
The following paper was originally published in the
Proceedings of the Sixth Annual Tcl/Tk Workshop

San Diego, California, September 14–18, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

Charity Telethon Supported by Tcl/Tk

Dave Griffin
Compaq Computer Corporation

Charity Telethon Supported by Tcl/Tk

Dave Griffin
Compaq Computer Corporation

Abstract

A set of Tcl/Tk Version 8 scripts supports a telethon
that raises money for needy families. This paper
describes the system and how it was constructed.
Because the system uses nearly every major feature
of the Tcl and Tk system, including the Tcl web
server, this paper serves as an example that empha-
sizes the power of universal scripting in both the
development and deployment of a distributed sys-
tem.

Introduction

For the past 19 years in Maynard, Massachusetts, the
local high school radio and television station,
WAVM, stages a telethon to raise money for a local
charity supporting needy families in the area. This
annual community event culminates in a 40-hour,
non-stop television telethon, which includes live
auction segments taking place throughout the event.
The telethon weekend is staffed by over 100 stu-
dents (from 6th through 12th grade), parents, and
other community members.

In 1992 a (then) new network and VAX/VMS com-
puter system had been installed at the high school
where the telethon originates. The author wrote the
first telethon auction support program in some ear-
lier scripting languages: DCL (Digital Command
Language) and GNU awk. This program served the
telethon well, but was an absolute nightmare to
maintain. It was also dependent on hardware (VAX
4000 and VT420 “dumb” terminals) that has a lim-
ited future within the school system.

For the 1997 WAVM Telethon, I decided that it was
time to free ourselves from the trusty VMS-based
system and move to a system that took advantage of
the PCs, servers, and network infrastructure that has
grown over the past 5 years. WAVM’s Web de-
partment was also growing rapidly and, for the first
time, taking a major role in the telethon’s presenta-
tion to the public. So, we were interested in inte-
grating facets of the auction to an unknown Internet
audience.

I was prepared to develop the whole system myself,
but a fellow Tcl hacker wanted to learn more about
Tk and offered to help. However, his time was lim-
ited. This situation was further complicated by his
taking a new job at another company–which meant
that our communication would be primarily through
e-mail. We opted for a simple-but-flexible archi-
tecture that takes advantage of the computing infra-
structure at the school, as shown in the following
diagram:

Fig. 1 – Architectural View

Even a “midnight” project needs priorities and we
set them early on, as follows:

1. Support the auction. Provide programs to
maintain the inventory of donated items and ac-
cept bids made over telephones during the tele-
thon.

Database
Server

Message
Switch

tclhttpd
Web Server

Internet

studio

Telethon Computer Station Manager

Bidding Inventory Maint.

teleprompter

2. Keep the studios in touch with the auction. The
first priority here was a way of letting the tele-
thon hosts know the current top bids.

3. Make managing the telethon easier on the studio
floor managers and on the adult support team.
This includes reports, real-time monitors, etc.

4. Integrate the World-Wide Web with telethon
activities--particularly the auction. (In parallel
with all this work, we were preparing to
webcast the full 40-hour telethon live via Real-
Video.)

The Database Server

The first component to be constructed was the data-
base server. I initially considered using the Alta-
Vista Forum Toolkit [1], because it had a built-in
database manager with journalling, and I was also
very familiar with the interface. I did not consider
other database packages (for example, MySQL) be-
cause I had no prior experience with them (and I
didn’t really have time to evaluate and select one).
Plus it would require compilation and testing for my
target platforms (Intel & Alpha). The AltaVista
Forum software is based on Tcl 7.6–another minus. I
opted to use a 100% Tcl approach, using the Tcl 8.0
release to construct a simple in-memory database
with journalling for reliability [2].

The auction database consisted of three datasets: the
items, the callers, and the bids. Each dataset had
unique characteristics in terms of access and proc-
essing, but they all required common storage man-
agement and journalling/recovery features. (A wind-
storm in 1993 knocked out power during the middle
of a telethon, so reliability features were historically
mandated.)

Each dataset was given its own Tcl namespace
within which to work. Database operations such as
Add, Remove, etc., were implemented as Tcl proce-
dures within the namespace. Because the total esti-
mated size of the database was under a megabyte,
the data for each dataset was stored in memory (as a
Tcl array or list). This decision provided the server
with a very high-performance base on which the
reliability features were built.

It is interesting to note that while the Items and
Callers datasets were implemented as one or more
arrays that provided keyed access to the records, the

Bids dataset was implemented as a simple Tcl list.
Tcl 8 list operations are orders of magnitude more
efficient than previous versions, and accessing ele-
ments of a list with 1000+ members consumes very
little processing time. Based on historical data from
the old system, we calculated an upper limit of
2,000 elements for any one list or array. So, we were
well within what Tcl could efficiently manage using
this simple approach to databases.

A single set of Tcl procedures implemented com-
mon operations such as Open, Close, Create Check-
point, and Recover. These procedures were entered
into each dataset’s namespace (eval), where they
merged with the other dataset-specific operations.
This technique simulates an object-oriented inheri-
tance operation, greatly reducing the amount of code
needed for each dataset. The following figure shows
all of these common methods as implemented in the
database server:

Set CommonDBMethods {

 proc Checkpoint {} {
 variable dbInfo
 variable fileBase
 variable tlogFile
 close $tlogFile
 incr dbInfo(version)
 Save $fileBase.check$dbInfo(version)
 set_file $fileBase.tlog$dbInfo(version)
""
 set tlogFile [open $file-
Base.tlog$dbInfo(version) a]
 set_file $fileBase.info [array get
dbInfo]
 }

 proc Open { dbname } {
 variable fileBase
 variable tlogFile
 variable dbInfo
 variable inRecovery
 set inRecovery 0
 set fileBase $dbname
 array set dbInfo [get_file $dbname.info]
 Load $dbname.check$dbInfo(version)
 set tlogFile [open
$dbname.tlog$dbInfo(version) a+]
 if {[file size
$dbname.tlog$dbInfo(version)] > 0} {
 Recover
 Checkpoint
 }
 }

 proc Create { dbname } {
 variable fileBase
 set fileBase $dbname
 set_file $dbname.info "version 1"
 set_file $dbname.check1 ""
 set_file $dbname.tlog1 ""
 Open $dbname
 }

 proc Close {} {
 variable tlogFile
 Checkpoint
 close $tlogFile
 }

 proc TLog { tx } {
 variable tlogFile
 variable inRecovery
 if {$inRecovery} return
 puts $tlogFile $tx
 flush $tlogFile
 }

 proc Recover { } {
 variable fileBase
 variable tlogFile
 variable dbInfo
 variable inRecovery
 log recover "Recovering a database..."
 set inRecovery 1
 seek $tlogFile 0 start
 set tx ""
 while {[gets $tlogFile tLine] >= 0} {
 append tx $tLine
 if {![info complete $tx]} {
 append tx "\n"
 continue
 }
 log recover "/$tx/"
 eval $tx
 set tx ""
 }
 set inRecovery 0
 }

}

The common methods maintain a so-called .info
file for each dataset, which coordinates the version-
ing of journal and checkpoint files.

The journalling and recovery feature exploits the
“data represented as scripts” philosophy [3]. The
lowest level database operations are implemented as
Tcl procedures. The procedures that modify the
database simply “record themselves” in the journal
file as a Tcl script, as in the following example:

proc Items::SetRaw { key data } {
 variable items
 variable topKey
 set items($key) $data
 TLog [list SetRaw $key $data]
 if {$key > $topKey} {set topKey $key}
 return ""
}

When the database server shuts down, each data set
will save a copy of itself to disk (checkpoint). This
is as simple as puts -nonewline $chan [array get

items] . When a database is opened, the latest
checkpoint file is read into memory. Any transac-
tions in the journal are then replayed by reading in

the procedure calls and evaluating them, thus reap-
plying the missing transactions.

A fourth namespace, called “Tx”, holds all the pub-
lic transaction methods, again implemented as Tcl
procedures. A Tcl socket connection manager ac-
cepts incoming TCP/IP connections. Upon receipt of
a connection it then sets up a fileevent with the
Tx::tx procedure called whenever the channel is
readable. The database server implements a very
simple protocol that allows the movement of arbi-
trary amounts of data. For both requests and re-
sponses, the data length is sent first (terminated by a
linefeed), followed by the data.

The entire database server is implemented as an
850-line Tk script, which also provides a logging
window for database events, a checkbox to enable
debugging instrumentation, and a master switch to
enable or disable bidding. The latter is used to as-
sure that none of the bidding stations can accept bids
until the auction officially starts. (The author could
be seen running across the room in a panic at the
start of the auction, because the first phone call had
arrived but this “master switch” had not yet been
thrown.)

The Auction

An auction is divided into 3 phases and there is spe-
cific software devoted to each phase.

Prior to the 40-hour telethon event, the focus is on
entering new auction items into the database and
tuning up the caller database; we developed some
Tk scripts to handle these activities.

During the auction three to five “bidding stations”
are active. These stations are manned by students
who answer phone calls and process the bids. Spe-
cial care was taken in the design of the bidding sta-
tion’s Tk interface to keep the flow of questions and
responses easy to manage with a minimum of typ-
ing. This is particularly important when you have a
phone in the one hand and the knowledge that many
people are trying to call it at the same time. Care
was also taken to allow backtracking and quick re-
setting in case the caller (or the student at the sta-
tion) “got lost.”

A number of Tk scripts support the auction by al-
lowing the auction management team the ability to
keep track of the bidding, providing statistics to the

telethon managers, and opening and closing bidding
on individual or groups of auction items. The man-
agement scripts were fine-tuned during the telethon
(one or two reporting scripts were actually written
during lulls in the action).

After the telethon signs off the air, a team of adults
and students use the various parts of the system to
reconcile the paper and computer-based records to
designate winners for all items.

All of these scripts were under the control of an
“umbrella” script, which did a simple password
check and gave access to a subset of the capabilities
as needed. This script would dynamically load
(source) in the particular program needed from a
master network file share.

Supporting the Studios

Two television studios used during the telethon. We
needed a way of relaying current bid information to
the on-camera telethon hosts in a smooth and inob-
trusive manner regardless of which studio they
might be in. During the course of developing this
capability it became apparent that a powerful and
flexible system could easily be constructed to pro-
vide this critical information and potentially much
more.

A “message switch” Tk script was designed to run
during the entire telethon, much the same way the
database server was always available. The message
switch would accept messages via the standard
socket and fileevent mechanisms. These messages
could either listen for messages or leave a message.
Every time a message was left, its payload would be
the response for any outstanding listen messages.
This was done by the listen transactions doing a
vwait on the message number, which was incre-
mented by the leave message. The following procs
implement the core functions of the message switch:

proc connHandler { chan ipAddr port } {
 global activeChannels
 log conn "Starting channel $chan"
 fconfigure $chan -blocking no
 fileevent $chan readable "request $chan"
 set activeChannels($chan) "open"
}

proc request { chan } {
 global activeChannels
 fconfigure $chan -blocking no
 if {[gets $chan rqst] < 0} {
 fileevent $chan readable ""
 close $chan
 log conn "Closing channel $chan"

 unset activeChannels($chan)
 return
 }
 log debug "Tx $chan: $rqst"
 # Execute transaction (unsafely)
 if {[catch {eval $rqst} err]} {
 response $chan [list ERROR $err]
 }
 catch {flush $chan}
}

proc response { chan data } {
 if {[catch {puts $chan $data} err]} {
 log debug "Response Error: $chan"
 } else {
 log debug "Sent $chan data: $data"
 }
}

proc listen {} {
 upvar chan chan
 global messageNumber
 global lastMessage
 vwait messageNumber
 response $chan $lastMessage
}

proc leave { text } {
 upvar chan chan
 global messageNumber
 global lastMessage
 set lastMessage $text
 incr messageNumber
 response $chan \
 "Message $messageNumber sent"
}

The mechanism was very simple and did not attempt
to provide any guarantees regarding message deliv-
ery, but it was more than sufficient for the task.

Two other scripts were written to communicate with
the message switch. The first script acted as a
transmitter, which could relay arbitrary text from the
keyboard to the switch, or it could perform a simple
database lookup (to the database server) and send
the results to the message switch.

The final script was the Tk “teleprompter.” Copies
of this script were run in the two television studios
with the computer monitors placed on top of the
television “talent” monitors. Each teleprompter had
a pull-down menu which allowed it to designate
where it was located. This allowed it to screen out
messages that were not intended for it (the trans-
mitter scripts could optionally designate where it
wanted the messages to appear). Using very large
fonts, the teleprompter script displayed the current
bids and any other text messages for the on-camera
students. Once the PC was set up with this script, it
was left to run unattended for the duration of the
telethon.

The transmitter scripts were run on a few computers
in the studio area and in the main control room.
These were staffed by students allowing the on-
camera students to call out the number of an auction
item that was being discussed and have the latest bid
information immediately available on the tele-
prompter.

When no messages were received by the tele-
prompter for approximately a minute, an after event
would display a “countdown clock” of how many
hours were left in the telethon.

Bringing the Auction to the Web

Although providing a Web interface was desirable,
it was pretty much last on the priority list. Fortu-
nately, I had the opportunity to be using the Tcl web
server [4] in a separate project, so it appeared that
integrating an auction inventory query facility would
be relatively straightforward.

A “Telethon” package was constructed that provided
the code for a small set of URL mappings. Like the
database server, a separate namespace was estab-
lished to hold the Telethon package’s context (e.g., a
shared TCP/IP connection to the database server).
It’s primary job was to issue database transactions
and to format the results in HTML.

The ability to look up individual items, or get re-
ports on multiple items turned out to be convenient
for everyone. Because Tcl/Tk’s print support is a bit
weak, we made our reports available via the web
server (or generated them in HTML), and let the
browsers do the formatting and printing for us.

An interface to the message switch was also created
to allow Internet viewers to interact with the stu-
dents. However, there was insufficient time to fully
develop and test the capability. So, we dropped back
to using e-mail for feedback.

Results: Trial By Fire

The telethon would eventually utilize at least thir-
teen computers deployed in various rooms and stu-
dios. Given our limited resources and fixed sched-
ule there was not much time for testing the system in
the “all up” configuration. Critical components like
the database server were unit tested by test harness
scripts, to flush out any bugs and to validate that the
performance was acceptable.

Much to our delight, the software performed nearly
flawlessly. A few glitches in the bidding station
program were corrected on the fly during a lull in
the auction. The database and message servers ran
non-stop and easily handled the load placed upon
them. Nearly 500 items were entered into the auc-
tion inventory, and we accepted about 1,500 bids.

During the 40-hour telethon, the database server
processed 25,213 transactions. The message switch
routed 2,848 transactions to the various stations in
the studios.

Our custom web server was an unexpected bright
spot. We really were not sure if the idea of using
the Internet for a local event such as ours would
attract anyone. During the telethon, just over 7,800
web transactions were processed, with a number of
small updates to the program applied on-the-fly and
no interruptions in service. Feedback received dur-
ing the auction was universally positive for this
service, and we reached people far outside the nor-
mal broadcast range. For the short amount of time it
took to make it all work, this was well worth the
effort.

Construction Notes

The true “script once, execute anywhere” was criti-
cal to the timely development of the software. This
is highlighted by two observations:

1. The author has no information about the plat-
form on which his partner developed and tested
the bidding program. The scripts arrived as at-
tachments to e-mail messages, which were
saved to the testing area and used immediately.

2. While the systems used for actual telethon op-
erations varied between Intel and Alpha, and
between Windows NT and Windows 95, a ma-
jor portion of the development of this distrib-
uted system was done while in the passenger
seat of the family car on a standalone Win95
laptop. Also, portions of the custom web server
were tested on a Digital UNIX system.

We never had to think twice about whether or not
the scripts would behave properly when they ran on
the different platforms. The only difference that had
to be accounted for was font-size specifications re-
quired by different screen resolutions. This problem
was taken care of by implementing a pull-down

menu of base font-size preferences on the programs
where it mattered.

Because all of the auction stations accessed the
scripts via a network file share, on-the-fly bug fixes
and updates were immediately available to the sim-
ply by closing and re-opening the appropriate win-
dow and letting the umbrella script re-source the
application. At least one important bug fix was
“distributed” to the stations in between phone calls.

Coding started almost exactly one month before the
telethon. It took roughly 40-60 hours of work to
design, code, and test the system up to the time the
telethon went on the air. Another 2-3 hours of work
was invested during and after the telethon to handle
unanticipated issues.

Reuse of existing scripts and code, such as the Tcl
web server, made it possible to add new features
quickly as they became necessary. The decision to
build the database server “from scratch” rather than
to use a more traditional database server did not
adversely affect the project. An analysis of the data-
base server shows that roughly 325 lines of code
actually implement the core database functions; the
remaining code would have been necessary even if
an SQL database was used instead.

Summary

Our telethon raised over $36,700 for local needy
families, with the auction bringing in nearly $9,600,
both amounts were new all-time records.

Tcl/Tk was instrumental in providing a modern,
robust system on which future telethons will build.
Tcl 8.0’s performance, customizable web server, and
platform independence were key assets in allowing
an organization without significant resources to con-
struct a distributed auction manager.

With the success of the telethon behind us, we are
exploring how to apply this technology to day-to-
day station operations. Our first task was to create a
way to switch our webcasting services on and off via
the web server. For upcoming telethons we will
explore increasing the interaction between the web
audience and the studios (messages, challenges,
etc.), perhaps with limited auctioning occurring on
the web itself (without SSL we need to find a way of
easily authenticating bidders). One thing is for cer-

tain, the WAVM Telethon will continue to be “Tcl
Powered”.

References

[1] David Griffin. “Tcl in AltaVista Forum”, 5th An-
nual Tcl/Tk Workshop Proceedings, 1997

[2] Andrew Birrell, Michael Jones, and Edward
Wobber. “A Simple and Efficient Implementation
for Small Databases”, Digital SRC Research Report
24, 1988

[3] John Ousterhout. “Tcl and the Tk Toolkit”,
Section 28.4., Addison-Wesley 1994

[4] Brent Welch and Steven Uhler. “Web Enabling
Applications”, 5th Annual Tcl/Tk Workshop Pro-
ceedings, 1997

