
The following paper was originally published in the
Proceedings of the Sixth Annual Tcl/Tk Workshop

San Diego, California, September 14–18, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

Data Objects

George A. Howlett
Bell Labs Innovations for Lucent Technologies

Data Objects

George A. Howlett
Bell Labs Innovations for Lucent Technologies

gah@bell-labs.com

Abstract
Scripting languages are great for gluing together components, but they suffer as the complexity or size of data scales
upward. Data objects solve this problem by marrying both high-level and low-level programming styles. Data objects
are self-contained representations of data. They define both the structure of the data and the methods to access it.
Data may be accessed through both Tcl and a C interface. This paper will describe two such data objects, a vector
and table object.

Introduction

Scripting languages such as Tcl[1], have been described
as fundamentally changing the way people write pro-
grams, representing a very different style of program-
ming[2]. They let developers rapidly form new
applications from components and pieces of existing
applications. What distinguishes scripting languages
from conventional structured programming languages
(e.g. C, C++, FORTRAN) is that they are high-level,
interpreted, and weakly typed.

Despite their advantages, scripting languages do not
replace structured programming languages. They, in
fact, offer a very different set of trade-offs.

Where Scripting Languages Succeed

Scripting languages make it easy for programmers to
control how components are used. Because program-
ming is done at a high-level, components have simple
interfaces.

Components are identified by strings, not pointer
addresses. Even heterogeneous components can be ref-
erenced and grouped by a simple list of names. Compo-
nents also have well-defined operations that can be used
to access or modify their internal data without requiring
an understanding of how the data is structured.

Scripting languages are usually interpreted, so the flow
of program execution is simple to change and test. It’s

easy to wire applications together quickly or try out new
algorithms.

A good example of high-level components is the Tk
widgets. Widgets are referenced by string identifiers.
They have well-definedconfigure andcget opera-
tions that change widget attributes. (You can change a
widget’s font without knowing anything about the struc-
ture of a Tk font). It’s easy to rearrange widgets or add
and test new behaviors using thebind command.

Where Scripting Languages Fail

Scripting languages are inversely weak where structured
programming languages are strong.

As an application’s data scales from tens to thousands of
elements, scripting languages perform worse than com-
piled low-level languages. Both in terms of performance
and memory utilization, scripting languages carry
greater overhead. For example, a simple array of 10,000
elements in Tcl will use as much memory to store the
indices as the values. Arrays in C have no such over-
head.

Flexibility has a cost. Weak typing requires that data
many times be converted back-and-forth from strings to
native machine types (e.g. ints, doubles). For example,
the time to plot a graph of 10,000 data points is domi-
nated by the string-to-decimal conversions, not the per-
formance of the X server.

Scripting languages lack facilities for structuring and
manipulating complex data. They are, by definition
high-level. You can not easily define new data types,
access pointers, or manage native types.

Side-effects of weak data structuring can be seen in Tk.
Widgets often get used as data containers. For example,
string data is sometimes put into a text widget just to use
its more powerful search and replace operations.

Data also becomes tightly coupled to widgets. Let’s say
you are displaying file directory information in a listbox
widget. You may also maintain several Tcl arrays for
various information fields (owner, date, size, etc.) other
than the file name. Each of these data containers must be
synchronized. If entries are inserted or deleted or the
listbox is itself destroyed, the other data containers must
be likewise updated. Program control becomes increas-
ingly complex and error prone as more parallel data
structures are required.

What Makes a Language High Level?

It is usually in terms of data where scripting languages
fail. In applications data can scale much more quickly
than code size, sometimes by several magnitudes. High
level data abstractions preclude fine-grain access to
data. Furthermore, the overhead of weak typing both
increases memory consumption and slows data process-
ing.

Consider programming languages in terms of how finely
or coarsely they handle data. Figure 1. shows a contin-
uum from high-level command languages to low-level
structured programming languages. High level lan-
guages abstract data to remove details, making control
very simple. Structured programming languages provide
a very fine-grain control of data. Conversely, control is
complicated by the details and complexity of the data
representations.

Data Objects

Tcl was originally designed to be extensible, allowing
you to link your own C code to extend the language by
adding new commands and variables. We can use this
feature to represent data at both programming levels, as
data objects.

Data objects are simply containers for data. They are
objects because each instance represents both a set of
data and high-level operations for querying and modify-
ing that data†.

Programming at Both Levels

At the Tcl programming level, a data object is refer-
enced by its string identifier. Objects can be shared sim-
ply by passing their names. Object data is accessed or
changed through a collection of well-known operations.
Because data operations are written in C code, opera-
tions for data objects run as fast as compiled code.

Data objects also provide a low-level programming
interface. An object’s data can be accessed directly from
its C API, without going through Tcl or converting the
data from a string. For example, widgets may use this
interface to access the data in its native format.

New Direction: Data Object Based System

Imagine a system where data objects are ubiquitous. In
this hypothetical system, data objects are the new cur-
rency for building applications. Standard data objects
automatically work seamlessly with widgets. Extensions
plug together. A database can automatically display its
data in a spreadsheet widget because they both use the
same table data object.

Control Data

FORTRAN

Assembly
Languages

C++ C

UNIX Shells Tcl PerlAWK

Java

Command Languages Scripting Languages

Structured Programming Languages

Figure 1. Programming Languages: Control Versus Data

†. Data objects are object-based. This differs from
object-oriented in that data objects have no inheritance
or ability to define new operations.

The point is not that people want to write low-level
code. On the contrary, if standard data objects became
widely used, many applications could be written by
plugging several large components together.

The BLT toolkit has slowly moved in this direction, rep-
resenting complex data not as strings but by data
objects. BLT currently has two data objects: a vector
object representing an array of numbers, and a tree
object representing a hierarchy. A table object will also
soon be available. Several widgets in BLT work with
data objects as shown in Figure 2. For example, the
hierbox widget can use the tree object for its data.
Note that more than one widget can use the same data
object. Each widget can in turn offer a different view of
the same data.

The following sections will describe both a concrete
example of a data object (the vector object) and a real-
life application built using data objects.

Example: Vector Objects

Originally the only way to pass X-Y coordinates to the
BLT plotting widgets was as Tcl lists (-xdata and
-ydata options). Internally, the graph processes the
string data, converting it into an array of doubles.

Data values
set x { 0.2 0.4 0.6 0.8 1 1.2 }
set y1 { 11 21 28 34 38 39 }
set y2 { 26.2 50.5 72.9 93.3 112 128 }
barchart .b

Add two new elements to the graph
.b element create e1 -xdata $x -ydata $y1
.b element create e2 -xdata $x -ydata $y2

This is inefficient in terms of memory. The same data
points are stored in two different formats: Tcl lists and
binary data. It’s also inefficient in terms of performance.
It’s not usual to plot thousand of data points. New coor-
dinates may also be added over time. Each time new
data points are added to the list, the entire list must be
converted from decimal strings to double precision val-
ues.

Tcl arrays can’t be used because there is no implied
ordering to associative arrays. Especially for plotting,
you need to insure the second data point comes after the
first, and so on. This isn’t possible since arrays are
really hash tables. Also, associative arrays consume
memory because both the index and value are stored as
strings for each data point.

Tree Objects

.h2 configure -tree myTree

.h3 configure -tree myTree

tree create myTree

myTree

Vector Objects

v1

x

sin cos

y2y1

y3
Table Objects

myTable

Figure 2. Data Objects in BLT

A worse problem is that data is tightly coupled to the
widget. Data selection and analysis are important parts
of plotting. Every data operation requires coordinate
data to be translated from Tcl strings.

One alternative to is add selection and analysis functions
to the widget itself (e.g. text widget). It seems the
“essential” set of functions is always increasing. The
danger is that as the widget grows in complexity and
code size, it becomes monolithic. The focus of the wid-
get shifts from displaying data to managing it.

Vector Data Object

Instead thegraph andbarchart widgets use vector data
objects. A vector object simply represents an array of
doubles, indexed by integers. The-xdata and
-ydata options of the graph recognize vector names.
The graph directly accesses the vector object’s data in
its native format.

vector create x y1 y2
x set { 0.2 0.4 0.6 0.8 1 1.2 }
y1 set { 11 21 28 34 38 39 }
y2 set { 26.2 50.5 72.9 93.3 112 128 }
barchart .b
.b element create "e1" -xdata x -ydata y1
.b element create "e2" -xdata x -ydata y2

Vector objects have a variety of interfaces. They are
shown in Figure 3. From Tcl, vector object data is
accessed through a variable or command. Vector objects
also can be extended by user-defined C code.

Vector objects are created with thevector command.

 vector create v1

A new vectorv1 is created. At the same time, both a Tcl
command and Tcl array variablev1 are also created.

Vectors can be used like Tcl arrays. Vectors are indexed
by integers, starting from zero. When elements of the
array are read, set, or unset, the corresponding elements
in the vector are accessed.

set v1(0) 1.2
set v1(1) -1.0
set v1(2) 3.1415
puts “1st element of v1 is $v1(0)”
unset v1(1)

The advantage of mapping an array to the data object is
that it makes vector data appear and act like ordinary
data in Tcl.

The vector’s Tcl command can be used to access or
modify elements, invoking one of several operations.
For example, thedelete operation removes elements
by their index.

Delete the first element
v1 delete 0

Theexpr operation performs arithmetic on vector.

v1 expr { v1 * (v2 + 10) }
v3 expr { sin(v2)̂ 2 + cos(v1)̂ 2 }

It’s important to note that data objects providehigh-level
operations. This is different than translating low-level C
or C++ code into Tcl. For example, to find numbers that
lie in a certain range, I could write a loop that builds a
new list. In fact, the code isn’t very different than if this
was programmed in C.

Low-level Interfaces

vector object

High-level Interfaces

widgets

Custom C code
Add the new time point
x append [incr time]
y append $value
Remove the least recent point
if { [x length] > 60 } {
 x delete 0; y delete 0
}

set v1(0) 1.2
set v1(1) -1.0
set v1(2) 3.1415
puts “1st element of v1 is $v1(0)”
unset v1(1)

Tcl variable

Tcl command

Blt_Vector *x, *y;

if ((Blt_GetVector(interp, argv[2], &x) != T

 (Blt_GetVector(interp, argv[3], &y) != TCL _

Figure 3. Vector Object Interfaces

set len [v1 length]
for { set i 0 } { $i < $len } { incr i } {

if {($v1($i) < $lo) && ($v1($i) > $hi)} {
lappend values $v1($i)

}
}

The vector object instead provides a simple, high-level
search operation.

set values [v1 search -value $low $high]

Vectors can be converted to and from strings (lists). The
set operation sets the values of the vector from a list.
The range operation returns a list of vector elements
between two indices.

Set the vector from a string.
set list { 1.1 0.0 2.3 4.4 -1.0 }
v1 set $list
Set the string from the vector.
set list [v1 range 0 end]

C API

No matter how many built-in operations a data object
may have, it’s likely that some functionality will always
be missing. Data may need to be read in from a specific
file format. Special calculations may be required. There-
fore objects themselves need to be extensible.

A vector object’s data can also be accessed from C using
its library API. In the same way that Tcl is extensible,
new code can be written to manipulate vectors in ways
not available from its Tcl interface For example, the
spline command in BLT uses vectors to create inter-
polating splines. Listing 1. shows an example of the C
API to multiple to vectors together.

Vector Notifications

Vectors provide a hook or callback to notify clients
(such as the graph or barchart) when the vector data
changes. Notifications usually as occur as idle tasks, but
this can be user-controlled.

Notification occurs automatically, no matter how the
vector was changed: via the vector’s Tcl command,
array variable, or C API. You can therefore separate the
data processing portion of your application from the
GUI.

For example, a graph that displays only the last 60 time
points can be built using a barchart and a pair of vector
data objects to hold the X-Y coordinates. As new data
arrives, the new time point is appended to thex andy
vectors. If there are more than sixty time points, the
oldest is removed.

Blt_Vector *xVec, *yVec;
int i, length;
double *x, *y;

/* Get the two vectors to multiple.*/
if ((Blt_GetVector(interp, argv[2], &xVec) != TCL_OK) ||

(Blt_GetVector(interp, argv[3], &yVec) != TCL_OK)) {
 return TCL_ERROR;

}
length = Blt_VecLength(xVec);
/* Check that the vectors are the same length */
if (length != Blt_VecLength(yVec)) {

 Tcl_AppendResult(interp, "vectors ", argv[2], " and ", argv[3],
" have different lengths",(char *)NULL);
return TCL_ERROR;

}
/* Allocate result array and compute the product */
array = (double *)malloc(legnth * sizeof(double));
x = Blt_VecData(xVec), y = Blt_VecData(yVec)
for (i = 0; i < length; i++) {

 array[i] = x[i] * y[i];
}

/* Update the vector so it knows that its data has changed.
Old data will* automatically be freed. */
if (Blt_ResetVector(yVec, array, length, length, TCL_DYNAMIC) != TCL_OK) {

return TCL_ERROR;
}
return TCL_OK;

Listing 1. Example of Vector Object C API

Add the new time point
x append [incr time]
y append $valuea
Remove the least recent point
if { [x length] > 60 } {
 x delete 0; y delete 0
}

There is no code to synchronize the barchart. It’s not
needed. The chart is redrawn automatically. The bar-
chart sees the new values because it shares the vector’s
data instead of making its own internal copy. While sev-
eral graphs can use the same vector, there will be only
one copy of the data.

Vector Performance

Since vectors are very simple data types, they can be
compared with Tcl lists.

Numeric values were read into a variabledata and
arithmetic was performed on those values. The vector-
based examplevector.tcl is listed below.

vector create a b c d x
a set $data
b set $data
c set $data
d set $data
x expr { a * b + c * d }
x expr { a + b * c + d }

For lists, both byte-compiled (8.0) and pure-interpreted
(7.6) versions of Tcl were tested. Vector operations are
written in C code, so they are unaffected by the byte-
compiler. The following examplelist1.tcl replicates the
vector example, this time using lists. The procedures
add andmult perform arithmetic on lists.

proc mult { list1 list2 } {
set len1 [llength $list1]
set len2 [llength $list2]
if { $len1 != $len2 } {

 error “lists are different lengths”
}
foreach e1 $list1 e2 $list2 {

lappend result [expr $e1 * $e2]
}
return $result

}

proc add { list1 list2 } {
set len1 [llength $list1]
set len2 [llength $list2]
if { $len1 != $len2 } {

error “lists are different lengths”
}
foreach e1 $list1 e2 $list2 {

lappend result [expr $e1 + $e2]
}
return $result

}
set a $data
set b $data
set c $data
set d $data
set x [add [mult $a $b] [mult $c $d]]
set x [add [add $a [mult $b $c]] $d]

Another version,list2.tcl, is included below. The only
difference is that theadd and mult routines are
replaced by a generic procedurecalc . The operator is
passed as an argument.

proc calc { list1 op list2 } {
set len1 [llength $list1]
set len2 [llength $list2]
if { $len1 != $len2 } {

 error “lists are different lengths”
}
foreach e1 $list1 e2 $list2 {

lappend result [expr $e1 $op $e2]
}
return $result

}
set a $data
set b $data
set c $data
set d $data
set x [calc [calc $a * $b] + [calc $c * $d]]
set x [calc [calc $a + [calc $b * $c]] + $d]

Each test was run using an increasing number of values.
The time (in seconds) for each test is listed below.

The improvement of (byte-compiled) Tcl 8.0 over Tcl
7.6 is striking. Not surprisingly though, vectors out per-
form both the byte-compiled and non-compiled versions

Number of Values

1,000 10,000 100,000

7.6 list1.tcl 0.60 secs 5.3 secs 59.5 secs

7.6 list2.tcl 0.63 5.6 62.3

8.0 list1.tcl 0.27 1.7 21.4

8.0 list2.tc l 0.90 8.0 85.3

vector.tcl 0.16 0.6 10.5

of Tcl using lists‡. Vector operations written in C code
will generally have less overhead than byte-compiled
code. Forvector.tcl, the read in and string-to-decimal
conversions were the greatest portion of the time spent,
not the arithmetic.

Application: Parameter Extractor

A parameter extractor compares the behavior of a model
of an IC circuit to measured results from real devices. A
model is a set of equations (written in a structured pro-
gramming language like C or FORTRAN) that given
input voltages, returns an output current. Models also
have parameters, such as temperature and device size,
that affect its calculations.

The job of a parameter extractor is to evaluate the model
of a circuit repetitively, bumping parameter values up
and down in a way that minimizes the error between the
model’s outputs and measured data. The end product is a
set of model parameters that best reflect the real devices.

This a computationally hard task. There can be thou-
sands of measured data points. Models can have scores
of parameters, allowing many degrees of freedom. Com-
plex or over-parameterized models may exhibit multiple
local minima. One method to stabilize the extraction

process is to limit the number of the parameters that can
be altered. It may also be desirable to constrain the
parameters to lie in certain ranges (e.g. a resistance must
be positive). How one selects initial parameter values,
their constraints, and representative data regions matter
greatly.

High-level Programming?

Such compute-intensive tasks are usually the domain of
low-level structured programming languages. The
extraction step requires speed and numeric precision.
But data selection and filtering is an equally important
aspect of the application. The extractor must manage the
various inputs (voltage, temperature, etc.) and the out-
puts (currents returned from a particular circuit). Addi-
tionally the model parameters must also be coordinated.
Scripting languages are better at controlling how and
where data is used. For parameter extraction, this is
especially useful to experiment with different heuristics
or wire in new models.

Camelot Parameter Extractor

The Camelot parameter extractor developed at Bell Lab-
oratories, lives in both programming worlds. Figure 4.
shows a snapshot of the application. The currency of the
application is a table data object.

The table data object represents a dynamically resize-
able table of values. Rows and columns of the table can
be selected, sorted, duplicated, etc. Each row and col-
umn has its own label and can be used just as a vector.
For example, you can plot different columns of values.

‡. The results oflist2.tcl demonstrate the penalties of
dynamic code. Because the operator (* or +) was passed
as an argument to thecalc procedure, the Tcl 8.0 inter-
preter was unable to fully compile the procedure. As a
result, it is slower than the Tcl 7.6 interpreter.

Figure 4. Snapshot of Camelot Parameter Extractor

The code below creates a new table objectd0 . A new
Tcl commandd0 is also created that can be used to
access the table of data from Tcl. Table objects have
several generic operations. Theread operation reads
tabular ASCII data from a file into the object. Thecol-
umn extend operation adds a new column to the table.
The column label operation sets the label for col-
umns.

table d0
d0 read sh.data
d0 column extend 1
d0 column label 2 VGS
d0 column label end IDSHAT

During the extraction process the model will write its
outputs into the table. Models can be evaluated thou-
sands of times during an extraction step. The outputs are
later compared against the measured outputs to deter-
mine the fit. For example, a MOS model may store the
modeled currents (IDS) in the last column of the table.
Models are quickly evaluated because the table object’s
data structure is immediately available through a C API.

Filtering and selecting of data are done from the table’s
high-level programming interface††. Theselect oper-
ation, chooses all rows that match a vector expression.
In this case, we are looking for rows where columnVGS
is equal to$value .

d0 row select { VGS == $value }
d0 dup d1

The dup operation creates a new table objectd1 that
contains only the selected rows ofd0 .

Parameters are stored in a second table object. It con-
tains various parameter information; the initial and cur-
rent parameter values, the minimum and maximum
bounds, etc.

A new table objectp0 is created.

table p0
p0 read sh.pars

The parameters filesh.pars is then read into the
table. The file contains the following information.

NAME INCLUDE MIN MAX NOMINAL
BETA 0.0 25e-4 1e-4 50e-4
LAMBDA 0.0 0.0 0.0 0.1
VTH 0.0 0.8 0.4 1.2
DELTA 0.0 0.0 0.0 1.0
ATS 0.0 7.0 2.0 40.0
AST 0.0 15.0 2.0 50.0
RST 0.0 0.05 0.000001 1.0
NST 0.0 1.1 1.01 4.0
THS 0.0 0.0 0.0 0.5
THC 0.0 0.0 0.0 1.0

The first column is the parameter name. The second col-
umn is the inclusion status of the parameter. If the value
is 0.0, the extractor will not adjust its value. The third
and forth columns are the bounds of the parameter. The
last column is the initial parameter value.

To run the extractor, you select data and the parameters
that you wish to optimize. Theextract command
runs the extractor using the two table objects. The
resulting new set of parameters will be appended as new
column inp0 .

d0 row select { IBL == 3.0 }
d0 dup d1
extract d1 p0

Since data objects are easily connected to widgets, the
new parameters are automatically displayed in a table
widget. The parameter fits are plotted in the graph wid-
get.

The table objects act as a go-between to the high and
low-level programming worlds. Like many applications,
Camelot benefits from working at both levels.

Conclusion

Data objects act as basic application building blocks.
The high-level Tcl interface allows large numbers of
objects to managed easily. Built-in operations let the
user accomplish most data transformations from the Tcl
level. The C level interface allows specialized code to be
performed by revealing the object’s internal data.

Two examples of data objects are vectors and tables.
They both represent common data structures for many
applications. The idea or utility of these objects is noth-
ing new. Interactive statistical programming languages
such as S[3] or MATLAB have demonstrated the power
of vector and matrix programming for many years.
What is new is how these objects can be applied to very
high-level languages such as Tcl to solve a wide class of
performance problems and to simplify interactions with
data.

††. It is interesting to note that while custom C code
tends to be application specific, the high level Tcl filter-
ing and selection operations are generic.

Several questions remain open. What are the standard
data objects? What like of low-level API is required? Is
a better object system, such as [incr Tcl] required?

The hope is that if a set of objects becomes ubiquitous,
it will form the basis for large plug-able components.
These components would in turn become the building
blocks for greater applications.

References
1. J. K. Ousterhout,Tcl: An Embeddable Command

Language, Proceedings of the 1990 Winter
USENIX Conference, 1990, pp. 133-146.

2. J. K. Ousterhout, “Scripting: Higher-Level Pro-
gramming for the 21st Century” , Computer, March
1998, pp. 23-30.

3. R. A. Becker, J. M. Chambers, A. R. Wilks,The
New S Language, Wadsworth & Brooks/Cole,
Pacific, CA. 1988.

