’s current status is summarized,
our near-term plans are detailed, and conclusions are
drawn.

1. Why Create NeoWebScript?

Our company, NeoSoft, Inc., is a large regional Inter-
net Service Provider (ISP). NeoSoft has been running
a webserver since 1992, and has been providing web-
related services for customers for several years. The
mix of customers using our web services spans the
widest level of abilities, covering a broad range of

applications. Customers use every platform and devel-
opment tool, and every web publishing technique has
limitations that affect how the developer interfaces
with specific server-side capabilities. While much
attention has been given to Java and JavaScript for
client-side scripting, many forms of active content
require that data be maintained, accessed and updated
on the server. Such applications include electronic
commerce, shared databases… even simple things like
hit counters.

As our customers became more sophisticated and
creative, they began asking for active content features
such as access counters and rotating banner ads. Many
had CGI scripts that they had written, or obtained, and
wanted to run them on our webserver. Others wanted
us to write them. We found that CGI programs had a
number of problems:

• The overhead of the CGI approach is fairly high.
For each CGI executed, the webserver must set
up, start, manage, and communicate with a child
process that executes the CGI.

• Redirecting existing URLs to scripts required re-
configuring the webserver. Redirected URL
names tended to be unwieldy, and the rewritten
web page addresses were confusing to users.

• Letting untrusted users run CGIs with the same
user ID as the webserver creates a security prob-
lem; likewise there are security problems with
running the webserver as superuser so that it can
obtain permissions of the user when running a
script as the user. A user could, in either case, ac-
cidentally or intentionally compromise their own
files; in the latter case, an intruder may be able to
directly gain superuser privileges.

• CGI programs typically emit the entire webpage
programmatically, either rendering HTML
authoring tools unusable or requiring “hand-
stitching” to weave the tool-created HTML into
the program, a fairly expert task that must be per-

formed every time the tool-authored HTML is al-
tered.

We began by modifying the webserver in C to add
support for hit counters and banner ads. This approach
was successful in that it provided some capabilities
customers were asking for, and had lower overhead
and was clearly more secure than the CGI approach,
but it was immediately clear that we needed a more
general solution than modifying the webserver on an
ad-hoc basis. We wanted to create and make available
to our users, and others, a simple and easy-to-learn
tool for scripting active content.

To address these needs, we decided to integrate our
own solution by mating an existing webserver with an
embeddable scripting language.

We chose the Apache webserver1 because we were
already using it successfully in production to provide
virtual web services for hundreds of domains. We had
some skill with it, and we knew it to be capable, under
active development, and in widespread use -- indeed,
Apache is the world’s most popular webserver2 and
comes with full source code. Since Apache is freely
redistributable, including for commercial resale, it
kept our options open with regard to creating a com-
mercial version if we chose to. Derived from the
widely used NCSA http server3, among Apache’s en-
hancements were a modular architecture, designed and
documented for the purpose of accepting third-party
“plug ins” such as the one we hoped to create.

For the scripting language we chose the Tool com-
mand language (Tcl)4. An explicit design goal of Tcl
was that it be easy to integrate into other applications.
Tcl is known for being easy to learn, and has strong
text processing capabilities. We already had substan-
tial experience with Tcl, which lowered the technical
risk. Tcl’s developer community had produced many
excellent tools and packages, usually distributing them
under the permissive Berkeley copyright, which we
could utilize to add capabilities to the server that were
far beyond our own resources to create and maintain.
Finally, “Safe Tcl”, by then supported as part of the
Tcl core, looked very promising for providing users
with a way to program the webserver with far less risk
than the traditional server-side programming technolo-
gies.

2. Requirements

Fundamentally, NeoWebScript had to be reliable. It
had to be able to serve millions of hits per day without
failure. Accidental overwrites of adjacent data, mem-
ory leaks, etc, by the Tcl interpreter would have more
serious consequences than for a CGI program, as the
interpreter would run within the Apache server’s
child’s address space, and a single Apache child proc-
ess handles many webpage requests before terminat-
ing. Such problems wouldn’t always manifest them-
selves until a subsequent page was served, which could
significantly complicate debugging. Likewise, bugs in
the Apache server could corrupt Tcl. Fortunately, both
Apache and Tcl were (and are) robust and reliable –
We have not had any significant problems with Tcl-
enabled Apache processes malfunctioning or dumping
core.

Another requirement was that, as our code progressed
from an experiment to a production web scripting sys-
tem, we embrace Apache’s configuration files and
configuration technology, which we did. All Neo-
WebScript-specific capabilities are configured and
controlled through compliant configuration file exten-
sions, using Apache’s configurable module architec-
ture.

One requirement greatly influenced the evolution of
NeoWebScript. As an ISP, we have thousands of users
who are not employees, all of whom are potential Neo-
WebScript developers, where their scripts are running
on our servers. Compare this to a more traditional or-
ganization where, for example, a handful of employee-
developers produce the organization’s Internet and/or
Intranet content. This is a critical distinction. As a
result, NeoWebScript was designed from its inception
to maintain the webserver’s security while operating
with an untrusted user base. This led to a design
choice between providing webpage developers with
the full power of a normal Tcl interpreter and our need
to protect the server from those same developers, most
of whom we have never met face-to-face.

Therefore, at every decision point, we opted for secu-
rity over unencumbered power. By default, NeoWeb-
Script’s user files are kept out-of-band from the users’
webpage files, protecting those files from being over-
written by a script, at the cost of not being able to
script to create or manage files in the user’s home di-
rectory. External programs cannot be executed except
for certain specific applications (posting news and
sending electronic mail, for instance) which are han-
dled through tightly controlled interfaces that must be
custom-developed for each supported program.

3. Design Philosophy

Our philosophy was that we would strive to make it
easy to do “90%” of the things people wanted to do.
This approach had served Mark Diekhans and I well in
the development of Extended Tcl (TclX)5, where, for
example, we invented a simple way to create both cli-
ent and server TCP sockets (which provided the model
for what later became the Tcl core’s socket command).
This let users connect with or write Tcl code to talk to
mail, news, the web, etc, but left the creation and in-
terpretation of the less commonly used datagram
(UDP) and more exotic multicast packets to other ex-
tensions such as Tcl-DP6.

While our plan was to build in lots of capability, we
wanted something that a fledgling webpage developer,
with decent HTML skills but little or no prior pro-
gramming experience, would be able to use to create
simple active content features. A number of demos
would be included, enabling web developers to cut and
paste a number of interesting active-content elements
into their webpages, all the while leaving their choice
of HTML development tools completely open. An
example of NeoWebScript usage appears in Figure 1.

<html>
<body bgcolorwhite>
<h1>Welcome to my webpage</h1>
…
You are visitor number
<nws> incr_page_counter </nws>
…
</html>

)LJXUH � � 1HR:HE6FULSW +70/ FRGH IUDJPHQW WR SURGXFH D

ZHESDJH ³KLW´ FRXQWHU WKDW DXWRPDWLFDOO\ LQFUHPHQWV HYHU\ WLPH WKH

SDJH LV UHWULHYHG.

A major goal was to make it easy to receive, store,
locate and recall data entered via forms. An example
page that obtains and stores data sent in through a
form is shown in Figure 2.

<title>Simple Form Result</title>
<h1>Simple Form Result</h1>
<nws>
load_response response
dbstore simple $response(name) response
</nws>
Response stored. Thanks!

)LJXUH � � 7KH PLQLPDO 1HR:HE6FULSW SDJH WR VWRUH WKH UHVXOWV

RI D IRUP VXEPLVVLRQ� %\ VHWWLQJ D IRUP
V DFWLRQ WR SRLQW WR D SDJH

FRQWDLQLQJ WKLV FRGH� WKH NH\�YDOXH SDLUV FRPSULVLQJ WKH IRUP DUH

VWRUHG LQ D %HUNHOH\�VW\OH �GERSHQ� ILOH�� XVLQJ WKH ILHOG �QDPH� DV

WKH NH\�

Finally, for experienced developers, we planned to
provide interfaces to database back-ends, a way to
make and/or modify graphical images from data, pro-
vide access to the environment variables normally
available to CGIs, and do whatever else users could do
with the general-purpose programmability of a Safe
Tcl interpreter. This would allow developers to cus-
tomize content based on browser type and version,
date, address, host name of the client, etc.

3.1 Commerce Servers

 We also wanted NeoWebScript to have a secure
socket layer (SSL) capability. This would allow Ne-
oWebScript applications to support the encrypted ses-
sions required of commerce applications, etc. The
commercial Stronghold commerce server
(http://www.c2.net) adds a secure socket layer (SSL)
encryption capability to Apache, and would be used to
create a compatible, secure version of NeoWebScript.

Another commerce server option is the freely redis-
tributable Apache-SSL.8 Although at one point no Net-
scape or Explorer-recognized certificating authorities
would sign digital certificates for Apache-SSL,
Thawte (http://www.thawte.com/) has been doing so
for some time. With Verisign’s
(http://www.verisign.com/) recent decision to sign
certificates for Apache-SSL, Apache-SSL represents
another viable commerce server platform that is Ne-
oWebScript-compatible.

4. How It Works

When a webpage containing NeoWebScript code is
requested, an interpreter is created and loaded up with
services and an array of information about the connec-
tion.

The embedded code is evaluated within the interpreter.
A number of services are provided:

• A Safe Tcl interpreter

• Form elements included with pages sent as GET
and POST requests can be imported into an array
of key-value pairs. (An example is shown in
Figure 2.)

• Arrays of key-value pairs can be written to and
read from btree-indexed disk files with a single
statement.

• Arrays of key-value pairs can be translated to SQL
statements and written to Oracle9 and Postgres10

databases, on the local machine or across the net-
work. SQL queries and cursor walks produce data
as arrays of key-value pairs.

• Creation and/or modification of GIF-format
graphic images from a Tcl script, using Thomas
Boutelle’s graphics draw (gd) package.11 Exam-
ples of on-the-fly graphic image generation can be
seen in Figure 9 and Figure 11.

• Access to the environment variables normally
available to CGI programs through the webenv ar-
ray.

4.1 Apache Module Architecture

The Apache webserver is written in C. It has a modu-
lar architecture that splits the process of serving a
webpage into eight stages. The stages are shown in
Table 1.

URL-to-filename translation

Authentication

Authorization

Permissions

MIME Type Determination

Last-Stage Fixups

Emitting the Page

Logging the Results

 Table 1 - Apache webpage pipeline modular stages

Apache provides a number of services to modules,
controlled by a “switch” structure. Modules have the
option of having initialization code executed at web-
server startup time, of receiving configuration infor-

mation when retrieving a page from config files in that
page’s directory, or merged among zero or more
higher-level directories. Modules can opt to receive
configuration information from the server config files,
and can define handlers for one or more MIME data
types.

Apache modules can install their code into a “chain”
of handlers that can accept, pass on, or reject the
aforementioned filename translations, user authentica-
tion and authorization checks, etc.

4.2 Processing Webpages

The NeoWebScript module is activated only when a
request for a file matches the administrator-configured
NeoWebScript file extension, which can be .html to
enable any existing HTML page to include NeoWeb-
Script code without a URL change, or a special exten-
sion such as .nhtml . If the file being requested does
not match the special NeoWebScript MIME type, the
file is processed by Apache’s standard handlers, with-
out any intervention by our code. If the page matches
NeoWebScript’s MIME type, it is handled in the same
manner as Apache’s server-side include handler (The
NeoWebScript module is, in fact, based on Apache’s
mod_include module.)

Upon the first occurrence of a NeoWebScript tag, a
safe interpreter is created and populated with vari-
ables, procedures and exported commands for use by
the Tcl code contained in the webpage.

The embedded Tcl code is then evaluated, and its out-
put is merged with any static content (standard HTML)
that may be present in the page.

The same interpreter that executes the first chunk of
NeoWebScript code executes any subsequent Neo-
WebScript code contained within that page.

After the page has been completely emitted, the inter-
preter is destroyed, as it cannot safely be reused. Note
that the cost of creating, configuring and destroying a
Tcl interpreter is far less than starting up and running a
separate CGI program.

If no NeoWebScript tag is found in a page, the page is
emitted without creating an interpreter or executing
any Tcl code. This makes a NeoWebScript-enhanced
Apache server perform at just a tick under the per-
formance of an unenhanced server. When the Neo-
WebScript module is added to Apache, the server’s
memory footprint grows by the size of the NeoWeb-

Script module, plus a Tcl interpreter and associated
code. The processing overhead increases slightly due
to the small overhead of looking for NeoWebScript
tags.

As NeoWebScript’s capabilities have evolved, our use
of Apache’s services has increased. Currently we sup-
port per-directory and merged-directory configuration,
general configuration through the server config files,
and, of course, handlers to parse and send pages by
executing the NeoWebScript code embedded in the
page and merging it with any static text present in the
HTML file.

4.3 Supervisor Mode Pages

After we had NeoWebScript up and running for a
while, we saw two things. One was that sites with a
trusted user base – a relatively small number of devel-
opers who were trusted by the server administrators –
were unnecessarily inconvenienced by not having all
of the capabilities of a full Tcl interpreter. Another
was that users were running into the need to develop
their own control pages, i.e. pages that made it possi-
ble for them to see things like what db files they had,
how big they were, etc.

We wanted to provide a way to allow trusted develop-
ers to have the full capability of the Tcl shell, even on
a server where most developers were untrusted and
hence would only have the safe functionality. Also,
we wanted to be able to create special pages that could
be accessed by many different users, where each user
would use the same page to look at their files, but not
at one another’s.

Supervisor Mode gives pages in specified directories
full Tcl capabilities (not just safe ones) and allows
those pages to assume the identity of other users (with
respect to the server-maintained user identities – to the
operating system, all the NeoWebScript files are
owned by the webserver). This allows construction of
site-wide control pages, multi-user data upload and
download pages, etc.

We added the ability for supervisor mode pages to do
password authentications against the UNIX password
file, allowing users to login to services provided by
supervisor mode pages and using those pages to access
and manage their NeoWebScript files.

4.4 Tcl-oriented logging module

We created a new logging module, mod_log_neo, to
augment or replace the default logging module,
mod_log_config. Our logging module combines ac-
cess logs and browser-type logs. It avoids the rela-
tively costly per-hit time and date conversions by log-
ging times in UNIX integer-since-1970 format. It also
writes logfile entries as Tcl lists, making them easier
to parse by Tcl-based reporting tools. (This also
makes it harder to spoof or trick the logfile processor
with bogus URL requests.) An example of a message
logged by mod_log_neo appears in Figure 3.

901018069 203.162.3.234 {} {} 304 0
vnmusicawards.com
{GET /summit2.jpg HTTP/1.0}
{Mozilla/4.05 [en] (Win95; I)}

)LJXUH � ± $Q H[DPSOH ORJ HQWU\ SURGXFHG E\ PRGBORJBQHR

�EURNHQ LQWR PXOWLSOH OLQHV IRU UHDGDELOLW\�� (QWULHV DUH ORJJHG DV

7FO OLVWV FRQVLVWLQJ RI WKH WLPH� WKH ,3 DGGUHVV RI WKH UHTXHVWLQJ

KRVW� WKH KRVWQDPH RI WKH UHTXHVWLQJ KRVW �HPSW\ LI ,3�WR�

KRVWQDPH '16 ORRNXSV DUH GLVDEOHG�� DQG WKH XVHU ,' �HPSW\ LI

QRQH ZDV VSHFLILHG�� 1H[W FRPHV WKH +773 VWDWXV FRGH DQG

QXPEHU RI E\WHV UHWXUQHG� IROORZHG E\ WKH YLUWXDO KRVW DQG +773

UHTXHVW VHUYLFHG� IROORZHG E\ WKH EURZVHU LGHQWLILFDWLRQ VWULQJ�

The NeoWebStats application creates summary data
from the logfiles, which average more than 100 mega-
bytes per day for a site serving a million hits per day.
Summaries can be combined to produce summaries
spanning multiple days. NeoWebScript’s on-the-fly
graphics generation capability is used to produce pie
charts showing the proportion of hits at various
“depths” within the webserver. An example of Neo-
WebStats output is shown in Figure 11.

5. Examples

5.1 Retrieving Data from a Client Request

There are two common ways for web clients to send
data to a webserver. One way is to use the HTTP12

GET method, in which key-value pairs are coded into
the URL request. The other is to use the POST
method, in which the key-value pairs are sent follow-
ing the HTTP request line and the key-value pairs
(browser type, cookies, etc.) that are always sent, re-
gardless of the type of request.

In either case, NeoWebScript parses the data in the
request and stores it into a global Tcl array using the
NeoWebScript command load_response. An example
using load_response is shown in Figure 2.

5.2 Sending Email from a Webpage

An example of the use of open_outbound_mail to
send an Internet email message from a webpage ap-
pears in Figure 4.

set fp [open_outbound_mail \
“Moving to Montana?” $toWhom]

puts $fp “Do you think I could interest you in”
puts $fp “a pair of zircon-encrusted tweezers?”
close $fp

)LJXUH � � 6HQGLQJ HPDLO IURP ZLWKLQ 1HR:HE6FULSW

Open_outbound_mail returns a Tcl filehandle. The
embedded code uses puts and any other relevant file-
oriented Tcl commands to create the message body.
The email sender’s address is automatically con-
structed from the username of the owner of the web-
page that’s being interpreted and the name of the
server that did the serving. If to is not specified, the
recipient is also set to be the user name of the owner of
the webpage.

5.3 Posting News

Open_post_news starts a Usenet news posting, re-
turning a Tcl filehandle to be used with puts, etc, to
specify the contents of the body of the news posting.
The message always comes "from" the user name of
the owner of the webpage being interpreted, coupled
with the name of the server doing the serving. Exam-
ple code for posting news is shown in Figure 5.

After writing out the body of the news article, a line is
written to the filehandle consisting of a single period,
then the file is closed. (This is a requirement of
NNTP. It could, of course, be hidden by a proc.)

set fp [open_post_news -subject $subject \
-newsgroups neosoft.announce \
-distribution neosoft]

puts $fp “This is the body of the message.”
puts $fp “.”
close $fp

)LJXUH � ± 3RVWLQJ QHZV IURP 1HR:HE6FULSW

Note that for this to work you must have a news server
supporting Network News Transfer Protocol (NNTP)13

in the same domain as your webserver. For example,
within neosoft.com, open_post_news will contact the
news server news.neosoft.com.

5.4 Graphical Access Counters

A “hit counter” for the current page is fetched, incre-
mented, and returned by calling incr_page_counter.
Incr_page_counter automatically manages the coun-

ter using a db-file, where the index is created based on
the current URL. An example showing the number of
times a page has been visited, where GIF files repre-
sent each digit of the count is shown in Figure 6.

)LJXUH � � 1XPEHU RI SDJH YLVLWV VKRZQ E\ RQ�WKH�IO\

FRQVWUXFWLQJ +70/ LPDJH UHIHUHQFHV WR LPDJHV WKDW H[LVW DV QXP�

EHUHG *,) ILOHV� RQH SHU GLJLW�

The code that created this display is shown in Figure 7.
Split is used with an empty string for the characters to
split on, causing the number of visits to be exploded
into a list, where each digit in that number is one ele-
ment of the list. We walk the list using foreach,
emitting image references to a GIF image file for each
digit to be displayed.

<center>
<h1>Welcome!</h1>
This page bas been visited
<nws>
foreach num [split [incr_page_counter] {}] {
html ""
}
</nws>
 times since July 1, 1998
</center>

)LJXUH � � 1HR:HE6FULSW FRGH IUDJPHQW IRU WKH JUDSKLFDO DF�

FHVV FRXQWHU H[DPSOH�

5.5 Rotating banner ads

Using Tcl, rotating banner ads can be easily imple-
mented by calling random_pick_html. Figure 8 is a
real example from the NeoSoft, Inc. homepage, lo-
cated at http://www.neosoft.com/. The example has
been simplified by having the heights and widths of
the images, and alternate image strings removed to
improve readability.

random_pick_html {
{<a href/neosoft/>

}
{<a href/neosoft/neorules.html>

}
{<a href/neopolis/>

}
{<a href/neowebscript/>

}
}

)LJXUH � � 1HR:HE6FULSW FRGH GHPRQVWUDWHV WKH UDQGRP

VHOHFWLRQ RI RQH RI D QXPEHU RI VSHFLILHG +70/ FRPSRQHQWV HYHU\

WLPH WKH SDJH LV UHWULHYHG�

5.6 Issuing and retrieving cookies

neo_make_cookie –user ellyn –days 30 \
–path /myApp

This example creates a cookie named user containing
the text “ellyn” . This cookie will be sent by the user’s
browser as part of all HTTP requests sent to this same
server, for a period of 30 days, whenever the URLs
requested are underneath /myApp on this server, and
the browser is cookie-enabled.

load_cookies cookies
html $cookies(email)

load_cookies retrieves all of the cookies, if any,
uploaded by the browser in the HTTP request header,
breaking out each cookie into a separate array element
of the array name specified in the call.

5.7 Creating Graphic Images from NeoWebScript

NeoWebScript can generate and/or modify graphic
images at runtime. In Figure 9 we see an “analog”
clock, generated live, showing the current time of day.

Figure 9� *,) ILOH RI DQ DQDORJ FORFN� SURGXFHG RQ WKH IO\ XVLQJ

1HR:HE6FULSW

We create live GIF files by creating Tcl scripts that are
end in a .gd extension. When the file is referenced
from an tag in a webpage, our code
is executed and is expected to produce a GIF file when
complete by executing gd writeGIF. (Note that the
image filehandle is passed in as the hard-coded global
variable imageFile.)

proc draw_analog_time {im color} {
 scan [clock format [clock seconds] -format "%I %M"] "%d %d" hour minute
 set hourStart [expr 90 - ($hour * 30 + $minute / 2)]
 set minuteStart [expr 90 - ($minute * 6)]

 set minuteX [expr int(40 + cos($minuteStart * 3.14159 / 180) * 30)]
 set minuteY [expr int(40 - sin($minuteStart * 3.14159 / 180) * 30)]

gd line $im $color 40 40 $minuteX $minuteY; # draw three times
 gd line $im $color 40 43 $minuteX $minuteY; # to make it pointy
 gd line $im $color 43 40 $minuteX $minuteY

 set hourX [expr int(40 + cos($hourStart * 3.14159 / 180) * 20)]
 set hourY [expr int(40 - sin($hourStart * 3.14159 / 180) * 20)]
 gd line $im $color 40 40 $hourX $hourY
 gd line $im $color 40 43 $hourX $hourY
 gd line $im $color 43 40 $hourX $hourY

 gd text $im $color large 25 80 "[format %d:%02d $hour $minute]"
}

set im_out [gd create 82 110]; # create the image
set white [gd color new $im_out 255 255 255]; # background
set black [gd color new $im_out 0 0 0]

gd arc $im_out $black 40 40 70 70 0 360; # draw clock face
gd text $im_out $black small 8 95 "Server Time"
draw_analog_time $im_out $black
gd writeGIF $im_out $imageFile

)LJXUH �� � 1HR:HE6FULSW FRGH IRU PDNLQJ WKH DQDORJ FORFN *,) ILOH

The code that produced the analog clock is shown in
Figure 10. In this code, the dimensions of the GIF file
are specified using gd create. Colors are allocated,
then we draw a circle to represent the clock face. We
use gd text to write the text “Server Time” to the im-
age, then call the proc draw_analog_time to create

the clock hands and write the numeric time into the
image.

Draw_analog_time fetches the current time in hours
and minutes into variables called hour and minute. A
bit of trigonometry serves to calculate the endpoints of
the clock hands. By drawing the hands three times,

each with slightly different locations for the “center”
of the clock face, the clock come out “thicker” in the
center of the clock face, drawing to a point at the ends.

A more sophisticated instance of graphics generation
from NeoWebScript can be found in NeoWebStats (see
Figure 11), an on-demand graphic image generator
that creates pie charts to show what areas of a website
are getting what proportion of hits.

)LJXUH �� � 2Q�WKH�IO\ JUDSKLFDO LPDJH JHQHUDWLRQ LV XVHG WR VKRZ WKH UHODWLYH SURSRUWLRQV RI KLWV DPRQJ D QXPEHU RI YLUWXDO

VLWHV� 9LVLWRUV KDYH WKH DELOLW\ WR ³GULOO GRZQ´ LQWR D VLWH DQG VHH WKH SURSRUWLRQV RI KLWV DPRQJ VXEGLUHFWRULHV ZLWKLQ HDFK VLWH� XS WR

D VHWWDEOH PD[LPXP GHSWK�

5.8 Accessing Web Environment Variables

NeoWebScript makes approximately thirty Apache
webserver environment variables available to the Tcl
interpreter when it’s interpreting a NeoWebScript
page. Among these are the referrer URL
(HTTP_REFERER), the browser type and version
(HTTP_USER_AGENT), plus a small number new
ones, including the last modify date of the document
(NEO_LAST_MODIFIED), and the user ID of the
owner of the document being served
(NEO_DOCUMENT_UID). These environment vari-
ables can be accessed by NeoWebScript code through
the global webenv array. An example webpage that
displays some data contained in, and derived from, the
web environment array is shown in Figure 12.

The HTML code that created the display is shown in
Figure 13. Remote_hostname returns the name of the
host requesting the page, if it can be determined.
(Otherwise the IP address is returned.) Esti-
mate_hits_per_hour returns an estimate of the num-
ber of hits being served per hour. It does this by ex-
amining the server’s access_log file. It works by
seeking approximately 1,000 hits backwards into the
access log, comparing the time that entry was made to
the current time, and extrapolating the estimated num-
ber of hits per hour that the webserver is serving. We
then format the current time and the date when the
webpage was last modified using the standard Tcl
clock command. Finally we emit an HTML14 mailto:
link to the web administrator, as read from the
SERVER_ADMIN variable.

)LJXUH �� ± :HESDJH VKRZLQJ GDWD GHULYHG IURP ZHEVHUYHU HQYLURQPHQW YDULDEOHV�

Hello, visitor from
<nws>html [remote_hostname]</nws>
and welcome!

<p>This server is currently serving
approximately
<nws>html [estimate_hits_per_hour]</nws>
hits per hour as of
<nws>html [clock format [clock seconds] \

-format "%d-%b-%y %I:%M %p %Z"]</nws>

This page was last modified
<nws>html \
"[clock format $webenv(NEO_LAST_MODIFIED)]"
</nws>,
<nws>html "[expr ([clock seconds] - \
 $webenv(NEO_LAST_MODIFIED)) / 86400]"</nws>
 days ago.
Your server administrator is
<nws>
html "<a hrefmailto:$webenv(SERVER_ADMIN)> \
 $webenv(SERVER_ADMIN)"
</nws>

)LJXUH �� ± +70/ ZLWK HPEHGGHG 1HR:HE6FULSW WKDW FUHDWHG

WKH ZHESDJH VKRZQ LQ)LJXUH ��

5.9 Subst-style NeoWebScript Pages

An alternative to invoking NeoWebScript code within
<nws> and </nws> tags is server-subst-style Ne-
oWebScript. With subst-style code, the entire HTML
file being served is run through Tcl’s subst command,
causing dollar sign variable substitution and square-
bracketed code to be evaluated, with the results sub-
stituted in place.

The webserver’s ability to evaluate subst-style web-
pages is configured as a handler via Apache’s
srm.conf file. The AddHandler directive allows
you to map certain file extensions to “handlers”, which
causes Apache to take actions based on file extension.
For example, to cause files ending in .shtml to be Tcl-
substituted and emitted as a text/html MIME type, the
following lines must be enabled in the srm.conf file:

AddType text/html .shtml
AddHandler server-subst .shtml

A subst-style implementation of the code that pro-
duced the webpage in Figure 12 is shown in Figure 14.

Hello, visitor from [remote_hostname] and welcome!

<p>This server is currently serving approximately [estimate_hits_per_hour] hits per hour as of
[clock format [clock seconds] -format "%d-%b-%y %I:%M %p %Z"]

This page was last modified [clock format $webenv(NEO_LAST_MODIFIED)],
[expr ([clock seconds] - $webenv(NEO_LAST_MODIFIED)) / 86400] days ago.

Your server administrator is <a hrefmailto:$webenv(SERVER_ADMIN)>$webenv(SERVER_ADMIN)

)LJXUH �� � $ 1HR:HE6FULSW VXEVW�VW\OH ZHESDJH WKDW SURGXFHV WKH VDPH UHVXOWV DV WKH +70/ VKRZQ LQ)LJXUH ��� 1RWH WKH ODFN RI

�QZV! WDJV ± WKH HQWLUH SDJH LV LQWHUSUHWHG XVLQJ 7FO¶V VXEVW FRPPDQG� FDXVLQJ LQ�SODFH YDULDEOH VXEVWLWXWLRQ DQG HYDOXDWLRQ DQG VXEVWLWXWLRQ

RI VTXDUH�EUDFNHWHG FRGH�

6. Current Status

There are currently about 1,200 sites running Neo-
WebScript, according to the Netcraft survey. 15

6.1 Availability

The current version of NeoWebScript is available for
download from http://www.neosoft.com/neowebscript.

6.2 Version 3.0

A new version of NeoWebScript, version 3.0, is cur-
rently in beta. This release is the first one to integrate
Tcl 8.0 (Version 2.3 uses Tcl 7.6), yielding significant
performance improvements in most cases. Also it
builds against Apache 1.3.1, and uses dbopen 2.4.14.
Version 2 of dbopen has new locking, logging and
transaction-oriented capabilities, and the release in-
cludes new code to support those capabilities through
their native version 2 interfaces.

The 1.3.1 version of Apache is much easier to build,
using a standard GNU (ftp://prep.ai.mit.edu/pub/gnu)
configure script to automatically configure the pack-
age for the capabilities of the particular UNIX system
for which it’s being compiled. Apache 1.3.1 also in-
cludes a compiler “driver” that greatly simplifies
building third-party modules. Also, it allows those
modules to be kept separately from the Apache core,
and NeoWebScript is currently being built and tested
using this technology.

Apache 1.3 includes support for Windows 95 and NT
for the first time, and work is underway to make Ne-
oWebScript run in those environments as well.

6.3 Making It Easier to Build

Although we have steadily decreased the amount of
effort required to build NeoWebScript from source
code, we continue to add capabilities and interface
with additional packages. A successful build of Ne-
oWebScript requires successful builds of Apache, Tcl,
TclX, and NeoTcl (A NeoSoft-maintained Tcl exten-
sion set.) Now that we have added interfaces for Post-
gres, Oratcl, Scotty, and other packages, we felt that,
overall, we were losing ground in this area – Ne-
oWebScript can be fiendishly difficult to build, con-
figure, and install. A binary release for Windows, and

native install packages for popular Unix architectures,
will make NeoWebScript much easier to get running,
continuing our work to improve the build process.
These improvements will bring NeoWebScript to an
entirely new audience. As always, we will build on
the excellent work done by others in the Tcl commu-
nity wherever possible.

6.4 Cgi.tcl

Although I have stated a number of concerns about the
CGI method of producing webpages from programs,
I’d like to point out that Don Libes’ cgi.tcl16 package
provides powerful tools for generating sophisticated
HTML constructs from within Tcl. NeoWebScript and
cgi.tcl not only play together – developers using
cgi.tcl’s capabilities from within NeoWebScript have
powerful tools for simplifying and enhancing their
Tcl-generated HTML content.

6.5 Year 2000 Issues

We do not anticipate any “Year 2000” problems with
NeoWebScript itself, as both Tcl 7.6 and Tcl 8.0’s date
functions are y2k-safe. The Apache group claims to
have worked through all of their year 2000 issues. We
have budgeted time for testing year 2000 issues in our
current release cycle.

6.6 Future Development

Future development interests include creating tools to
simplify providing a uniform look across a set of
pages. Website integration tools are also an area of
interest – NeoWebScript is a natural platform for inte-
grating site-oriented search engines, validating links,
etc.

7. Conclusions

NeoWebScript was designed to support NeoSoft, Inc.
in providing server-side scripting capabilities to an
untrusted user base while providing us with a margin
of safety while doing so. As such, NeoWebScript is of
particular use to ISPs, web-hosting providers, Free-
Nets, etc. After two and a half years of use, there have
been no known security breaches related to exploits
involving NeoWebScript.

Web content developers, including those without sig-
nificant prior programming experience, have enthusi-
astically received NeoWebScript.

Sizable applications have been written in NeoWeb-
Script, including two shopping carts, an editable event
calendar and to-do list, in-out board, a web-based chat
system, and a Yahoo-like hierarchical organizer
(http://www.ghofn.org), among many others, all using
our standard safe-interpreter interfaces. In fact, Neo-
WebScript has all but eliminated the need for other
server-side tools, by allowing us to quickly and easily
develop NeoWebScript equivalents for virtually every
other commercial web-related application we have
seen.

“Supervisor mode” provides a way to bypass the limits
enforced by the architecture of the safe-
interpreter/Apache interface in environments popu-
lated with a trusted user base, providing trusted devel-
opers with significantly more power than they would
otherwise have had. Supervisor mode offers many as-
yet-unexplored possibilities, and does not yet provide
as tight of an integration of capabilities as is seen on
the safe side.

A sizable NeoWebScript code base now exists, and we
must balance our desire to innovate with the need to
maintain compatibility with the work that has already
been done.

NeoSoft is committed to continuing to develop and
maintain NeoWebScript. We have been able to lever-
age this work in our own internal intranet applications,
use it to lure, win, and keep web developers and the
customers they bring with them, and to successfully
win and deliver on a high-profile extranet site for a
Fortune 100 company.

Hooking Tcl up with Apache is a simple idea that was
straightforward to implement. So far, it has been one
of the differentiators that have given us an edge in a
highly competitive business.

1Apache Server Project, http://www.apache.org/

2 Netcraft Webserver Survey,
http://www.netcraft.co.uk/survey/

3 NCSA httpd webserver,
ftp://ftp.ncsa.uiuc.edu/Web/httpd/Unix/ncsa_httpd/

4 John Ousterhout,
http://www.scriptics.com/people/john.ousterhout/

5 TclX 8.0, Mark Diekhans and Karl Lehenbauer,
http://www.neosoft.com/tclx

6 Tcl-DP: a distributed programming extension to Tcl,
http://simon.cs.cornell.edu/Info/Projects/multimedia/Tcl-DP/

7 The Berkeley dbopen Database, Keith Bostic,
http://www.sleepycat.com/db.download.html

8 Apache-SSL secure webserver,
http://www.apache-ssl.org/

9 Tom Poindexter, Oracle/Tcl Interface, oratcl,
http://www.nyx.net/~tpoindex/tcl.html

10 POSTGRES SQL database,
http://www.postgresql.org/

11 Thomas Boutell’s gd graphics library,
http://www.boutelle.com/gd/

12 HTTP Protocol Specification, RFC1945 - Hypertext
Transfer Protocol – HTTP/1.0, http://www.cis.ohio-
state.edu/htbin/rfc/rfc1945.html

HTTP Protocol Specification, RFC2068 - Hypertext
Transfer Protocol – HTTP/1.1, http://www.cis.ohio-
state.edu/htbin/rfc/rfc2068.html

13 NNTP Network News Transfer Protocol Specifica-
tion, RFC-977, http://www.cis.ohio-
state.edu/htbin/rfc/rfc977.html

14 HTML Specification,
http://www.w3.org/pub/WWW/MarkUp/Wilbur/

15 Netcraft Webserver Survey (Ibid.)

16 cgi.tcl, Don Libes, http://expect.nist.gov/cgi.tcl/

