
The following paper was originally published in the
Proceedings of the Sixth Annual Tcl/Tk Workshop

San Diego, California, September 14–18, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

WebWiseTclTk:
A Safe-Tcl/Tk-based Toolkit Enhanced for the World Wide Web

Hemang Lavana and Franc Brglez
North Carolina State University

WebWiseTclTk: A Safe-Tcl/Tk-based Toolkit Enhanced for the

World Wide Web

Hemang Lavana Franc Brglez
CBL (Collaborative Benchmarking Lab), Dept. of Computer Science, Box 7550

NC State University, Raleigh, NC 27695, USA
http://www.cbl.ncsu.edu/

Abstract

The WebWiseTclTk toolkit is an enhancement of the
existing feature set of Safe-Tcl and Safe-Tk that does
not compromise security. The toolkit re-de�nes the
functionality of the auto load mechanism in Tcl such
that it works for packages located anywhere on the
World Wide Web. It also re-introduces several com-
mands not available in Safe-Tk such as toplevel

and menu to provide a much richer feature set of Tk
commands. The toolkit is written entirely in Safe-
Tcl/Tk and uses the home policy for running appli-
cations as Tcl-plugins.
The toolkit supports (1) creation of new Web-based
Tcl applications with greatly enhanced functionality,
and (2) migration of existing Tcl applications to the
Web by merely writing an encapsulation script. We
demonstrate the capabilities of the WebWiseTclTk

toolkit by readily creating an encapsulation script for
Web-based execution of the Tk Widget Demonstra-
tions, distributed with the core Tcl/Tk.
Keywords: plugins, Web browsers, security, script-
ing, encapsulation, GUI.

1 Introduction

The last few years have seen an explosive growth
of the usage of Tcl (Tool Command Language)
[1, 2, 3] and its popularity can be easily gauged by
the large number of postings in the Tcl newsgroup
comp.lang.tcl. Scripting languages such as Tcl
are designed for `gluing' applications and encourage
rapid application development as compared to sys-
tem programming languages, and hence are very im-
portant for applications of the future [4]. The emer-
gence of organizations such as the recently formed
Scriptics [5] and the Tcl/Tk Consortium [6], focus-
ing entirely on scripting tools, applications and ser-
vices, is an example of this trend.
The maturity and robustness of Tcl/Tk provides a
new opportunity to support creation and presenta-

This research was supported by contracts from the Semi-
conductor Research Corporation (94{DJ{553), SEMATECH
(94{DJ{800), and DARPA/ARO (P{3316{EL/DAAH04{94{
G{2080 and DAAG55{97{1{0345).

tion of multimedia content on the WWW. Tcl-plugin
[7, 8] is an example of an elegant solution for em-
bedding Tcl/Tk applications for ready access inside
the Web browser. In addition, the Tcl-plugin sup-
ports an excellent mechanism for security of client
hosts using a padded cell approach [9]. The default
security policy prohibits Tcl applets (tclets) from
running other programs, accessing the �le system,
and creating toplevel windows (including menus),
thereby giving the client hosts a high level of con�-
dence when executing tclets. However, such restric-
tions limit the scope of the Tcl applications executed
inside a Web-browser.

Our initial experience with Tcl/Tk, predating the
phenomenal growth of WWW, was motivated by the
need to develop a user-friendly and versatile envi-
ronment to support user-recon�guration of complex
workows that execute heterogeneous programs and
data for the design of experiments in VLSI CAD.
This environment, called REUBEN (for reusable and
recon�gurable benchmarking environment), was im-
plemented entirely in Tcl/Tk [1] and Expect [10]. In
essence, it provides the user with the ability to create
directed dependency graphs as workows of data,
program, decision, and workow nodes. Data and
programs can reside anywhere on the Internet, and
execution of all nodes can be scheduled automati-
cally, regardless of the data-dependent cycles in the
graph. In its �nal form, the workows in REUBEN can
be multi-cast to several collaborating sites, recorded,
and played-back for re-execution. An example of
REUBEN environment to support a number of dis-
tributed and heterogeneous tasks in a VLSI CAD
workow is illustrated in Figure 1. More details are
available in [11, 12, 13].

Migration of large applications, such as REUBEN, to
the Web is not easy if highest level of con�dence
in terms of security is desired. This is especially
true, because toplevel windows and menus are es-
sential in such applications. One solution could be
to use Jacl [14], an interpreter to run Tcl scripts in
a Java environment. Unfortunately, Jacl does not
yet contain the entire feature set of Tcl, including

Fig. 1. REUBEN environment consisting of several windows.

namespaces and Tk. The WebWiseTclTk toolkit pro-
vides an easy solution for the migration of existing
Tcl applications to the Web. Minimal changes are
required in the original application. Our approach
uses an encapsulating script to call the main script
of the original application.

This paper is organized into the following sections:

(2) motivation; (3) WebWiseTclTk architecture; (4)
implementation of WebWiseTk; (5) implementation
of WebWiseTcl; (6) user's guide; (7) programmer's
guide; (8) software status and availability; and (9)
conclusions.

2 Motivation

A large application, written in Tcl, typically con-
sists of a short main script and a library of support
scripts. Applications start up quickly by invoking
the main script. As new features are accessed, the
code that implements them is loaded automatically,
using the auto load mechanism available in Tcl. A
complex environment such as REUBEN, described ear-
lier and illustrated in Figure 1, requires that a num-
ber of windows be created during its runtime.

The Tcl-plugin, based on Safe-Tcl, restricts running
such large applications inside a Web-browser. A few
of these restrictions are listed below:

� Auto load scheme fails, unless the application
package is installed on the client host. Another alter-
native is to merge all the scripts in the application
into a single script which can be downloaded as a
tclet.
� Applications are restricted to a single window

since the command toplevel is not available in Safe-
Tk and new windows cannot be created.

� Menu widgets are also disabled in Safe-Tk.
� Tclets do not have access to standard input and

standard output.

The Tcl-plugin supports multiple security policies so
that the tclets can perform any of the functionality
described above. However, this requires every client
host to devise and customize their security policies
for every application before accessing these as tclets.

It is desirable that the Tcl applications be easily
translated into tclets and made readily available on
the World Wide Web:

� without requiring any major changes in the ap-
plication code, and
� without requiring any sophisticated security pol-

icy to run the tclet.

We have developed the WebWiseTclTk toolkit as an
enhancement to the Tcl-plugin that makes use of the
home policy only. The home policy is, by default,
enabled in the Tcl-plugin and hence applications us-
ing WebWiseTclTk do not require the host clients to
modify their existing security policies.

We decided to use the Tk widget demonstrations,
distributed with the core Tcl/Tk, as a test-bench
for testing the WebWiseTclTk toolkit. We chose
to translate these demos for the World Wide Web
because they cover most of the commands of the
core Tcl/Tk that are otherwise unavailable in Safe-
Tcl/Tk. Figure 2 shows the result of posting these
demos on the Web and executing them on a host
client as a tclet using the Netscape browser. We in-
vite users to try out this demo and send us comments
on its features and performance.

Fig. 2. Tcl/Tk widget demos on the Web.

3 Architecture

The toolkit WebWiseTclTk consists of two parts: (1)
WebWiseTcl which is an enhancement for Safe-Tcl
and is useful for applications that do not require
display, and (2) WebWiseTkwhich is an enhancement
for Safe-Tk for applications requiring display. The
toolkit itself consists of several smaller scripts and
uses the modi�ed auto load mechanism designed for
WebWiseTclTk.

Figure 3(a) shows the general architecture that
implements the auto load mechanism. Special
cases of the generalized architecture are shown in
Figures3(b), (c) and (d) and described below:

1. Typical client host, downloading a tclet from a
Web server, has only the Tcl-plugin installed for its
Web-browser. The server site provides not only the
tclet scripts but also the WebWiseTclTk toolkit as
shown in Figure 3(b). The client host downloads
the main script for the tclet which requests to use

Web Server
Incorporates Tclets

WebWiseTclTk
Toolkit

WebWiseTclTk
Toolkit

CBL’s Web Site
Software Repository

WebWiseTclTk
Toolkit

Client Host
Web Browser

Tcl
Plugin

policy \
WebWiseTclTk

Tclet
Scripts

policy home

Tclet

(a) Generalized architecture.

Web Server
Incorporates Tclets

WebWiseTclTk
Toolkit

Client Host
Web Browser

Tcl
Plugin

Tclet
Scripts

policy home

Tclet

(b) WebWiseTclTk toolkit on the Web server.

Web Server
Incorporates Tclets

WebWiseTclTk
Toolkit

Client Host
Web Browser

Tcl
Plugin

Tclet
Scripts

policy home

Tclet

(c) WebWiseTclTk toolkit on the client host.

Web Server
Incorporates Tclets

WebWiseTclTk
Toolkit

CBL’s Web Site
Software Repository

Client Host
Web Browser

Tcl
Plugin

policy \
WebWiseTclTk

Tclet
Scripts

policy home

Tclet

(d) WebWiseTclTk toolkit on the CBL site.

Typical scenario of a tclet execution:
1. Client host visits the Web server.
2. Main tclet script is downloaded to client
host.
3. WebWiseTclTk toolkit is loaded and initial-
lized.
4. Main tclet script executes.
5. Individual tclet scripts are downloaded as
and when required.

Fig. 3. Architecture for WebWiseTclTk tookit.

the home policy. If the client host has not disabled
the home policy, then the main script downloads
the initialization script of the WebWiseTclTk toolkit
from the server site. Once the initialization has com-
pleted, the auto load mechanism is modi�ed to dy-
namically download the remaining scripts of the ap-
plication as and when needed during execution of
the tclet.
2. In the second case, shown in Figure 3(c), the

client host has locally installed the WebWiseTclTk

toolkit. The main script of the downloaded tclet uses
the locally available toolkit and visits the server site
only to retrieve its other scripts. Thus, this results
in faster execution of the tclet code.
3. In the third case, shown in Figure 3(d), the

WebWiseTclTk toolkit is neither available on the
server site nor is it installed on the client host. It
is available at the software repository site at CBL.
This requires the client host to install a specialWeb-
WiseTclTk policy that allows the tclets to download
scripts not only from its server site but to also down-
load the toolkit from the CBL site. This mechanism
has the advantage of always using the latest version
of the WebWiseTclTk toolkit.

The generalized architecture allows the main tclet
script to dynamically use one of the above three
mechanisms, based on the con�guration of the client
host.

We next describe the implementation details of the
two packages WebWiseTk and WebWiseTcl.

4 WebWiseTk

Several Tk commands are hidden in Safe-Tk to pre-
vent denial of service attacks against the host sys-
tem. This, however, limits the scope of the Tcl-
plugin to very simple applications consisting of a
single window only.

We propose to overcome these limitations as follows:

� re-introduce several of the hidden commands in
Safe-Tk,
� use existing commands that are already available

in Safe-Tk, to de�ne re-introduced commands,
� change the implications of a few commands, such

as "grab -local" and "grab -global".

The following sub-sections describe the methodology
used for implementation of the WebWiseTk toolkit.

Layout. Figure 4 shows the layout window of the
WebWiseTk toolkit. It consists of two main widget
frames:

� A canvas widget is used to display several
toplevel windows that may be created during the
execution of a tclet. If the toplevel window is larger
than the visible canvas area, then scrollbars may be

consiting of several windows
Application Workspace

Area for
displaying
window
icons

On-line help window

PreferencesWebWiseTclTk

(Canvas widget) (Text
Widget)

Fig. 4. Layout window of WebWiseTk toolkit.

used to display its hidden area. The scrollregion of
the canvas is initialized to 1000 � 1000 pixels, but
may be resized using the preferences option on the
top right corner.
� A text widget is used to display button icons for

all windows that have been created, including those
windows that have been iconi�ed.

Several other widgets are shown, such as the On-
line help window, scrollbars for the canvas and text
widgets, and preferences to con�gure the size of the
canvas widget.

Toplevel. The ability to create a detached window,
as provided by the command toplevel, is very use-
ful for GUI applications of even moderate complex-
ity. We de�ne a procedure called toplevel which
makes use of the command frame to create a de-
tached window and display it on the canvas widget.

For every toplevel window, a set of several frames is
created, as shown in Figure 5.

This gives the look and feel of a real window that
would have, otherwise, been created by the window
manager of the local host system. The frames are
laid out using the grid geometry manager. Each
frame serves a special purpose:

� The frames on the border have a default color
and an active color which is highlighted whenever
the mouse cursor moves inside a window. This helps
the user to identify the window that is currently ac-
tive. These frames are also useful for changing the
size of the window.
� The next set of frames, just below the resiz-

ing frame on the top, provide several functions
related to the window, such as kill, iconify,
maximize/restore size or display the title of the
window.
� A main frame is created in the center correspond-

ing to each toplevel window. All subsequent child
windows of the toplevel are packed into this frame.

Kill MaximizeIconfiyWindow Title

Frame corresponding
to toplevel window

MenuBar

Resize window in vertical direction

Resize window in vertical direction

R
es

iz
e

w
in

do
w

 in
 h

or
iz

on
ta

l d
ir

ec
tio

n

R
es

iz
e

w
in

do
w

 in
 h

or
iz

on
ta

l d
ir

ec
tio

n
Resize window in both

directions simultaneously

Fig. 5. Implementation of a toplevel window using
frames.

� If the toplevel window has a Menu Bar associated
with it, then the menu items are packed into a frame
just above the main frame.

Having created these sets of frames, they are then
packed onto the canvas widget in the application
workspace area in Figure 4 by creating a canvas item
of type window. This results in a restriction that
the pathname of the window must either be a child
of the canvas widget or a child of some ancestor of
the canvas widget. Hence, the window names of ev-
ery toplevel command is translated to a new window
name that is a child of the canvas widget. For exam-
ple, a new toplevel window called ".w" is translated
to a new window name called ".c.1.w", where ".c"
is the name of the canvas widget and ".c.1" is the
name of a unique frame created for encapsulation
of the new toplevel window. In addition, we create
several bindings to manage and interact with the
command wm, described next. A <Destroy> binding
is also associated with every toplevel frame so that
the entire set of frames is destroyed whenever the
toplevel window is destroyed.

Wm. The window manager command wm needs to
be de�ned as a procedure which manages the vari-
ous attributes of the window created using the pro-
cedure toplevel described earlier. It can be used to
change the title of the window, to iconify/de-iconify
the window, or to return the state of the window.

Grab. An inde�nite global grab performed by a
tclet will result in a denial of service attack since all
the input from the terminal would be re-directed to
the tclet forever. But, if we re-de�ne the implication
of a global grab such that it a�ects only the windows
created by the tclet, then it can be considered to be

safe.
Thus, the command "grab -local $win", as de-
�ned here, results in grabbing of a single win-
dow within the tclet code and the command "grab

-global $win" results in a grab across all the win-
dows within the tclet. This e�ect of grab can be im-
plemented by associating a new class of bind called
WebWiseTclTkwith every window in the tclet, as fol-
lows:

bindtags $w [linsert [bindtags $w] 0 WebWiseTclTk]

Initially, the class WebWiseTclTk has no bind scripts
associated with any of the events. Whenever a grab

is performed on a window, a bind script is created
for each event sequence that redirects the event to
the grabbed window. The event generate com-
mand is used to process the event in the grabbed
window. Figure 6 shows a script that achieves a
global grab for a speci�c window. A grab is re-

foreach seq $AllEventSequences {

bind WebWiseTclTk $seq "

Redirect events to grab window

if {!\[string match $win* %W] &&

\[winfo exists $win]} {

event generate $win $seq

break

}; # End of if stmt

"

}; # End of foreach loop

Fig. 6. Script to achieve a global grab on a window.

leased by re-initializing the bind scripts for the class
WebWiseTclTk to null. Variables are used to store
the state of the grab command and return appropri-
ate values for queries such as "grab current" and
"grab status".
Menus. Menu widgets are as important as any
toplevel widgets in any GUI applications, since they
allow the user to invoke a list of one-line entries
as and when required. The structural layout of
the menu widgets created using frame and other
Tk commands is shown in Figure 7. The com-
mand menu creates a toplevel frame and di�erent
types of widgets are added inside this frame: button
widgets for command entries, checkbutton widgets
for check button entries, radiobutton widgets for
radio button entries and menubutton widgets for
cascaded menu entries. Separator entries are cre-
ated using frame widgets as shown in Figure 7.
This structure is hidden from the display until the
user clicks on the menu button at the top. The
implementation of the command grab, as described
earlier, is important and allows us to post the menu
widget frame whenever the user clicks on the menu
button. As the user moves the cursor over di�er-

Menu Button

Button 1

Menu Button

Check Button 2

Check Button 1

Radio Button 1

Radio Button 2

Radio Button 3

Other Buttons ...

Menu frame

Cascaded menu frame

Bordered frame as a separator

Fig. 7. Implementation of the command menu.

ent widgets in the menu frame, each widget is high-
lighted and the associated command invoked if nec-
essary. Clicking on the cascaded entry results in the
posting of another menu frame with its associated
entries.
If the menu widget is of the type pulldown menu in a
Menubar, then the menu entries are packed into the
Menubar frame that was created in the toplevel

procedure (Figure 5).

Fig. 8. Standard I/O of WebWiseTclTk toolkit.

Standard I/O and audio. We have created a spe-
cial window for standard I/O in WebWiseTclTk. Any
communication to the standard I/O channel by com-
mands such as puts and gets is redirected to the
special window, as shown in Figure 8. Therefore, it
is possible for the tclet and a user to interact through
the commands puts and gets.
Audio commands, such as bell, are still potentially
dangerous, with the risk of producing a continuous
tone. Therefore, we de�ned a procedure bell which
produces a visual e�ect by momentarily changing
the background color of the canvas widget.
Safe commands. Earlier, we noticed that when-
ever a toplevel window, say ".w", is created, the
window name is mapped to a new window name
".c.1.w", corresponding to the main frame in the
set of toplevel frames. Therefore, existing safe com-
mands such as button with window names ".w.b"

will fail, unless their window names are also trans-
lated to a new name ".c.1.w.b", which is in the
hierarchy of the toplevel main frame's children.

We rename the existing safe commands by moving
them into a namespace for WebWiseTk, and de�ne
new procedures for them. Figure 9 shows a sam-
ple code for re-de�ning the command button. The
newly de�ned procedure does the following:

1. maps all the window names, in the arguments
passed to the procedure, to the corresponding hier-
archy in the toplevel frame.
2. evaluates the original command button with

mapped arguments. This creates a new command
"$new w" for the translated window pathname.
3. de�nes a new procedure for the original window

pathname "$w" that would have been created oth-
erwise. This procedure, in turn, invokes "$new w"

whenever it is called.
4. translates the window names in the returned

values back to original window names. This is im-
portant because the returned values may be directly
passed to other code for evaluation. Example: "pack
[button .b]".
5. returns the translated value "$new ret".

Move original command to WebWiseTk namespace

rename button ::WebWiseTk::button-Org

Define a new command in the global namespace

proc ::button {w args} {

Map window names

set new_w [mapArgWindowNames $w]

set new_args [mapArgWindowNames $args]

set ret [uplevel 1 ::WebWiseTk::button-Org \

$new_w $new_args]

Create a proc called $w

proc ::$w {args} {

Script to invoke command $new_w ...

}

Map back returned window names

set new_ret [mapRetWindowNames $ret]

return $new_ret

}

Fig. 9. New de�nition for command button.

The command bind also has to be re-de�ned. This is
because the value of "%W" in the bind script gets the
real window name (".c.1.b") instead of the win-
dow name (".b") supplied by the tclet. Thus all
window names referred by "%W" in the bind script
are mapped back appropriately, before invoking the
original bind script.

Similarly, the command winfo is also rede�ned, so
that its queries, such as "winfo width", "winfo

children", etc., are correctly handled.

Unsafe commands. Few commands, such as send,
tk getOpenFile, tk getSaveFile, etc., do not pose

the denial of service attacks, but are still unsafe
and very dangerous to the client host system since
they present other forms of security attacks. These
commands are therefore not available in WebWiseTk.
However, it is always possible to use an appropri-
ate security policy, other than the home policy, to
enable these commands.

Unsafe options. A few options for safe com-
mands are considered unsafe and hence not available
in Safe-Tk. These include "-bitmap @filename",
"-file filename" and "-maskfile filename",
among others. It is possible to allow these options
on the following conditions:

1. the host system supports the use of the home
policy, and
2. the speci�ed �le exists on the server site of the

tclet code.

In such a case, the data for the speci�ed �le-
name is downloaded from the server site using the
command "::browser::getURL filename". Then
"-file filename" or "-maskfile filename" op-
tion is replaced by "-data $downloadedData" or
"-maskdata $downloadedData". On the other
hand, for the option "-bitmap @filename", a
bitmap image is �rst created using the command
image. Here the replaced option is "-image [image

create bitmap -data $downloadedData]". The
command "image create image -file filename"

is also replaced with "-data $downloadedData" op-
tion, after we download the data for the speci�ed
�lename from the server site. However, the option
"-data $downloadedData" expects the image data
to be in base64 format. Images in other formats
are therefore tranlated to base64 format using the
tcl-only encoding procedures available in the Data
Handling Package [15]. The enocoding process is
slow and hence for images of considerable size, one
should save the original images in base64 format, in-
stead of encoding them on the y during execution
of the tclet.

5 WebWiseTcl

To maintain security, it is important that the un-
safe Tcl commands be hidden or restricted in Safe-
Tcl. Several di�erent security policies o�ered by Tcl-
plugin 2.0 are convenient and allow the application
programmer to design tclet codes accordingly. We
intend to make use of the home policy to enhance
the functionality of the Safe-Tcl for WebWiseTcl.

Script libraries and packages provide an excellent
mechanism to structure an application code into sev-
eral smaller scripts, and then dynamically load each
script as needed. We modify the restricted com-

mands in Safe-Tcl such that it supports the pack-
aging facility to automatically load scripts from the
server site of the tclet code. We only need to append
the location of the server site, given by "getattr

originHomeDirURL", to the auto path variable for
the auto load procedure to work correctly with the
modi�ed commands described next.
Source. The �lename argument for the source

command is parsed for a URL. If the �lename is
a URL, then it is downloaded using the command
"::browser::getURL filename" and its contents
are evaluated. Otherwise, the original source com-
mand is invoked, as shown in Figure 10.

Move original command to WebWiseTcl namespace

rename source ::WebWiseTcl::source-Org

Define a new command in the global namespace

proc ::source filename {

if {[string match http:* $filename]} {

Evalute script downloaded from a URL

uplevel 1 [::browser::getURL $filename]

} else {

Invoke original source command

uplevel 1 ::WebWiseTcl::source-Org $filename

}

}

Fig. 10. New de�nition for command source.

Open and close. When a �lename speci�ed for
open is a URL, the speci�ed URL is downloaded
and saved on the temporary disk space of the host
system assigned by the home policy. Then, this �le
on the local disk is opened and its channel identi�er
returned. Correspondingly, when a close command
is invoked for a URL, the �le on the local disk is not
only closed, but also deleted. These functions are
useful for opening a �le/URL in read-only mode.
File. We have re-de�ned the command file so that
its options dirname, join, and split return correct
results even when the speci�ed �lename is a URL.
Pwd, cd and glob. These commands are not avail-
able in Safe-Tcl. We therefore assign the URL of the
server site, given by "getattr originHomeDirURL",
to be the default working directory returned by the
command pwd. This value is stored in a variable de-
�ned in WebWiseTcl namespace. The invocation of
the command cd then results in change of value of
the current working directory stored in the variable.
The command glob returns a list of all matching
URLs found under the URL given by the current
working directory.

6 Users Guide

We de�ne users as those who intend to download and
view WebWiseTclTk toolkit-based Tcl-plugin appli-

cations within their Web browsers.

Users can very easily and quickly familiarize them-
selves with the WebWiseTclTk environment. Figure
2 shows one such typical view of the environment
within a Netscape browser. The layout of the en-
vironment is shown in Figure 4. It has two widget
areas - the one on the left contains windows created
by the tclet, and the one on the right displays a list
of buttons corresponding to each iconi�ed window.
Both the widgets have auto scrollbars. At the bot-
tom, a single line help message is displayed, based on
the location of the mouse cursor. The size of the wid-
get containing the tclet windows may be increased or
reduced by the user under the Preferences option.
A user may also resize the canvas and the text wid-
get areas by merely dragging the border between the
two with a mouse cursor.

Installation. It is not necessary for the users to
install the WebWiseTclTk toolkit. The scripts in the
toolkit are dynamically downloaded, as and when
required, from the server site of the running applica-
tion/tclet. However, for faster access, users do have
an option of installing the WebWiseTclTk toolkit in
their Tcl-plugin directory. In this case, the installa-
tion procedure consists of the following:

1. Download the latest version of the WebWiseTclTk
toolkit from:
http://www.cbl.ncsu.edu/software/#WebWiseTclTk.

2. Change to the installation directory of the Tcl-
plugin on your local �le system.

For local installation,

csh% cd ~/.netscape/tclplug/2.0

Or, for site installation,

csh% cd /usr/local/lib/netscape/tclplug/2.0

3. Gunzip and untar the toolkit.
csh% gzip -dc WebWiseTclTk-x.y.tar.gz | tar xf -

4. Verify the installation by visiting the test site
under http://www.cbl.ncsu.edu/software/#WebWiseTclTk.

The toolkit consists of tcl-only scripts and hence
does not require any compilation step.

7 Programmers Guide

We de�ne programmers as those who: (1) in-
tend to write Tcl-plugin applications based on the
WebWiseTclTk toolkit, or (2) wish to translate their
existing Tcl applications into tclets for execution
over the Web.

Programmers, who intend to use the WebWiseTclTk
toolkit for their tclets, should follow the guidelines
listed below:

1. Download the latest version of the WebWiseTclTk
toolkit from:
http://www.cbl.ncsu.edu/software/#WebWiseTclTk.
2. Change to a directory on your system that is

accessible on your Web server.
csh% cd /home/user/public_html/tclets

For example, let the URL corresponding to this di-
rectory be http://www.your.web.site/~user/tclets.
3. Gunzip and untar the toolkit

csh% gzip -dc WebWiseTclTk-x.y.tar.gz | tar xf -

4. Verify the installation by clicking visiting the
examples distributed with the toolkit under
http://www.your.web.site/~user/tclets/

WebWiseTclTk-x.y/examples

Figure 11 shows an example to encapsulate the Tk
widget demos and execute them on the Web. The
TkWidgetDemos.tcl script, the demos directory and
the WebWiseTclTk toolkit directory all exist in the
same directory location on the Web as shown below:

/home/user/public_html/tclets/WebWiseTclTk-x.y/examples

\

|_ TkWidgetDemos.html

|_ TkWidgetDemos.tcl

|_ WebWiseTclTk

| \

| |_ DownloadToolkit.tcl

| |_ toplevel.tcl

| ...

|_ demos

\

|_ widget

|_ arrow.tcl

|_ button.tcl

...

When a user downloads the TkWidgetDemos.tcl

script, the script �rst tries to load the WebWiseTclTk
toolkit from the user's host system. If it succeeds,
then the home policy is requested since the Tk wid-
get demos consist of several di�erent scripts. On the
other hand, if the WebWiseTclTk toolkit cannot be
loaded from the user's host system, then it is down-
loaded from the tclets's server site.
The variable $tk library is set to point to the

tclets's server site so that it knows from where to
auto load the demo script. Finally, the widget
script is sourced to execute the demos.
If the tclet does not require the use of display, possi-
ble by setting "tk=0" in the html embed statement,
then it is also possible to load only the WebWiseTcl
toolkit.
Debugging. When writing new tclets, program-
mers can avoid using Tcl-commands which are
either not available or not yet implemented in
WebWiseTclTk toolkit. However, when converting
existing applications, it is very di�cult to isolate
and remove these commands in the code. There-
fore, we provide a mechanism whereby a dialog box
is popped up whenever any unavailable or unimple-
mented command is used in the code the �rst time,
as shown in Figure 12.
The programmer, who is testing the tclet as a user,

TkWidgetDemos.tcl --

#

set WebWisePKG WebWiseTk ; # Necessary, if the tclet requires display

#set WebWisePKG WebWiseTcl ; # Use this if display is NOT required

#

Get the URL for tclet's server site

if {[catch {set originHomeDirURL [string trimright [getattr originHomeDirURL] /]}]} {

Software is invoked from the local file system (NOT in a Web browser)

set originHomeDirURL /home/your_path/tclets

set auto_path [linsert $auto_path 0 $originHomeDirURL/WebWiseTclTk]

package require $WebWisePKG

} else {

Software is invoked from a Web browser

Check whether the toolkit is available locally on the user's host system.

if {[catch {package require $WebWisePKG}]} {

Not available - so download it from the tclet's server site.

policy home ; # Need this policy to fetch URL from the server site.

eval [::browser::getURL $originHomeDirURL/WebWiseTclTk/DownloadToolkit.tcl]

Now setup the package auto_load

package require $WebWisePKG

} else {

Use the home policy, if the tclet code consists of several scripts

policy home

}

}

Initiallize the WebWiseTk layout

WebWiseTk .webdesk

Set tk_library, so that it can access other files in the demos directory.

set tk_library $originHomeDirURL

Now invoke the Tk widget demos

source $originHomeDirURL/demos/widget

Alternatively, if the tclet code is small, it can follow here.

your tcl script...

Fig. 11. Main script for encapsulation of the Tk widget demos shown in Figure 2.

Fig. 12. Dialog box for unimplemented commands.

has a choice to either ignore the generation of this
dialog box, the next time the same command is used,
or to repeat it. A "Stack Trace" button is also avail-
able to locate the generation of the unimplemented
command in the code.

Extensibility and recon�gurability. The
WebWiseTclTk toolkit consists of several smaller
scripts, speci�cally one �le for each command that is
either newly de�ned or re-de�ned. Therefore, pro-

grammers can (1) de�ne and add their own com-
mands which may be unavailable, such as send, in a
separate �le, or (2) re-de�ne the existing commands
by modifying the corresponding �le to implement
their own version of the command.

For example, the commands toplevel and menu

may be re-implemented with a di�erent layout to
give a native look and feel on di�erent platforms.

8 Experiences and Future Scope

The Tcl-only implementation, mapping window
names onto a canvas object, real-time conversion of
gif images to base64 format, etc results in degra-
dation of performance. We have tried to minimize
these e�ects by modularizing the code in such a fash-
ion that related tcl procedures are clustered into sin-
gle script �les. Thus, procedures required for imple-
mentation of the menu command are loaded only if
the command is used by the tclet code. Another
area of optimization is possible by improving the ef-
�ciency of the procedure to map window names back
and forth onto canvas objects, since this is one of the

most frequently called procedure.

Installing a local copy of the toolkit with the Tcl-
plugin on the client host will improve the perfor-
mance when the distance between the client host and
the web-server is large. We also need to improve the
reliability of the toolkit by adding su�cient hooks
to handle cases when `getURL' is likely to timeout
or fail under high network tra�c conditions.

9 Software Availability and Status

The WebWiseTclTk toolkit described is available at

http://www.cbl.ncsu.edu/software/#WebWiseTclTk. The
current version of the toolkit is beta 1.02.

We have successfully tested this version of the toolkit
on a Sun Sparc workstation with Solaris 2.5.1 using
Netscape 4.0 and 3.0.

On aWindows 95/NT machine, we had to install the
toolkit locally before we could access tclets based on
WebWiseTclTk. Also, we had to use a special pol-
icy that allows downloading scripts from the server
site using the command ::http::geturl from the
http package. This is because, (1) the blocking
version of the command ::browser::getURL is not
supported in Netscape 4.0, and (2) the command
::browser::getURL is not available under Internet
Explorer 4.0 for the Tcl-plugin. The implementation
of menu widgets in WebWiseTclTk is speci�c to Unix
and hence do not function properly on a Windows
95/NT machine.

We have also tested the toolkit successfully on aMac
running under MacOS 8.0. Again, the current im-
plementation of menu widgets do not work correctly
on a Mac.

Some of the features of the WebWiseTclTk toolkit de-
scribed in this paper are not yet implemented. For
example, in menu widgets, advanced features that

are not implemented include: the accelerator op-
tion for any of its entry is ignored, creation of clones
of menu frames using the tear-o� entry is not pos-
sible, etc. For details of such items and current up-
dates, please consult

http://www.cbl.ncsu.edu/software/#WebWiseTclTk.

10 Conclusions

We have demonstrated the capabilities of the
WebWiseTk toolkit by readily posting an existing Tcl
application, namely the Tk Widget Demos, as an ex-
ecutable Tclet on the Web. Since these demos cover
most of the commands available in the main Tcl/Tk
interpreter, they signify the potential usefulness of
the toolkit.

Introduction of the WebWiseTcl toolkit, which uses
the home policy, enables programmers to structure

their tclets into several smaller scripts. Such scripts
are easier to manage and dynamically loaded during
the execution of the tclet.
While most of the commands related to denial of ser-
vice attacks may be eventually restored in the Tcl-
Plugin, WebWiseTclTk toolkit still o�ers the ability
to con�ne the tclet windows to a single display within
the Web browser.
Our �rst major application of WebWiseTk has been
the introduction of Web-based user-con�gurable and
executable workows that support an environment
functionally similar to one in REUBEN [11, 12, 13].
First demos of this capability has been shown in the
University Booth during the 1998 Design Automa-
tion Conference [16]. On-line demos are accessible
from http://www.cbl.ncsu.edu/demos.

References

[1] The Tcl/Tk Home Page. Published under URL
http://sunscript.sun.com/, 1997.

[2] J. K. Ousterhout. Tcl and the Tk Toolkit. Addison-
Wesley, 1994.

[3] B. B. Welch. Practical Programming in Tcl and Tk.
Prentice Hall, 1997.

[4] J. K. Ousterhout. Scripting: Higher Level Program-
ming for the 21st Century. Published under URL
http://scriptics.com/people/john.ousterhout/-

scripting.html, March 1998.
[5] Scriptics Corporation. Published under URL

http://www.scriptics.com/, 1998.
[6] The Tcl/Tk Consortium. Published under URL

http://www.tclconsortium.org/, 1998.
[7] The Tcl Plugin Home Page. Published under URL

http://sunscript.sun.com/plugin, 1997.
[8] J. Y. Levy. A Tcl/Tk Netscape Plugin. Pub-

lished under URL http://sunscript.sun.com/plugin/-

paper.html, May 1996.
[9] J. K. Ousterhout, J. Y. Levy, and B. B. Welch.

The Safe-Tcl Security Model. Published under URL
http://scriptics.com/people/john.ousterhout/-

safeTcl.ps, March 1997. Draft.
[10] D. Libes. Exploring Expect. O'Reilly and Associates,

1995.
[11] H. Lavana, A. Khetawat, F. Brglez, and K. Kozminski.

Executable Workows: A Paradigm for Collaborative
Design on the Internet. In Proceedings of the 34th Design
Automation Conference, pages 553{558, June 1997. Also
available at http://www.cbl.ncsu.edu/publications/-

#1997-DAC-Lavana.
[12] Amit Khetawat. Collaborative Computing on the Inter-

net. Master's thesis, Electrical and Computer Engineer-
ing, North Carolina State University, Raleigh, N.C., May
1997. Also available at http://www.cbl.ncsu.edu/-

publications/#1997-Thesis-MS-Khetawat.
[13] H. Lavana, A. Khetawat, and F. Brglez. Internet-based

Workows: A Paradigm for Dynamically Recon�gurable
Desktop Environments. In ACM Proceedings of the
International Conference on Supporting Group Work,
Nov 1997. Also available at http://www.cbl.ncsu.edu/-
publications/#1997-GROUP-Lavana.

[14] I. K. Lam and B. Smith. Jacl: A Tcl Implementation in
Java. In Proceedings of the Fifth Annual Tcl/Tk Work-
shop, July 1997.

[15] Document Handling Package. Published under URL
http://tcltk.anu.edu.au/DHP/, 1997.

[16] Design Automation Conference. Published under URL
http://www.dac.com/, 1998.

