
The following paper was originally published in the
Proceedings of the Sixth Annual Tcl/Tk Workshop

San Diego, California, September 14–18, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

Internet-based Desktops in Tcl/Tk: Collaborative and Recordable

Amit Khetawat, Hemang Lavana, and Franc Brglez
North Carolina State University

Internet-based Desktops in Tcl/Tk:

Collaborative and Recordable

Amit Khetawat Hemang Lavana Franc Brglez
CBL (Collaborative Benchmarking Lab), Dept. of Computer Science, Box 7550

NC State University, Raleigh, NC 27695, USA
http://www.cbl.ncsu.edu/

Abstract

This paper addresses issues that arise when a peer

group, distributed across several time zones, uses

the Internet to con�gure and execute distributed

desktop-based applications and tasks. The paper pro-

vides solutions and Tcl/Tk implementations to sup-

port (1) peer-to-peer communication/control of dis-

tributed software and computing resources over the

Internet; (2) recording and playback of interactive

execution of Tcl/Tk applications and collaborative

sessions.

The summary of 540 Internet-based experiments,

each relying on RecordTaker and PlaybackMaker to
record, playback, and execute ReubenDesktop con-

�gurations from local, cross-state, and cross-country

servers, demonstrates the e�ectiveness of the pro-

posed concepts and implementation.

Keywords: collaborative desktops, recording, play-
back, workows, Internet.

1 Introduction

The Internet and the on-going evolution of the
world-wide web is expected to evolve into a network
without technologic, geographic or time barriers { a
network over which partners, customers and employ-
ees can collaborate at any time, from anywhere, with
anyone. Issues of collaboration arise when a peer
group, distributed in time and space, uses the Inter-
net to iteratively con�gure and execute distributed
desktop-based applications and tasks. Existing sys-
tems, based on Tcl/Tk [1, 2, 3], that are available
today include the the Group-kit [4, 5] for collabora-
tion and the TkReplay [6] for recording.

Requirements that motivated this research resulted
in collaborative and recording Tcl/Tk architectures
and implementations that are di�erent from the
ones introduced earlier in [4, 5, 6]. Speci�cally, the
Internet-based environment ReubenDesktop, proto-
typed in Tcl/Tk and Expect [7], leverages a novel

This research was supported by contracts from the Semi-
conductor Research Corporation (94{DJ{553), SEMATECH
(94{DJ{800), and DARPA/ARO (P{3316{EL/DAAH04{94{
G{2080 and DAAG55{97{1{0345).

multi-user collaborative desktop architecture that
also supports multi-cast visualization of workows,
encapsulating distributed data, tools and communi-
cation protocols. A hierarchy of such workows can
be re-con�gured and re-executed by a team of col-
laborating users, since the generic architecture sup-
ports (1) e�ective channels of communication among
peers, and (2) distributed control of applications and
tasks. Data and tools encapsulated in such work-
ows reect the needs of a speci�c peer group. The
workows decribed in this paper are representative
of ones that may be used in the design of experiments
or as an integral a part of a distributed microsystems
design e�ort [8, 9, 10, 11, 12].

In addition, we introduce a novel architecture that
allows us to record and playback any Tcl/Tk appli-
cation, including peer interactions during the dis-

tributed and collaborative sessions of ReubenDesktop.

The paper is organized into the following sections:
(2) background and motivation, introducing a simple
example of collaborative and recordable desktop en-
vironment; (3) collaborative Internet-based desktop
environment, user view of FlowSynchronizer and its
implementation; (4) session recording and playback
environment, user view of RecordTaker and Play-

backMaker and their implementation; (5) a sum-
mary of 540 Internet-based experiments; (6) soft-
ware availability and status; (7) conclusions and fu-
ture work.

2 Background and Motivation

The ReubenDesktop, described in this paper as
recordable and executable upon playback, satis�es
the following properties as a collaborative desktop
environment [9]:

P1: desktop is shared and multi-cast, so that each
participant can observe desktop actions of others;
P2: desktop supports a shared and segmented

`talk window', so each participant can type messages
to all others in his/her own window segment;
P3: the shared and segmented `talk window' sup-

ports a token passing mechanism, so that at any
time, only a single user controls the desktop, but can

pass the token to any other user when requested.

An example of aReubenDesktop satisfying properties
P1{P3 is shown in Figure 1(a). The instance of the
particular desktop has been multi-cast by student
Alice to her instructor Bob with a request for on-line
assistance. In the case shown, the desktop consists
of two windows: (1) a sample workow that is not
executing, hence the problem, and (2) a FlowSyn-

chronizer window that allows Alice and Bob to `talk'
and describe the problem and a solution.

Here, instructor Bob could have requested and re-
ceived permission from Alice to edit the workow
and thus show a solution. Instead, Bob remembers
that earlier, he recorded a solution to a similar prob-
lem for another student. Subsequently, he decides
to playback the pre-recorded solution, shown in Fig-
ure 1(b). By passing control to Alice (the respective
FlowSynchronizer window is not shown), Alice can
now study the solution by re-executing the Playback-
Maker.

It is clear that the paradigm described in this ex-
ample applies to a number of situations, including
design reviews, with high potential to reduce design
errors or catch them early in the process, thereby
signi�cantly enhancing the productivity of the team
e�ort.

3 Collaborative Internet-based Desk-

top Environment

The Internet-based desktop environment as de�ned
in [8] contains a number of application icons (pro-
gram nodes) as well as a number of data icons (�le
nodes). In contrast to typical desktops of today,
where data icons may be dragged and dropped onto
application icons for execution, this environment al-
lows

� user-de�ned and recon�gurable execution se-

quences by creating dependency edges between pro-
gram nodes (application icons) and �le nodes (data
icons);
� data-dependent execution sequences by dynamic

scheduling of path as well as loop executions;
� host-transparency as to the location of applica-

tions and data (both can reside on any host with a
unique IP address).

User View. We use a simple example of
an Archivist Workow to illustrate the concepts
of a collaborative Internet-based desktop environ-
ment as de�ned in this paper. The ReubenDesk-

top in Figure 2(a) is a snapshot of a collabora-
tive session in progress. Two archival specialists,
User1 at Host1 and User2 at Host2, are complet-
ing the tasks of archiving distributed directories to

(a) Collaborative description of a problem

(b) Collaborative playback of a tutorial workow

Fig. 1. Example of a collaborative remote assistance.

a central location (Host1). The session was initi-
ated by User1. Upon invocation of the ReubenDesk-
top, User1 gained access to the UserDesktop window
within the ReubenDesktop and the OmniBrowser.
Using OmniBrowser, she selected the TeamDe�ni-

tion con�guration �le, and with a single click, she
initiated the session with User2. At this point
both receive an identical view of the ReubenDesk-

top, along with the FlowSynchronizer in Figure 2(b).
User1 selects the Archivist Workow in the Omni-
Browser which is now broadcast as two nodes in
the new workow window within the desktop: `Re-
mote Host' and a hierarchical workow node named
Archivist Workow. This node will execute when-
ever any of the �les selected in the OmniBrowser
window is `dropped' onto it.
As noted in the FlowSynchronizer, User1 initiates
the archival process, by selecting directory `teams'
and passes the control to User2. At this point, User2
clicks on the `Remote Host' which invokes another
OmniBrowser. He selects a set of �les in the `Shared'
directory and passes back the control. User1, by

(a) Archivist Workow within ReubenDesktop

(b) Archivist FlowSynchronizer

(c) About FlowSynchronizer

The FlowSynchronizer can support n collaborating sites, pro-
viding controlled access to two window segments at each site:
(a) a token button designating the UserSite, and (b) a message
box which provides a real-time conferencing environment.

At any time, one and only one site is designated as a Token-

Holder, by coloring its UserSite button in a color di�erent from

all other sites. At any time, each collaborator can transmit text

in the message box to all other sites. However, only the Token-

Holder has the capability to click on another UserSite button

to pass the token, and hence the control of the entire envi-

ronment, including any application and data displayed in the

workow window.

Fig. 2. Internet-based collaborative desktop environment.

clicking on the Archivist Workow node, `drops' all
�les selected by both users onto this node, initiat-
ing the execution of the workow { now shown fully
expanded in the ReubenDesktop.

In this example, the Internet-based desktop environ-
ment has been rendered collaborative by the addi-
tion of a FlowSynchronizer that provides both the
communication channels between collaborating par-
ticipants and a control passing mechanism, support-
ing and maintaining the properties P1{P3 summa-
rized earlier. The functionality of the FlowSynchro-

nizer is explained in Figure 2(c).

Collaborative Desktop Architecture. Two
architectural extremes are possible to support col-
laborative activities:

1. Replicated software architecture - exact copies
or replicas of the application being shared must be
installed and maintained on each host. The applica-
tion on each host handles the user interaction locally
and changes made to the application state are broad-
cast to all other replicas to maintain the consistency
of the data and the user views. GroupKit [4, 5] is

(a) Single-cast Tcl/Tk architecture

Tcl/Tk
Interpreter

Display
Terminal

User

Application
Code

Original Application (Hello):
label .hello -text "Hello World"

pack .hello

(b) Multi-cast collaborative Tcl/Tk architecture

Tcl/Tk
Interpreter

AAAAAAA
A
A
A
A
A
A
A
A
A
A
A
A
AAA

AA
AAAAAA
AAAAAA

A
A
A
A
A
A
A
A
A
A
A
A
A
A

AA
AA
A

Application
Code

Dynamic
Code

Generator

List of
Hosts/Users

Display
Controller

Display
Terminal
(Host 1)

User 1

Display
Terminal
(Host 3)

User 3

Display
Terminal
(Host 2)

User 2

AAAAA
AAAAA
AAAAAFlow

Synchronizer

Application Sharing
Layer (ASL)

Multi-cast Application (M-Hello) gener-
ated by ASL:
Initiallization script:

toplevel .screen1 -screen screen@host1:0

toplevel .screen2 -screen screen@host2:0

toplevel .screen3 -screen screen@host3:0

Dynamic code generation:

label .screen1.hello -text "Hello World"

label .screen2.hello -text "Hello World"

label .screen3.hello -text "Hello World"

pack .screen1.hello

pack .screen2.hello

pack .screen3.hello

Fig. 3. Multi-user collaborative desktop architecture.

an example of Tcl/Tk extension that follows this
architecture and allows the development of Group-
ware applications such as drawing tools, editors and
meeting tools. The major disadvantage of replicated
architecture is the di�culty in keeping the data and
user views consistent and in synchronization.
2. Centralized software architecture - a single host

is responsible for setting up the collaborative session
with the participating hosts which do not maintain
any copies of the application being shared. Their lo-
cal machines are nothing more than graphical termi-
nals running X windows (on any UNIX, PC, or MAC
workstation). The host starting the session handles
all the incoming events in the form of user inter-
actions and is responsible for sending and updating
the shared applications views on all other participat-
ing hosts. The primary advantage of the centralized
approach is its simplicity, since maintenance of the
consistency of the application is related to a single
host only.

We use tcl-only code to implement the centralized
approach. In single-cast mode of operation shown in
Figure 3(a), the application code is passed onto to
the Tcl/Tk interpreter. The interpreter then makes
appropriate function calls to display the graphical

user interface (GUI) on the users display terminal.

For multi-casting such a GUI to `n' display screens,
we modify the approach in Figure 3(a) to create a
multi-cast collaborative mode of operation, by in-
serting an Application Sharing Layer (ASL) between
the Tcl/Tk application code and the Tcl/Tk Inter-
preter, as shown in Figure 3(b). The ASL takes the
original application code and a list of hosts as input.
This layer consists of three components:

1. FlowSynchronizer - It provides the ability for
real-time conferencing among the collaborating
users.
2. Display Controller - It facilitates and manages

ownership and exchanges of control over the appli-
cation's GUI among the collaborating users.
3. Dynamic Code Generator (DCG) - This pro-

vides the ability to broadcast the application GUI to
`n' displays and also process events generated from
the collaborators' displays.

Control Mechanisms. When a GUI of an ap-
plication is broadcast to `n' displays, it is necessary
to coordinate user interaction with the application.
If all the users try to interact with the application
simultaneously, chaos and confusion is likely to fol-
low soon. In most applications, however, it is es-
sential that at any time, only one user has a con-
trol over the execution of the application. There are

several mechanisms to avoid such contentions, which
include: (1) single user interaction, with other users
observing, (2) round-robin based transfer of control,
allowing each user to interact for a limited time only,
(3) request-based control, with users deciding as to
who is to interact with the application at any in-
stant, etc.

We have implemented request-based control mecha-
nism where a single user is initialized with control
over the entire application that is launched. The
user who has the control and can interact with the
application is said to hold the token and is called the
Token Holder. At any instant, the Token Holder can
relinquish the control over the application by passing
the token to any other user. The Display Controller,
shown in Figure 3(b), implements this scheme by:
(1) accepting and responding to user interactions
such as mouse movements, keyboard events, etc.,
from the Token Holder only, and (2) blocking all
events that are generated by any other user.

FlowSynchronizer. Once all the users have a
shared view of the application, they still need a
mechanism to communicate among themselves for
e�ective collaboration. If a user needs to request
the control of the application from the current To-
ken Holder, she has to communicate the request to
the Token Holder. We provide an additional win-
dow on each users display, called the FlowSynchro-

nizer shown in Figure 2(b), which allows the users
to communicate, and dynamically exchange control
among themselves. It has two components for each
participating site:

1. A button containing the name of the user as well
as the host name to indicate who holds the token.
The Token Holder is identi�ed by highlighting its
button by a green color whereas all other users have
yellow buttons.
2. A message box for each user facilitates easy com-

munication by allowing all users to simultaneously
type in their respective message boxes. There are
no possibilities of contentions here. This is similar
to the talk utility available on Unix systems.

Thus, in our collaborative environment: (1) all users
are allowed to interact with the message boxes for
communication, and (2) only one user, the Token
Holder, is allowed to interact with the entire applica-
tion and relinquish the control by passing the token.
We now explain some of the implementation details
about the Display Controller and the FlowSynchro-
nizer window.

Using Grab Command to Provide Control. Each
participating user's interaction with the application
is �rst limited to her own message box by using the
Tcl command grab. Only the Token Holder's dis-

play screen does not have any grab command act-
ing on any part of its application GUI. Then, as the
token is passed among di�erent users of the collab-
orating team, we dynamically change the e�ect of
grab acting on each of the user's screen as follows:
(1) release the grab for the message box of the user
who is being given the control, (2) achieve a grab

for the message box of the user who is giving up
the control, and (3) retain the e�ect of grab on the
message boxes of all the remaining users.

Achieving Concurrent Messaging. It is necessary for
concurrent messaging that all users be able to type
into message boxes simultaneously. Because of the
default class bindings provided by Tk, a user has to
bring the message box into focus before she can start
typing. However, if a message box is brought into
focus by clicking on it, it results in message boxes of
other users to loose their focus, thereby re-directing
their typed message into the new message box that
is now in focus.

To overcome this problem, we �rst disable the de-
fault class binding for the message box and add a
new binding script which automatically brings the
message box into focus whenever the user's mouse
cursor enters it. This ensures that every user has
her message box in focus whenever their mouse cur-
sor is over it.

Dynamic Code Generator (DCG). The func-
tionality of the DCG is to intercept every Tcl/Tk
command of the application code and modify it to
generate a new Tcl code such that it will multi-cast
the GUI of the application to `n' displays. We use
a simple application Hello World to illustrate the
implementation details of the DCG.

Figure 3(a) shows the original application code that
creates and displays a label widget containing the
text "Hello World" on the user's screen. The tcl
code for multi-casting such a simple example to three
display screens is shown in Figure 3(b). We �rst cre-
ate a toplevel window on each user's display screen
which acts as a place holder for the various wid-
gets that will be created by the application code.
The initialization script shows how to create such
place holders on each display screen using the com-
mand toplevel. Next, for every command in the
original application code that is related to GUI, the
DCG generates three commands, one for each dis-
play screen. Thus, we have three label and three
pack commands in the multi-casting example code.
This code merely illustrates one method to broad-
cast the application GUI to three display screens and
does not include scripts to initialize the FlowSyn-
chronization window and its request-based control
mechanism.

4 Session Recording and Playback

Environment

Recording and playback environment provides a
mechanism of `taking minutes', not only of the inter-
active discussions, but also of the menu-based com-
mands associated with di�erent tools in the work-
ow, of user-entered data inputs, and of user-queried
data outputs. There are several bene�ts to the
recording and playback mechanism:

� support for automated software documentation
and tutorials, capturing the dynamics of software
interactions for playback and review at a later time;
� study of activities and feedback on how teams ac-

tually collaborate, to improve the e�ectiveness and
e�ciency of collaborative environments;
� remote assistance, by selecting and playing back

e�ective solutions recorded earlier;
� recording of solutions to frequently asked ques-

tions (FAQs) - these recordings can be played back
at a later time on demand;
� automated performance evaluation of tcl appli-

cations, by repeating executions of pre-recorded ses-
sions under di�erent cpu loads and varying condi-
tions of network tra�c - such an example is de-
scribed in the next section on experiments.

TkReplay [6] is Tcl/Tk program that allows one to
record all user actions of Tk programs and then re-
play them. It uses the Tk command send to inter-
cept each user action and saving it as a script �le.
This script �le may then be reloaded and played back
later to emulate the original user actions. The TkRe-
play will not work with Tcl/Tk applications in which
the Tk command send is disabled. The send com-
mand is potentially a serious security loophole, since
any application that can connect to your X server
can send scripts to your applications. These incom-
ing scripts can use Tcl to read and write your �les
and invoke subprocesses under your name. Hence,
it is common for applications written in Tcl/Tk to
disable the the operation of the send command.
Our desktop environment is an example of one such
Tcl/Tk application in which the send command has
been disabled. Therefore, TkReplay is not suitable
for use within our desktop. Instead, we make use of
the Tk command event generate to playback the
recorded events. We next de�ne few terms before ex-
plaining the architecture of recording and playback
mechanism.

Event is an occurrence of an interaction between the
user and the windowing system. The windowing sys-
tem constitutes of the local display, the keyboard,
and the mouse. Recording and playback essentially
involves capturing all events that are generated due

to user actions during a session, and reproducing
those events in exactly the same sequence as they
were generated.

(a) Typical timing diagram of event generation

0 tr 1tr 2 tr 3 tr

time

E2

E

1

0

E

E

3

(b) Events and its timing information stored

Event list

E0

E1

...
En

Event details
. . .
. . .

. . .

Start times

tr0

tr1
...
trn

Fig. 4. Details of event generation and timing.

Figure 4(a) shows generation of various events and
its associated timing information. The X-axis de-
picts time increasing from left to right, whereas
the length of each event shown represents the
amount of time it takes to process an event af-
ter it has been generated. The terminology used
in the illustrated timing diagram is as follows:
Ei The i

th event in a session.
tri The instant at which

the event Ei occurs.
tri+1 � tri The time di�erence between the

occurrence of the event Ei+1

and the event Ei.
n The total number of events

generated during a session.

We classify events generated into two categories: (1)
window events are those generated as a direct result
of the user's interaction with the application, and (2)
synthesized events are those which emulate the win-
dow events using the Tcl/Tk commands from within
the application program and are not a result of user
actions.

Every window event consists of at least one primitive
component. Examples of primitive components in-
clude: ButtonPress, ButtonRelease, MouseMotion,

KeyPress, etc., and are used to identify the type of
event that is occurring. However, additional infor-
mation may be necessary to fully describe an event
and is available as a secondary component. Sec-
ondary components represent details such as the x-y
coordinates of the mouse cursor on the screen, the
name of key that was pressed, the button number of
the mouse that was clicked, etc. The primary and
secondary components can then be used together to
generate a synthesized event from within the Tcl ap-
plication. Thus, Figure 4(b) shows a list of events
generated and its primary and secondary compo-
nents along with the timing information that is nec-
essary to synthesize a window event.

Tcl/Tk
Interpreter

Display
Terminal

User

AAAAA
AAAAA

A
A
A
A
A
A
A
A
A

AAAAAA
AAAAAA

A
A
A
A
A
A
A
A
A

AA

Application
Code

Recording
Interpreter

Run Time
Trace Data

Event
Bindings

Fig. 5. Architecture of recording of a session.

Recording Session Architecture. Figure 5
shows the architecture of how to record an entire
session consisting of all the user interactions with
the Tcl application. It is necessary to intercept and
capture the entire sequence of user actions and save
it in a �le as a run time trace data. This involves
two steps:
1. A recording interpreter intercepts every Tcl/Tk

command of the application that is being passed to
the Tcl interpreter and dynamically associates a new
class of binding called RecordTaker to every widget
that is being created for the application. Thus, for
example, if a button widget called `.b' is being cre-
ated by the application, then we use the following
command to associate the RecordTaker bind class
with it:

bindtags .b [linsert [bindtags .b] 0 RecordTaker]

2. Whenever a user interacts with the Tcl appli-
cation, the binding script for the RecordTaker is in-
voked �rst, before processing any of its default bind-
ings. The binding script for RecordTaker is designed
to capture all the information relevant to a speci�c
widget and save it as the run time trace data. A
typical run time trace data that is saved in a �le is
shown in Figure 4(b).
Playback Session Architecture. Figure 6 shows
the architecture of playback of a recorded session
which is stored in a �le containing the run time

trace data. The playback of a recorded session is

Tcl/Tk
Interpreter

Display
Terminal

User

Application
Code

Trace Data
Processor

Run Time
Trace Data

Fig. 6. Architecture of playback of a session.

initialized by invoking the original Tcl/Tk applica-
tion code with the Tcl interpreter. The trace data

processor then reads the run time trace data from the
speci�ed �le and processes it to create synthesized
events. The timing information associated with each
event recorded is very important and critical in syn-
chronization of the synthesized event during play-
back. It is possible to playback an exact replica of
the recorded session, provided the cpu load is not
signi�cantly di�erent from that during the record-
ing process. The e�ect of variations in cpu load is
as follows:
1. If the cpu load has increased during playback,

then it will simply result in longer time for comple-
tion of the playback session.
2. On the other hand, if the cpu load has signi�-

cantly decreased during playback, then some of the
synthesized events may be generated even before
processing of few of the earlier events has completed.
This can result in generation of synthesized events
which are not in original sequence and hence the
playback session may fail.
Based on these experiences, we decided to allow the
user to control the speed of execution during play-
back. We next describe the mechanism for schedul-
ing synthesized events that facilitates the user to
achieve varying speed of playback session.
Event Scheduling. We �rst de�ne the terminolo-
gies used for scheduling the events of a playback ses-
sion:
tpi The time at which the synthesized

event Ei is scheduled for playback.
s The scaling factor which determines the speed

of the entire playback session. It is constant
for all the n events and is pre-computed before
the commencement of a playback session.

si This is a dynamic scaling factor for the
i
th synthesized event. The value of this
scaling factor is controlled by the user and
can change during the playback session.

Figure 7(a) and (b) show two schemes of schedul-
ing synthesized events. Both the schemes use the
Tcl command after to generate event at a speci�ed

(a) Static scheduling of playback events

wait s � tr0 wait s � tr1 wait s � trn

tp0 execute E0

tp1 execute E1

.

.

.
. . .

tpn execute En

(b) Dynamic scheduling of playback events

wait s0 � tr0

tp0 execute E0 wait s1 � (tr1 � tr0)
tp1 execute E1

.

.

.
. . .

wait sn � (trn � tr
n�1

)

tpn execute En

(c) Comparision of static and dynamic scheduling of
playback events

Playback time Static scheduling Dynamic scheduling

tp0 s � tr0 s0 � tr0

tp1 s � tr1 tp0 + s1 � (tr1 � tr0)
tp2 s � tr2 tp1 + s2 � (tr2 � tr1)

.

.

.
.
.
.

.

.

.
tpn s � tr3 tpn�1 + sn � (trn � tr

n�1
)

Fig. 7. Scheduling playback of recorded events.

instant. In the static scheme, all the n events are
scheduled for playback as soon as the Tcl application
is initialized. Therefore, the speed of the playback
session has to be decided in advance and cannot be
changed later on during actual playback. On the
other hand, in the dynamic scheme, each event is
scheduled for playback as soon as the idle time in-
terval of its previous event is completed, as shown
in Figure 7(b). At the end of time interval s0 � tr0, it
not only generates the event E0, but also schedules
the wait s1 � (tr1 � tr0) interval for generating the
next event E1. This feature gives the user the ex-
ibility to dynamically control the speed of playback
execution by changing the value of the scale factor
si. In addition, it is also possible to pause the ex-
ecution of the playback session by merely defering
the scheduling of the next event.

Implementation Example. We use a simple ap-
plication Print Hello button in Figure 8 to illus-
trate the main ideas used to implement the recording
and playback mechanism.

The left side of the �gure shows the trace data, and
the right side of the �gure shows the Tcl/Tk com-
mands used for synthesis of the recorded events and
the user views as each event is synthesized. The fol-
lowing steps are necessary to invoke the command
associated with the button widget:

Trace Data From

a Recording Session
Event Synthesis

during Playback Session

Application code

pack [button .b -text

"Print Hello" -command

"puts Hello"]

Window : .b
Event : Enter
Time : tr0

event generate .b

<Enter>

Window : .b
Event : Button-
Press
Time : tr1
Mouse button : 1

event generate .b

<ButtonPress> -button

1

Fig. 8. Details of a recording and playback session.

Step 1. Initialize the application code for display-
ing the button widget with the command

pack [button .b -text "Print Hello" \

-command "puts Hello"]

Step 2. It is necessary to activate the button wid-
get before invoking its command. Therefore, syn-
thesize the event `Enter' in the window `.b' with the
command event generate .b <Enter>.
Step 3. Next, synthesize the event `Button-

Press' in the window `.b' with the command event

generate .b <ButtonPress> -button 1 This re-
sults in printing of the text "Hello" to the standard
output.

Recording and Playback Tools. Figure 9 shows
the GUI of two tools - a RecordTaker that assists
users to create customized recordings, and a Play-

backMaker for playback of a recorded session with
capabilities to control its speed or pause as desired.
The RecordTaker also allow the users to record a ses-
sion as a series of several smaller steps, called frames,
instead of one single large recording. In addition, a
user can type in appropriate text for each frame de-
scribing its functionality.

Thus, once a session is recorded in several frames,
the PlaybackMaker automatically stops at the com-
pletion of each frame, displays the associated text for

(a) RecordTaker

(b) PlaybackMaker

Fig. 9. Recording and playback tools.

the user to read and waits for the user to click on the
`Continue' button to start processing the next frame.
This feature is very useful for recording tutorial ses-
sions, where each tutorial consists of several frames
with a text describing each frame during playback.

5 Experiments

The prototype of an environment that records, plays
back and executes a Tcl/Tk collaborative Internet-
based desktop, is being put to the test as an integral
part of a national-level collaborative and distributed
design project involving teams at 6 sites [12]. Specif-
ically, the desktop brings together distributed data,
application workows, and teams into collaborative
sessions that share the control of the desktop edit-
ing and execution. A typical workow, such as the
one shown in Figure 10, invokes distributed tools
and data to support a major phase in the design of
microelectronic systems. A detailed description is
available in [8, 10].

We argue that recording and playback of collabora-
tive user interactions can have a wide-range of ap-
plications, such as: `keeping minutes' of interactive
discussions, clicks of menu-speci�c commands asso-
ciated with di�erent tools on the shared desktop,
user-entered data and control inputs, user-queried

Fig. 10. Partitioner workow.

data outputs, support for automated software doc-
umentation, tutorials, collaborative playback of tu-
torials and solutions recorded earlier, etc. The 540
experiments, summarized in this section, are the ini-
tial part of the Internet desktop environment perfor-
mance and functionality evaluation, conducted be-
fore its release to Vela Project participants and oth-
ers.
Each of these experiments relies on interactive user
inputs. To maintain consistency of user inputs dur-
ing the repeated trial executions across the Inter-
net (with variable quality-of-service), we �rst record
a single reference instance of each test case on the
local server (without relying on the network) and
then move these recordings to cross-state and cross-
country servers on the Internet. Each server has an
executable version of ReubenDesktop, OmniBrowser,
RecordTaker, and PlaybackMaker. The experiments
are initiated with a playback that executes recorded
instances of test cases, multi-casting them to 1, 2,
or 3 workstation displays at CBL. Additional details
about these tools are available in [8, 9, 11]. Experi-
ments reported in this section support a conjecture
that will be the subject of more detailed experimen-
tation later:

Task-speci�c performance of a single/multiple

client-server ReubenDesktop execution can be

predicted, under comparable server and net-

work loading, by measuring the performance

of pre-recorded task-speci�c experiments that

are executed and multi-cast by the server to

one/multiple client displays.

In other words, to assess the performance of inter-
active distributed sessions that involve one or more

participants, we have veri�ed that the experiments,
as reported in this section, can be extrapolated by
measuring the performance of single- and multi-

cast executions that are based on playback of pre-
recorded experiments on a reference server. The
bene�ts of not requiring a number of individuals to
sit through repeated session experiments are obvi-
ous. Speci�cs about the testbed con�gurations, test
cases considered, and graphical results follow.

CBL
Server

Display
Terminal
(Client 1)

Duke
Server

Desktop
Recording
AAAA
AAAA

AAAA
AAAA

Desktop
Recording

AAAA
AAAA

AAAA
AAAA

UCB
Server

Desktop
Recording

AAAA
AAAA

AAAA
AAAA

Display
Terminal
(Client 2)

Display
Terminal
(Client 3)

A
A
A

AAA
AAA

AA
AA

AA
AA
AA

AA
AA
AA
AA
AA

AAA
AAA
AAA
AAA
AAA

AA
AA
AA

A
A
A

A
A

AA
AA
AA

AA
AA

AA
AA
AA

AA
AA

AAA
AAA

AAA
AAA

AA
AA
AA

AAA
AAA

AA
AA
AA

Raleigh

California
Durham
40 miles

4000 miles

Fig. 11. Test-bed con�guration for experiments.

Testbed Con�gurations. In order to approxi-
mate typical instances of a distributed multi-site col-
laborative desktop environment, we used a test-bed
setup, as shown in Figure 11, to create:
(1) a local environment by installing the desktop
software on a CBL server1 at NC State University
in Raleigh, NC, which is multi-casting its desktop to
one or more CBL client hosts;
(2) a cross-state environment by installing the desk-
top software on a server2 at Duke University in
Durham, NC, which is multi-casting its desktop to
one or more CBL client hosts; and
(3) a cross-country environment by installing the
desktop software on a server3 at the University of
California in Berkeley, CA, which is multi-casting
its desktop to one or more CBL client hosts.
We have carefully selected two remote servers such
that the physical distance of approximately 40 miles
and 4000 miles from Raleigh to Durham and Berke-
ley respectively, represents a realistic test-bed for
performance evaluation. The arrows, shown in Fig-
ure 11, depict broadcasting of the desktop environ-
ment from each server to the three display terminals
at CBL in Raleigh.
Test Cases. We have created and recorded, di-
rectly on the CBL server under negligible loading
conditions, six test cases of collaborative sessions
with useful attributes that demonstrate typical user-

1SUN SPARC 20 (chip=60MHz memory=64Mb swap=732Mb)
2SUN Ultra 1 (chip=167MHz memory=256Mb swap=288Mb)
3SUN SPARC 20 (chip=60MHz memory=96Mb swap=365Mb)

invoked tasks. The brief description that follows in-
cludes the reports of real time, user time and sys-

tem time as produced by the Unix utility time. The
`real time' corresponds to the `stopwatch time' that
could have been obtained by the user monitoring
the task. The `user time' is the time required by
the CPU to complete the task. The `system time'
is the CPU time required by the system on behalf
of the task. A brief description of all test cases en-
gaging two participants, that were recorded for the
experiment, follows.

(1) Co-editing-1 (real time=119.4s, user time=31.1s, sys-

tem time=1.5s): Using ReubenDesktop, we open, and

edit, a simple 4-node, 3-arc workow by select-
ing, opening, and closing a single data �le node-
con�guration window.

(2) Co-editing-2 (real time=153.1s, user time=44.0s, sys-

tem time=1.9s): Using ReubenDesktop, we open, and

edit, the same 4-node, 3-arc workow by select-
ing, opening, and closing a single data �le node-
con�guration window and a single program node-
con�guration window.

(3) Co-editing-3 (real time=223.8s, user time=67.5s, sys-

tem time=2.5s): Using ReubenDesktop, we open, and

edit, the 17 node, 22 arc workow by selecting, open-
ing, and closing 3 data �les and a single program
node-con�guration window.

(4) Co-browsing-1 (real time=136.7s, user time=56.1s,

system time=2.1s): Using OmniBrowser, we traverse

a directory structure, located on the server's local
�le system, across 3-levels, with up to 141 items in
each directory. The directory structures of all the
three servers were made exactly the same for uni-
form comparison.

(5) Co-browsing-2 (real time=159.2s, user time=97.5s,

system time=5.0s): Using OmniBrowser, we select,

open, and scroll, from start to end, the same copy of
a text �le of about 1000 pages (2.2Mb), located on
each server.

(6) Co-execution-1 (real time=123.9s, user time=90.0s,

system time=3.8s): Using ReubenDesktop, we open,

and execute, the hierarchical workow in Figure 10.
As shown, the workow has 22 nodes and 28 arcs;
during execution, the node labeled as optimizer ex-
pands into a sub-workow with 14 nodes and 15 arcs.

All test cases involved two participants working col-
laboratively and consisted of exchanges of several
dialogs via the FlowSynchronizer between the two,
during each recording session.

Evaluation Method. All software and the �les of
six test cases, recorded directly on the CBL server,
have been replicated on the server at Duke U. and
the server at UCB. Scripts have been invoked, dur-
ing the night when both servers and the network were

(a) CBL server (b) Duke server (c) UCB server

450

400

350

300

250

200

150

100

50

0

0

50

100

150

200

250

300

350

400

450

3-client
2-client

1-client

Co-executio
n-1

Co-editin
g-3

Co-browsin
g-2

Co-editin
g-2

Co-browsin
g-1

Co-e
dit

ing
-1

450

400

350

300

250

200

150

100

50

0

0

50

100

150

200

250

300

350

400

450

3-client
2-client

1-client

Co-executio
n-1

Co-editin
g-3

Co-browsin
g-2

Co-editin
g-2

Co-browsin
g-1

Co-e
dit

ing
-1

450

400

350

300

250

200

150

100

50

0

0

50

100

150

200

250

300

350

400

450

3-client
2-client

1-client

Co-executio
n-1

Co-editin
g-3

Co-browsin
g-2

Co-editin
g-2

Co-browsin
g-1

Co-e
dit

ing
-1

Fig. 12. Evaluation results of 540 experiments on three servers.

least loaded, to execute the 540 experiments as fol-
lows:

From each of the three servers, execute and multi-

cast 10-times, with interval of 30 seconds between

each execution:

(1) successively to one, two, and three client hosts
at CBL, recordings of co-editing-1, co-editing-2, co-
editing-3;
(2) successively to one, two, and three client hosts

at CBL, recordings of co-browsing-1, co-browsing-2;
(3) successively to one, two, and three client hosts

at CBL, recording of co-execution-1.

A log �le, generated by time (real time, user time,
system time) command, archives timing data for
each experiment. Similarly, a log �le, generated by
sar (system activity report) command, archives the
load on each of the three servers during the execution
of these experiments. The log �le generated by sar

provided the information whether or not both the
load on the server and the network was su�ciently
stable to accept the `real time' and `user time' re-
sults for tabulation.

The data generated as a result of evaluating the
six test cases are tabulated and plotted as a 3-
dimensional graphs shown in Figure 12 for each
server. The x-axis in each plot lists the name of
the test case and the y-axis represents the number
of clients that a speci�c test case was multi-casted
to. The time required for execution of each test case
with 1-, 2- and 3-clients is then represented as a bar
on the z-axis.

Summary of Results. The data plotted in Figure
12 allows us to evaluate the performance of Internet-
based desktop environments.

1. The `real time' for playback to a single-client on
the reference server is approximately the same as the
time required to record the test cases.
2. The `real time' for playback from other servers

varies, depending on the distance between the host

server and its clients and the characteristics of the
host server. Speci�cally, for single-client playback,
Duke server consistently reported least execution
times, followed by CBL server and UCB server.
This is attributed to the higher performance server
at Duke. However, for multi-clients, the execution
times increased with distance in the order CBL,
Duke, and UCB.
3. When the experiment is multi-cast to 2-clients

or 3-clients, it takes slightly more time, on the or-
der of a few seconds, for execution than the time
required for single client execution. The negligible
increase in the playback time for multi-client execu-
tion is due to the fact that the exchange of dialog
among participants is computationally least inten-
sive.
4. The variations in minimum and maximum val-

ues of `real time' for each experiment are negligi-
ble since the experiments were performed during the
night. However, the same experiments showed sig-
ni�cant variations during the day when the network
tra�c and the server load are unpredictable.
5. Comparing the `user time' and the `sys-

tem time' for each server, we �nd that the CBL
server requires the most CPU time and the Duke
server requires the least CPU time. This follows di-
rectly from the di�erent types of processors and the
con�guration of each server.

Observations. The successful completion of all 540
experiments provides us with assurance that the ex-
periments are consistently reproducible on a variety
of servers, given that the server nominal load is small
and that the network is stable. Speci�cally, we con-
�rmed that

� Repeated real time executions of experiments,
where user-inputs are carefully and consistently en-
tered (rather than pre-recorded), gives `real time',
`user time', and `system time' performance that is
comparable (within 10%) to the times reported for

pre-recorded execution on any server { provided that
the server load and network conditions are as favor-
able.
� The performance of the Internet-based desktop

environment, even in a collaborative mode, is quite
good under nominal network tra�c and load on the
server. Hence, with su�cient network bandwidth
and powerful processors, it is possible to work collab-
oratively with e�ciency and e�ectiveness even when
participants are dispersed across the continent.
� As the number of clients, corresponding to each

participant, increase from 1 to n during playback,
the increase in `real time' execution is on the order
of a few seconds only. Again, this increase is sub-
ject to the server and network performance and the
amount of dialog among participants present in the
recording.

6 Software Availability and Status

The collaboration, recording and playback features
are all currently integrated into a single desktop en-
vironment. We are planning to unbundle the desk-
top environment and make them available as sepa-
rate packages:

(1) CollabTclTk. Collaboration of any tcl-
application to multiple sites,
(2) RecordnPlayTclTk. Recording and playback

session of any tcl-application, and
(3) ReubenDesktop. Internet-based desktops in-

tegrated with collaboration and recording/playback
packages.

For more details about the current status of these
packages, please visit:

http://www.cbl.ncsu.edu/software

7 Conclusions and Future Work

We have introduced a new paradigm and a prototype
implementation of a collaborative and recordable
environment on the Internet using Tcl/Tk. Com-
plementing the objectives of the user-recon�gurable
Internet-based desktop environment, this environ-
ment supports

� peer-to-peer interaction between members of any
team;
� peer-to-workow interaction between any team

member to any object in the workow;
� recording and playback of interactive execution of

Tcl/Tk applications and collaborative sessions.

Future work on collaborative and recordable envi-
ronments should address the following issues:

Security of collaboration. Our current implemen-
tation is `insecure' since it relies on participating
hosts to open their X displays for remote connec-

tion. Users who are behind company `�rewalls' are
not able to participate, given the present set-up.
Dynamic collaborative team. Currently, we have to

close and restart the application for changing the
number of participants. In the future, we want to
support dynamic addition and removal of users par-
ticipating in collaboration.
Editing of the recording session. Recording, with-

out errors, of a long complex session is di�cult.
Hence, recording sessions of shorter durations and
slicing them together later for playback would be
more e�ective.

Acknowledgments. We could not have reported
as comprehensively on the results of our Internet
Desktop experiments without getting generous user
accounts on two remote servers, facilitated by Dr.
Richard Newton at UC Berkeley and Dr. Gershon
Kedem at Duke U. We thank them and their support
sta� for this privilege.

References

[1] Scriptics Corporation. Published under URL
http://www.scriptics.com/, 1998.

[2] The Tcl/Tk Consortium. Published under URL
http://www.tclconsortium.org/, 1998.

[3] J. K. Ousterhout. Tcl and the Tk Toolkit. Addison-
Wesley, 1994.

[4] M. Rosenman and S. Greenberg. Designing Real-Time
Groupware with GroupKit, A Groupware Toolkit. In
ACM Transactions on Computer Human Interaction,
1996.

[5] GroupKit. Published under URL
http://www.cpsc.ucalgary.ca/grouplab/groupkit,
1997.

[6] Charles Crowley. TkReplay: Record and Replay in
Tk. In Proceedings of the Tcl/Tk Workshop, Toronto,
Canada, July 1995.

[7] D. Libes. Exploring Expect. O'Reilly and Associates,
1995.

[8] H. Lavana, A. Khetawat, F. Brglez, and K. Kozminski.
Executable Workows: A Paradigm for Collaborative
Design on the Internet. In Proceedings of the 34th Design
Automation Conference, pages 553{558, June 1997. Also
available at http://www.cbl.ncsu.edu/publications/-

#1997-DAC-Lavana.
[9] Amit Khetawat. Collaborative Computing on the Inter-

net. Master's thesis, Electrical and Computer Engineer-
ing, North Carolina State University, Raleigh, N.C., May
1997. Also available at http://www.cbl.ncsu.edu/-

publications/#1997-Thesis-MS-Khetawat.
[10] H. Lavana, A. Khetawat, and F. Brglez. Internet-based

Workows: A Paradigm for Dynamically Recon�gurable
Desktop Environments. In ACM Proceedings of the
International Conference on Supporting Group Work,
Nov 1997. Also available at http://www.cbl.ncsu.edu/-
publications/#1997-GROUP-Lavana.

[11] H. Lavana, A. Khetawat, and F. Brglez. REUBEN 1.0
User's Guide. CBL, Research IV, NCSU Centennial
Campus, Box 7550, Raleigh, NC 27695, 1998. To be
available at http://www.cbl.ncsu.edu/publications/.

[12] Globally distributed microsystem design: Proof-
of-concept. A university-based project involving
teams at 6 sites. See the project home page at
http://www.cbl.ncsu.edu/vela for more details.

