
The following paper was originally published in the
Proceedings of the Sixth Annual Tcl/Tk Workshop

San Diego, California, September 14–18, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

WinACIF: A Telecom IC Support Tool Using Tcl/Tk

David Karoly, Todd Copeland, and David Gardner
Advanced Micro Devices

WinACIF:
A Telecom IC Support Tool Using Tcl/Tk

David Karoly
David.Karoly@amd.com

Todd Copeland
Todd.Copeland@amd.com

David Gardner
David.Gardner@amd.com

Advanced Micro Devices, Austin, Texas

Abstract

We discuss our use of Tcl/Tk to provide software support for telecommunications Integrated
Circuits (ICs). Our Windows-based Advanced Computer Interface (WinACIF) program works in
concert with reconfigurable hardware based on Field Programmable Gate Arrays (FPGAs) to
provide essential coordination in laboratory data collection and analysis of a device under test.
WinACIF replaces several MS-DOS based applications. Whereas the previous implementations
suffered from the classic limitations of MS-DOS, WinACIF provides the flexibility and
functionality of windowing applications by virtue of its Tcl/Tk roots. Tcl/Tk not only supplies
more than ample power to create WinACIF, but also adds the benefit of saving valuable time
otherwise spent learning a complex API. Run-time loaded Tcl extensions provide the flexibility to
support various devices having diverse interfaces. A single Tcl/Tk script dynamically builds a
Graphical User Interface (GUI) based on product configuration data retrieved from a data store.
Additionally, we used canvas widgets to provide an intuitive interface. For the engineer who
requires control beyond that afforded by our GUI, Tcl serves as WinACIF’s command language.

1. Introduction

WinACIF is a 32-bit Windows application we designed
to support AMD’s SLAC family of integrated circuits.
Telecommunications equipment manufacturers use the
SLAC (Subscriber Line Audio-Processing Circuit)
family of ICs to build telephony linecards that interface
analog telephones with digitally switched networks.
WinACIF users include AMD’s engineering staff and
customers. Using Tcl/Tk, we created a GUI that
provides a readily understood and convenient means of
programming the hundreds of features contained in the
SLAC IC and displaying their current state. We utilized
Tcl in conjunction with our application-specific
extensions (implemented in C and C++) to script
interactions with the IC. The application also configures
and controls an interface board that generates and
coordinates digital signals between the SLAC device
and PC, and between the device and test equipment
(Figure 1). Tk’s canvas widget provides a handy way to
build a dynamically configurable diagram that depicts
the signal flow in a manner familiar to the users.

2. Application Description

AMD’s SLAC devices are programmable codec/filter
ICs. They are essentially embedded digital signal
processors that perform A/D conversion, D/A
conversion, filtering, compression and expansion
functions. With the advent of AMD’s advanced SLAC

devices, the programmability now extends to control the
line power feed, ringing, signaling and test functions.
This programmability benefits the linecard designer by
providing the flexibility to create one hardware design
that satisfies the diverse requirements of multiple
markets. This flexibility, in turn, benefits the
telecommunication systems manufacturer by
streamlining the manufacturing process and by reducing
inventory, administrative costs and time required to
address new markets.

Figure 1. WinACIF lab bench scheme

The cost of all this flexibility is complexity. The most
recent member of the SLAC product family has over
115 programmable command op-codes. Each op-code
may be associated with a register containing up to 14
bytes of data. The data bytes themselves may contain
multiple bit fields of varying widths, each controlling
some programmable operating parameter of the device.

The engineer involved in the debug or application of the
SLAC device faces a formidable testing and
characterization task. This is particularly true when the
design is intended to meet the requirements of several
markets having diverse specifications. A great deal of
lab bench experimentation and verification is required
to ensure that the design meets the needs of all the
targeted markets. WinACIF and its associated hardware
provide a turn key evaluation platform that allows
interactive manipulation of all the programmable
features of the SLAC devices. This platform allows the
engineer to easily explore the multiple “what if”
scenarios inherent in linecard design. The development
efforts of AMD’s customers are streamlined and time to
market minimized by having a tool that allows them to
immediately begin evaluation of the SLAC device. They
can begin the design of their application circuit and
establish the proper SLAC device programming for
their application without making an investment in
building evaluation hardware.

WinACIF is often used in conjunction with WinSLAC.
WinSLAC, a design synthesis tool, accepts the linecard
design specifications and design constraints as input and
produces an output text file containing the information
required to configure the programmable filters of the
SLAC device. WinACIF includes Tcl commands that
convert this information into a stream of commands that
will program the data into the SLAC device.

3. WinACIF Structure

Previously, we constructed support tools with the
National Instruments’ LabWindows program under
MS-DOS, adding C code to provide callback
functionality. This implementation suffered from the
following limitations:

• 640K of memory
• minimal functionality of widgets
• no window manager
• complex C code to create event loop and

update widgets
• no scripting control mechanism
• hard-coded GUI layout
• overhead of multiple program maintenance
• difficulty of supporting new devices with

multiple interface/command sets

The ability to extend Tcl with introspective commands
written in C allowed us to realize our primary design
goal of generalizing the ACIF software to support
multiple devices having diverse interfaces.

The main Tcl script, acif.tcl, loads the core of the
application, acif.dll. Acif.dll includes a data store
comprised of arrays of C structures that contain the

programming command sets for each of the SLAC
devices. After loading acif.dll, the Tcl script uses one
of the new commands, acifProducts, to ask the data
store to return a list of available products. The Tcl
script uses this list to construct an array of radiobuttons
from which the user selects a product name. Upon
selection acifProducts is executed again, this time with
the chosen name as an argument. This execution
configures pointers in the underlying C code, so that
subsequent operations reference the appropriate section
of the data store.

Throughout the program, we used this strategy of
dynamically creating the GUI based on data obtained
from the underlying data store. Depending on the
argument sent with the command, our Tcl commands
either return configuration information from the data
store, or perform some related operation, such as writing
or reading from the SLAC device. This structure made
possible the writing of generic Tcl code that created
different GUIs depending on the information in the data
store.

In addition to acif.dll, the application may load one of
several other DLLs, depending on the options selected.
For example, the SLAC devices have a variety of
hardware interfaces. Some new devices even offer the
choice between two interfaces. Downloading a different
configuration file into the FPGAs (Field Programmable
Gate Arrays) on the ACIF board redefines the interface
logic. Acif.dll reconfigures the software by unloading
the old driver DLL and loading the one that supports the
new configuration. The new driver DLL defines new
Tcl commands that control the interface logic
implemented in the FPGAs.

The various DLLs and the application-specific Tcl
commands they provide are summarized in Appendix A.

4. SLAC IC Command Windows

To make our users as comfortable as possible with the
new WinACIF tool, we designed our GUI to resemble
the device data sheets with which they are so familiar.
After selecting a product name, the user views
WinACIF's main menu, which contains eight menu
items. The first item contains the SLAC commands.
When the user selects this item, a pull-down menu
appears listing command descriptions for programming
the selected SLAC device. If the user chooses a
command with no associated register, WinACIF will
execute the instruction directly upon selection from this
menu. Otherwise, if the user selects a command that
reads from or writes to a register, it will launch a top
level window where the user can specify or view the
data parameters in the associated register.

Figure 2. Desktop showing main window (top center), tear-off command menu (left), two command windows
(center) and two status windows (right).

When the user has configured the desired combination
of parameter values using the command window, they
can write the corresponding data bytes to the SLAC
device by clicking the write command button. We
divided the command window into three main sections:

• An entry widget that displays the data in either
binary or hexadecimal form. The user has the
option of specifying the data byte by typing into
this entry widget.

• Two command buttons, each sending a particular
command op-code to the SLAC device. Typically
these buttons correspond to read and write
operations.

• A series of widgets on a scrollable frame that
display the parameters programmed by the data
bytes and allow individual modification of each.
The scrollable frame, created with the canvas
widget, makes it possible for the user to display the
parameter of interest, even if the window is resized
to be smaller. The user may thereby optimize their
use of screen real estate.

Figure 2 shows the main window with the pulldown
menu torn off, two of the possible command windows
open on the desktop, and two status windows. We will
discuss status windows in section 5.

Some other development tool kits require that an image
be manually created for each window in the application.
Instead, we wrote a data driven Tcl procedure that is
used to build all of the command windows. An
introspective mechanism queries the data store to
determine the desired data format, the widget types, and
all other information to place in the window. Since the
data store defines hundreds of variations on the basic
window, we avoid an enormous development and
maintenance burden through this approach. Should a
need arise to modify the presentation of the command
windows, the edits to the one Tcl procedure will
automatically apply to all of the command windows for
all the products supported on WinACIF.

The write command button executes the acifDut
command with arguments defining the operation and
the data bytes. The acifDut command abstracts all the
details of communicating with the hardware and the
maintenance of the data structures. The first argument
to acifDut is a command mnemonic that identifies the
operation. The second argument is the user-specified
data bytes. The C code that implements acifDut uses
Tcl’s hash table facility to map the mnemonic, the first
argument, to a pointer referencing the associated
information within the data store. This provides the
hexadecimal op-code as well as information needed to
validate the data bytes, and to parse them into bit fields
corresponding to the various parameters.

5. Maintaining and Displaying SLAC
Device State

Interacting with a device with over 700 programmable
parameters would be impossible without a means of
recalling and displaying the current settings. The
ability of some SLAC devices to support multiple
telephone channels further complicates the tracking of
the configuration variables. Some parameters have a
channel-specific scope, such as the gain of an
individual channel, while others have a global scope
within the device, such as the choice of an incoming
clock frequency. The data store contains information
concerning the scope of each parameter.

When commands are sent to the SLAC device, the C
code responsible for interfacing to the hardware also
updates a Tcl array called DUT (Device Under Test).
This array records the values of all of the SLAC device
parameters programmed by the user through the
command windows. DUT's element names correspond
to the various programmable parameters of the SLAC
device. We made DUT read-only to insure that the
content accurately reflects the state of the SLAC
device. The Tcl script cannot alter the contents of DUT
except by executing the command which programs the
SLAC device. We store the parameter values in the
array DUT in a format meaningful to the user. To
convert the bit-field values used by the device into an
understandable format, such as decibels, amperes,
ohms, etc., the C code uses data supplied by the data
store.

Using this strategy, we can easily create a display of the
current device configuration. We merely set up a label
widget that displays the desired elements from the DUT
array. The main menu of WinACIF provides the user
with the ability to view these status windows on the
desktop (Figure 2). These windows show the current
value of a parameter or values of a group of related
parameters across all of the channels in the device.

6. Variable Traces and Bindings

In the implementation of the command window, Tcl’s
variable trace feature provides a convenient mechanism
for maintaining the correct relationships between the
widgets and the underlying data structures. When the
window is created, temporary variables are created for
the parameter modification widgets in the bottom
section of the window. These variables are initialized
with the appropriate parameter values from the DUT
array. The temporary variables allow the user to setup
any combination of changes to the parameter values,
independent of the actual, read-only values stored in the
DUT array. Variable traces on the temporary variables
trigger the execution of code that maintains the data

byte display in the top of the window. A Tcl command
extension is called that uses information from the data
store to convert the set of parameter values into their
corresponding bit-fields and assemble these bit fields to
create the data bytes.

A user may also type into the data byte entry, thereby
triggering an update of the parameter values displayed
in the widgets below. The user may then write the new
data bytes to the SLAC device by clicking on the Write
button. This action calls a Tcl command extension that
programs the SLAC device and updates the values in
the DUT array to reflect the new programming of the
device.

As discussed in a later section, the user can also
program the SLAC device independent of the command
window by executing a script containing the acifDut
command. In this case, the values displayed in any
affected command window must be updated. Variable
traces placed on the appropriate elements of the DUT
array achieve this effect. When the acifDut command
changes the value in the DUT array, the trace fires,
executing code that copies the value into the
corresponding temporary variable. This updates the
widgets and also fires a trace that executes the code
that updates the data byte entry.

We rely on Tcl’s variable trace mechanism to maintain
the correct relationships among the DUT array, the
parameter widgets, and the data byte display. The
event-driven nature of this code makes good
documentation essential.

7. Graphical Board Control

Tcl’s canvas widget provided us the opportunity to
represent signal flow in a graphical format that is
intuitive to our users. The SLAC devices may use one
of several different interfaces to transmit data.
WinACIF depicts a particular interface by drawing a
graphical representation of the signal flow and
switching arrangements on a canvas widget. Figure 3
shows one of the possible interfaces. This figure depicts
the SLAC device transmitting and receiving a serial bit
stream that is logically grouped into 8 bytes. The bytes
labeled B1 and B2 consist of digitized audio data that
can be captured for conversion to parallel form and
routed to or from a piece of telecom test equipment.
The window provides interactive control over the
evaluation board hardware that performs the signal
routing and conversion.

Rather than embedding radio or checkbutton widgets in
the canvas, we tagged groups of lines and assigned
bindings to the tags to reconfigure the evaluation board.
For example, the row of arrows pointing up from the
top row of bytes works together to comprise a one-of-

four selector switch. Clicking on one of these arrows
changes the selection by executing an AMD-created Tcl
command that programs the appropriate hardware
register. The Tcl command also updates a read-only
array, the acifBoard array, that tracks board state. The
black arrow indicates the current choice.

The Tcl code executed by the binding event can be as
elaborate as needed to achieve the desired effect. In the
bottom row of bytes in Figure 3, each of the B1 and B2
boxes has two arrows feeding into it. These arrows
comprise a “one, the other or neither” selector switch.
These kinds of switch arrangements make intuitive
sense to the engineers who use WinACIF.

The need to write a program to draw on the canvas
rather than using an interactive “what-you-see-is-what-
you-get” drawing tool often dismays newcomers to
Tcl/Tk. In reality, we find defining the graphic
programmatically is an asset. The interface depicted in
Figure 3 has an alternate mode of operation that
transmits 16 rather than 8 bytes. The Tcl procedure
draws the graphic based on the number of bytes passed
as an argument. This approach makes it easy to redraw
a different arrangement.

Figure 3. Board programming window

8. User Scripting: More Than a Macro

The user interactions with WinACIF discussed so far all
operate directly on the programming of the SLAC
device or on the ACIF hardware. Testing of a particular
linecard configuration may require the programming of
hundreds of commands. The window in Figure 4
provides the ability to reproduce this set of operations
at a later time without laboriously repeating the exact
sequence of mouse clicks and button presses.

As the user interacts with the other windows of the
GUI, this window can capture the Tcl commands that
program the SLAC device and the ACIF board. The
user does not need to know the command names or how
to specify their arguments. Note, however, the
command names and arguments have been designed to

be self-explanatory to users familiar with the SLAC
device.

We based the Command Script Window on the text
widget. The user can modify the commands using cut
and paste operations or by placing the insertion cursor
into the middle of the sequence and inserting additional
commands by interacting with the other windows of the
GUI. The user can replay the script from this window
with a user variable delay between commands and
insert breakpoints into the script. We provided an
option that repetitively sends the commands in a loop
useful for debugging certain aspects of SLAC device
operation. The user may save and load these command
sequences as files.

Figure 4. Command script window

The above describes more than a macro and replay
mechanism because the user is saving an independent
Tcl script. For the engineer who requires more
sophisticated control, this provides an avenue for
writing Tcl scripts that can completely automate testing
processes. Certain testing scenarios may require
looping, conditional branching, or file IO. He can use
the full power of the Tcl interpreter to solve these
problems. Tcl’s simple syntax, which in many areas is
similar to C, reassures the users that the learning curve
will not take too much time away from already busy
schedules. The Tcl extensions implemented in
WinACIF abstract the details of communicating with
the SLAC device and the ACIF hardware. Each
engineer can now craft customized scripts, share those
scripts with others, and even submit a valuable addition
for incorporation into WinACIF.

9. Conclusions

The port of Tcl/Tk to the Windows' platform greatly
accelerated the evolution of the WinACIF software
from a MS-DOS to a Windows application. The
difficulty and time required to learn the basic skills to
be a proficient Windows developer has barred most
engineers from developing their own GUI-based
applications. The conventional toolkits make GUI
development a field for software specialists. Charles
Petzold says it best,

 “…please do not fear that you are missing
some vital part of your brain that is required to
be a successful Windows programmer. This
initial confusion is normal, and don’t let anyone
tell you differently. Windows-based
programming is strange. It’s weird, it’s warped,
it’s awkward, it’s convoluted, it’s mind-
boggling…”[1]

We find Tcl/Tk to be an empowering tool which
bypasses most of these difficulties thereby drastically
shortening the learning curve and the development time
required to build GUI-based applications. For engineers
whose focus has been the application domain, Tcl/Tk’s
ease makes Windows development possible.

By defining the GUI programmatically using Tcl/Tk
script, we structured this application in a more powerful
and flexible manner. The ability to extend Tcl with C
code allows implementation of complicated data
structures and interfaces to hardware. Dynamic
reconfiguration for various products and interfaces
could then be implemented, consolidating support for
the entire product family in one program. The
application is readily extendable to provide support for
future products. Additionally, Tk’s canvas widget
provides a powerful tool for delivering information in a
graphical form familiar to our users.

10. References

[1] Petzold, Charles. Programming Windows 95: The
Definitive Developers Guide to the Windows 95
API. Microsoft Press, 1996. ISBN 1-55615-676-6.

Windows and MS-DOS are registered trademarks of
Microsoft Corp.

AMD, the AMD logo and combinations thereof and
SLAC are trademarks of Advanced Micro Devices, Inc.

LabWindows is a registered trademark of National
Instruments, Inc.

Appendix A : Tcl Command Extensions used in WinACIF

ACIF.DLL

defines the following Tcl command extensions related to programming the SLAC device:

AcifProducts Returns information describing the SLAC products and interfaces that are supported by
WinACIF. Used to select the product/interface and configure WinACIF accordingly.

acifDut Returns information describing the command set of the SLAC device. Writes or reads
SLAC device control interface and updates Tcl array DUT which tracks the state of the
SLAC device.

AcifDutEntryCheck Checks validity of data byte string for proper number of binary or hexadecimal digits.

AcifDutEntryFromVals Converts parameter values to bits and combines them to create data byte string.

AcifDutEntryToNewVals Fractures data byte string into parameter values and updates temporary variables for
command window widgets.

AcifDutEntryToHex Converts value to hex form without spaces.

AcifParmEntryCheck Validates the data when an entry widget is used to enter a parameter value.

acifExit Cleans up DLLs and exits.

acifDown Loads the proper DLL for downloading a WinSLAC file.

AcifSelectPort Returns the list of available communication ports. Selects a port to use.

AcifFileStatus Returns the compilation date and time of WinACIF’s currently loaded DLLs.

AcifBinToVal Converts a string of binary digits to a specified decimal format.

AcifValToBin Converts a decimal value to a string of binary digits according to a specified format.

PAUSE Executes pause when encountered in a user-defined script.

PCM.DLL
defines the following Tcl command extensions related to controlling the interface board when
implementing a PCM/MPI interface:
acifBrd option value Programs value into the ACIF board hardware. Updates the corresponding element of

the acifBoard associative array. Option identifies one of many registers contained in the
FPGA logic. Each of these registers controls some aspect of the operation of a
PCM/MPI interface.

GCI.DLL
defines the following Tcl command extensions related to controlling the interface board when
implementing a GCI interface:
acifBrd option value Programs value into the ACIF board hardware. Updates the corresponding element of

the acifBoard associative array. Option identifies one of many registers contained in the
FPGA logic. Each of these registers controls some aspect of the operation of a GCI
interface.

