
The following paper was originally published in the
Proceedings of the Sixth Annual Tcl/Tk Workshop

San Diego, California, September 14–18, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

Visualizing Personal Web Caches with Caubview

Charles L. Brooks, GTE Internetworking
Murray S. Mazer, Curl Corporation

Frederick J. Hirsch, The Open Group Research Institute

Visualizing Personal Web Caches with Caubview

Charles L. Brooks
GTE Internetworking
clbrooks@bbn.com
Murray S. Mazer
Curl Corporation
mazer@curl.com

Frederick J. Hirsch
The Open Group Research Institute

f.hirsch@opengroup.org

Abstract

Caubview is a companion visualizer for the Caubweb
system: Caubweb enables a user to create a local
collection of Web documents to read and update when
disconnected. Caubview allows the visual selection of
alternative views of the cache as well as reorganizing
and restructuring these views. This paper describes our
ongoing work on the Caubweb system, focusing on its
visualization component, Caubview. We describe the
relationship between these two systems, how we
developed Caubview by re-using code from the
HistoryGraph application, our results, and our plans
for further development. We further describe our
experiences using Tcl/Tk as the development language
and "programming culture" for these applications, and
indicate how ongoing developments in Tcl/Tk have
influenced our work. We conclude with some
observations concerning our future use of Tcl/Tk, and
recommendations for ongoing efforts for the Tcl/Tk
community.

Introduction

We have been working with Tcl/Tk for over two years,
building systems to simplify and improve a user’s
experience of the World Wide Web. We started with
the HistoryGraph visualizer, a tool designed to
automatically capture and display a user’s browsing
history in a tree, and allow manipulation and use of the
representation. We then modified and reused this code
to provide a visualizer for a more ambitious Tcl/Tk
project, Caubweb. The Caubweb system is designed to
provide disconnected Web access through the use of
cached Web resources. The Caubweb system includes
Caubview, the visualizer, and Cobweb, a library of
reusable Tcl/Tk components.

Tcl/Tk initially gave us a rapid development
environment as well as platform portability and
extensibility. As the system became larger and more
complex over time, Tcl/Tk also introduced some
difficulties. A major issue has been the lack of
compatibility from one Tcl/Tk implementation to the
next (as an example, the TkNT4.0 supported both a
send and a DDE command under Windows/NT: both
these capabilities disappeared when we moved to
Tcl7.6/Tk4.2). Initially we found the need to build
custom Wish’s for different extensions cumbersome,
and we are pleased to now be able to use dynamic
loading of libraries. As the system became larger,
naming became an issue. Although the namespace
facility in Tcl 8.0 solves this problem, we have a large
body of older code to re-write. Writing object-oriented
code has also been an issue. We used the obTcl
extension because it was a pure Tcl implementation,
but now [incr Tcl] seems to be the object system of
choice (and obTcl is no longer actively supported).
Converting to Tcl/Tk 8.0 was relatively painless, and
the improvements are noticeable. Native look and feel
helps meet our portability goals, and several other
problems have been solved. At this time, it is difficult
to decide in retrospect if we should have used Perl or
some other choice instead of Tcl/Tk. The answer
really will depend on what happens with the next
release of Tcl/Tk, as well as ongoing work in the Java
space with Jacl and Tcl Blend.

This rest of this paper discusses the development of
the Caubview visualizer, how Tcl/Tk helped and
where it raised issues, and how we addressed these
issues by writing specialized Tcl/Tk code or using
extensions. We conclude by summarizing some
general issues with the Tcl/Tk "culture" (such as
missing features, the release process, and a CPAN
(Comprehensive Perl Archive Network

[http://www.perl.com/CPAN/]) equivalent), and
discuss alternatives to Tcl/Tk, such as Jacl and the
Java Foundation Classes (Swing).

Background

Caubview began it’s existence as a way to visualize
and manipulate the resources contained in a Caubweb
cache: it sprang to life as a quick re-write of the
HistoryGraph [Hirsch97a] application, in combination
with the Cobweb libraries. Since that time (May
1997), Caubview has become an important application
in its own right, particularly in the viewing of shared
caches amongst various cooperating Caubweb systems.

Caubweb and Caubview were written in Tcl/Tk from
the beginning. Tracking the various Tcl/Tk releases
over the life of this project has been both frustrating
and rewarding. Choosing Tcl/Tk was not only a choice
of a programming language, but a choice of a
programming "culture", complete with local idioms,
beliefs, attitudes, and styles. The story of Caubview
and Caubweb can’t be told without focusing on Tcl/Tk
as well.

Caubweb

The Caubweb system is extensively described in
[LoVerso97]. The following paragraph is taken from
the introduction.

Caubweb is a research system for
investigating ways to provide adaptive, on-
going read and update interaction with Web-
based information, even under conditions of
variable or intermittent network connectivity.
Caubweb is part of ... [the] Distributed Clients
project, which has the broad goal of
increasing the availability and customization
of Web-based information services for mobile
computing users. The expected benefits
include increasing the availability of
information, reducing the latency of servicing
requests, and adapting information to the
specific user and context.

At base, Caubweb aims to provide a service more akin
to a history-list mechanism than an actual cache
(since, in fact, Caubweb violates HTTP/1.1 caching
policy [Fielding96] in order to provide the user with a
simulated experience regarding resources they have
previously accessed). Architecturally, Caubweb is
built as an HTTP proxy that uses a cache to meet its
goal of providing access to Web resources when
disconnected.

As part of our initial goals of platform portability and
extensibility, the Caubweb interface design supported
cache viewing via a "control panel", implemented as a
set of dynamically generated HTML pages that
enabled several alternate views of the cache. As part of
this interface, the user could obtain a listing of HTTP
servers for which resources were available, and, for
each server, a list of all URLs retrieved from that
server organized alphabetically, and with a additional
information such as size. Locally modified documents
are marked with a specific icon. Another view list all
modified documents in the cache.

Our initial goal in creating the Caubview application
was thus to both duplicate and improve on the original
cache viewing mechanisms. We wanted to permit the
visualization of various relationships among the
resources in the cache and to determine the success of
an automated retrieval process (that is, whether a
particular weblet retrieval had fetched all documents
of interest).

HistoryGraph

The HistoryGraph visualizer is a tool that provides a
graphical history of Web browsing activity by creating
a tree structure [Brighton97] that reflects the user’s
browsing activity. Our initial experiences in
developing this application with Tcl/Tk are detailed in
[Hirsch97b]. At base, HistoryGraph is a desktop
browsing associate [Meeks95] that "automatically
tracks user browsing activities, presents a graphic
visualization of this activity, and provides a
mechanism for manipulation and use of that history".
The visualizer generates a tree of the user’s browsing
activity; where each node represents a visited URL
and each arc indicates that the user has visited that
URL via the URL represented by it’s parent. The
resulting view is not static: a user can graphically
reorganize and prune the resulting tree in order to
restructure this information, and the resulting tree can
be saved across sessions and shared with others.
Named sets of pages can be generated by selecting
nodes from the tree and assigning them to a named
collection; in turn, these sets can be saved for future
use or forwarded to other applications for further
processing and modification.

Caubview design
Caubview was derived from HistoryGraph and initially
reused its design of a single display window.
Development time for initial re-work was a little more
than a week. Instead of receiving input from the user’s
browser and building the tree dynamically, Caubview
reads the contents of a Caubweb cache index file on

start-up, and generates an internal representation of the
contents. The original goal for Caubview was thus to
provide viewing of the cache when disconnected from
the network. Initially, no attempt was made to
synchronize access to the cache with Caubweb itself,
nor were any attempts made to update the view of the
cache once the initial
index had been loaded.

Views

A Caubview visualization
is organized around a
series of "views": a
server view, a site view,
and a closure view. The
initial view that the user
sees is the "server" view,
that shows a tree of the
top level servers,
organized alphabetically
by host name. Each
server view has a
corresponding site view
that is accessed by
selecting a particular
server. This view
generates a tree of all
resources in the cache
that are provided by that
server, organized by URL
name. This is a syntactic
arrangement, where leaf
nodes (actual cache
resources) are represented
graphically with file

icons(), and
intermediate path names
are presented using
directory icons (). An
arc implies that the node
is "lower" in the naming
hierarchy than its parent, and also implies that that
element is resident in the cache. Figure 1 below shows
a site view of the cache.

In the closure view, a particular resource is selected,
and new elements are generated, organized by
embedded hyperlinks (we call this a semantic or a link
view). In the semantic view, an arc indicates that the
child node is the destination anchor for a hyperlink
appearing in the parent node. Two interfaces are
provided for generating closures: a "canned" series of
closures, and a menu interface that provides more
control over selection. A closure is defined by the

depth in the tree to search, whether to include nodes
only from the current server or all servers, and whether
to display in the same tree of different trees: the
interface allows these elements to be set separately.
The results of a closure can be overlaid on an existing
window or shown in a new window. The resulting tree

can contain "ghosts":
resources that are
referenced by a hyperlink
but are not present in the
local cache. Ghosts are
drawn using a different
icon from a leaf node (
). Resources from a
different server than that
of the selected document
that are also present in
the cache are also shown
with a distinctive icon.

Shared Caches

We recently have
extended Caubweb to
support the notion of
shared caches, defined by
a group of cooperating
Caubweb servers.
Caubweb itself was
modified in the following
way: if running in
"cooperative" mode, and
a resource is not found in
the local cache, Caubweb
would then query one of
its defined peers (via an
HTTP proxy request) to
attempt to discover the
resource. We initially use
a simple list traversal
algorithm instead of a
more general flooding

algorithm to determine if the resource is held by one of
the cooperating peers. Looping is prevented by the
addition of a Caubweb-specific header to the request
prior to sending it to a cooperating peer: this prevents
the peer from attempting to retrieve this resource from
the origin server.

We also modified Caubview to support viewing of the
shared caches. When running as a member of a shared
cache group, the server view shows an aggregate view
of all WWW servers available in all caches. Two icons
are used to indicate either a local server (resources are
available on the local machine) or a remote server

Figure 1 Caubview display of a site view

(resources are only available remotely). Servers for
which resources are stored both locally and remotely
are marked as local. The site views are modified
accordingly to show all resources, whether local or
remote: in this view, remote resources are displayed
with an icon reminiscent of a pointer, and the URL is
used to name the resource instead of the document title
(assuming it exists). Closure views are extended such
that if the search depth indicates that resources should
be analyzed for embedded links, the resource is
fetched from the remote system and its link set is
extracted from the HTML source. Referring back to
Figure 1, the node labelled with a icon (and named
211a.htm) is a reference to a remote resource.

Initial Results

Our initial experiences with the Caubview visualizer
were mixed. We were disappointed by the initial
reaction of people to whom we demonstrated the
prototype. Most users responded positively: they were
better able to understand the cache layout, and
appreciated the restructuring capabilities of Caubview,
since it retains most of the capabilities of
HistoryGraph such as generating sets, manipulating the
tree via drag-and-drop, and viewing resources via a
specified browser (the browser is configured to proxy
through Caubweb, which is running in off-line mode).

However, several users were confused between the
semantic and syntactic views (especially when
overlaid in the same window) as to whether or not the
indicated resource was present in the cache. We
believe that this was caused by differences in meaning
of the arc relationship: in one case, an arc indicates a
naming relationship (as well as existence); in another
instance, it indicates a linking relationship
(irrespective of cache residency). We are currently
evaluating ways to better represent these relationships,
possibly by using color or font changes to represent
cache residence.

Ongoing Work

We are currently working on two issues: how to better
visualize the cache hierarchies, and how to visualize
metadata associated with individual resources and
aggregates (servers, document collections [a set of
resources meant to be viewed as a whole]), or
metadata shared across elements). Underlying these
investigations are the deeper issues of navigation
versus exploration. For us, navigation implies both
context and ways to generate various traversals of the
information space based on existing hyperlinks.
Exploration, on the other hand, involves the generation
of new hypertexts (relationships, or the results of

queries) by exploiting communality amongst
resources.

Cache Visualization

When thinking about cache visualization, the first
question that comes to mind is: How much of the
hierarchy needs to be in view at any one time?
Although our existing tree widget supporting panning
of the display as well as scrolling, it is constrained by
the demands of screen real estate, which is a constant
tradeoff between showing multiple entities whilst still
enabling the identification of those entities by either
the last component of the URL path (the "file name",
as it were) or by the compression of the title for the
resource (providing one is given). One possible
extension we have considered is to enhance the
existing tree widget to support collapsing of individual
subtrees. We have also evaluated using the Pad widget
from Pad++ [Bederson96] or a hyperbolic display
widget [Lamping95][Munzner95] as a way to represent
more nodes and relationships within a given space.

We are also exploring linking to other programs
(hypertools) via automatic methods, either via a
publish/subscribe model of sets (where Caubview
would define a selection of sets and their description,
and other tools could subscribe to these sets), or via a
more generic model, where certain hypertools
announce their availability to provide certain services,
and Caubview can then avail itself of these services.
We have already experimented with the latter
approach in the HistoryGraph application using the
WhatsNew hypertool: this tool interrogates a list of
resources and determines if they have (or have not)
changed since a specified date and time, and provides
a list of resources that meet that criteria. The response
is returned to the HistoryGraph application by
invoking a callback function, that results in a new
named set being generated. Selecting this set via the
menu bar will cause all resources in the tree to be
highlighted. The user can then navigate through these
resources and view the changed pages via their chosen
browser. This capability is still latent in the Caubview
application, but a more generic API needs to be
defined.

Finally, given alternate ways of visualizing the local
cache, we must then determine how the actions of
pruning, hiding, and selecting would function in this
new context. For example, given an infinite display
space, pruning might be achieved by "unhooking" the
subtree and moving it off-screen.

Metadata

A second focus in the next phase of our work is in the
representation and visualization of metadata stored
with Web resources This metadata can include
information provided by a shared descriptive
framework (such as that defined by the Dublin Core
metadata framework [Dublin98]), or can be made
available by specialized servers that provide
organization-specific characterization of resources,
such as relevancy to a particular task or role. One
possibility is to use extra gestures (e.g. right click
brings up metadata window, with information
organized as a property list) as a means of directly
viewing associated metadata. We are also evaluating
the use of the Pad++ techniques of portals and "magic
lenses" as alternatives. Using these techniques, a user
would choose a selection criteria, and resources
matching that criteria would be either highlighted in
the display or transformed in some lens-specific
fashion. All this activity is basically an application of
the Visualization Mantra: Overview, zoom and filter,
then details on demand.[Shneiderman97]

Successes

Once again, direct manipulation of a view (in our case,
the cache hierarchy) has proven to be an effective and
powerful UI technique. Unlike many Model/View
based systems, manipulation of the view of the cache
actually doesn’t modify the actual contents of the
cache: rather, what is modified are the relationships
amongst the various cached resources. Thus, re-
drawing of the tree via drag-and-drop becomes a way
to provide "visual commentary" - creating (pseudo)
hyperlinks (and hence personal associations) where
none previously existed. The ability to save the
modified tree for further manipulation or to define sets
of resources that can be handed off to other
applications is another powerful feature that supports
re-use of existing hypertools, as well as supporting
such search related tasks as history and progressive
refinement [Shneiderman97].

While we agree on the need for better visualization
tools to describe hypertext based information systems,
we are still debating the issue of what works best in
what situation. Are 3-dimensional representations
more effective? 2.5 dimensional? Collapsible Trees
(hierarchical) displays? We see our on-going challenge
as answering the latter question in the context of our
overall goal: namely, to provide our users with better
information regarding the precision and relevance of
their cached resources to their immediate tasks when

disconnected from their network information servers.
We believe that providing this context will consist of

• visualization (and direct manipulation) of
hyperlinked information spaces;

• making metadata available as part of
visualization, and

• the display of self-organizing (via metadata
specifications) collections versus user-defined
collections (based on some arbitrary criteria,
whether that be content, metadata, or ad-hoc
characterizations).

Tcl/Tk: Programming and Culture

Caubweb and Caubview have been based in Tcl/Tk
since the beginning of the project. As such, we have
gone from TkNT4.0 and Tcl7.5/Tk4.1 through the
current Tcl/Tk 8.0 release. As is the case with several
other programming languages (Perl and Python come
to mind), Tcl/Tk is both a programming language and
a programming culture, that provides its own sets of
idioms, beliefs, and patterns of development. Our
initial decision to move forward with Tcl/Tk was
based not only on our desire for a rapid development
environment, but also on our desire for platform
portability and extensibility: our project requirements
targeted Unix and Win32 systems (Windows/95 and
Windows/NT) from the beginning.

Code Reuse

We were gratified by the amount of code reuse
between the HistoryGraph and the Caubview
application (move than 75%), as well as the ease of
developing our initial implementation. We have had to
re-write some of the code in porting from TkNT4.0 to
Tk4.1 and thence to Tk8.0, specifically in the area of
sockets and communication with other processes under
Windows/NT (specifically Netscape Navigator and
Internet Explorer). We have successfully used several
other Tcl extensions, including Alan Brighton’s Tree
widget for display, and Tcl-DP [Perham97] for UDP
and IP multicast sockets. In the former, we rebuilt the
widget for Tcl8.0 ourselves; in the latter, we imported
a binary distribution for Tcl8.0, and have since had
occasion to rebuild the system on both Unix (Linux)
and Windows/NT, largely without incident.

Both of the above extensions make good use of the
package facility, although neither as yet utilizes the
namespace facility as a means of preventing
namespace collisions. We advocate strongly that any
extension writer begin to use the namespace facility,
especially when writing internal support routines. We

have had to track down a couple of problems with
duplicate definitions of lremove or ldelete, and
while such bugs are not difficult to fix, they do take
time from other more productive tasks.

Another important aspect of code reuse is the ability to
integrate facilities from different applications in order
to create new ones. We were able to easily replace
home-grown, ad-hoc code in the HistoryGraph with
code from the Cobweb library (Cobweb is the shared
library portion of Caubweb), specifically code to parse
URLs and HTML source. Problems arose, however,
when we came to do the supporting shared caches. As
long as Caubview had functioned as an off-line
visualizer, the issue of cache modification was moot:
the cache would effectively never change (modulo the
modification of existing resources, which would have
created a separate cache entry representing the original
resource). By using Caubview as a visualizer when
Caubweb itself is active, we require that Caubview be
kept up to date regarding new entries in the cache.
Testing cache index modification times, and re-
reading and re-generating the cache is not an
alternative, since Caubweb’s internal index is updated
each time a new resource is fetched from the network,
and only written to disk when necessary. We anticipate
adding a Observable/Observer implementation to
Caubweb such that Caubview can register as an
observer of the cache, and have Caubweb notify it
when a new entry is made in the cache. This will
require code changes such that Caubview instantiates a
cache object if stand-alone mode, otherwise, it must
register with the running Caubweb application. We
have added a command line parameter to Caubweb to
allow Caubview to be started along with Caubweb:
Caubview in turn can be started with a switch that
indicates it was started from Caubweb (once the
send capability is available under Win32, we can
then determine if there is an interpreter named
"Caubweb" present in our environment).

Porting to Tcl/Tk 8.0

In January of 1998, we began a port of the existing
Caubweb and Caubview applications to Tcl/Tk 8.0
(hereafter Tkl8.0). Both had previously been using
Tcl7.6/Tk4.2. The port to Tkl 8.0 was relatively
trouble-free. We re-wrote our obTcl library (a small,
pure Tcl object-oriented extension) to remove the "::"
separators used to indicate class methods and instead
used a more Java-like syntax using "." as a separator.
We also needed to modify the use of upvar-ed arrays:
this was accomplished by generating a similar name in
a separately defined obTcl namespace. The resulting
code was highly portable between Tcl7.6 and Tcl8.0

(although the 7.6 implementation has not been
exhaustively tested). Both the Caubweb and Caubview
application seems faster, although we have not
conducted extensive measurements.

We have welcomed the addition of several new
features in Tcl8.0, including the support for binary
data, and the newly legitimized fcopy (nee
unsupported0) command for Caubweb. Caubview has
seen the most improvement, however. The native look
and feel support in Tk8.0 has made the user interface
more consistent and palatable, and the new font
specification mechanisms has made font handling
more consistent and the results less "surprising".

Tcl/Tk futures

In the time that we have been using Tcl/Tk for the
Distributed Clients project, we have observed several
changes in Tcl/Tk that has made the language more
suitable for use in a larger projects. Chief amongst
these changes has been the increased and better use of
the package and namespace features added to the
language in Tcl7.6 and Tkl 8.0. Prior to these features,
one had to resort to a "surfeit of Wishes" via a series of
statically linked extensions. Today, most extension
writers are using dynamically loadable packages, and
increased use of the package provide and the
namespace facilities to provide better separation of
function as well as better distribution of executable
code (Don Libe’s CGI package is an example). We are
modifying Caubview and Caubweb to use these
features more extensively as we re-work various parts
of the system.

While Tkl 8.0 has been an major improvement for us,
we are still waiting for functionality that was available
almost two years ago in TkNT. We eagerly await the
release of Tkl8.1 with support for the send command
under Win32, as well as DDE support. Another feature
we would dearly welcome is a working version of the
capability to embed another applications window
inside of Tcl/Tk under Win32, since this would
provide us with another mechanism with which to
integrate Caubview with Caubweb.

Jacl and TclBlend

As part of our ongoing visualization work with
Caubview, we looked at hyperbolic graph widgets, and
found at least two written in Java. Our problem was
how to integrate Java widgets into our Tcl/Tk
application, and with the 1.0 release of Jacl and
TclBlend in early 1998, an answer seemed imminent.
TclBlend supports the inclusion of Java classes in a
Tcl program [Johnson97], while Jacl is a Tcl

interpreter written in Java [Lam97]. However, Jacl 1.0
doesn’t support Tk at all, and portions of Tcl (primarily
dealing with asynchronous file I/O) are missing as
well. In addition (as of April, 1998), the TclBlend
extension is advertised not to work with the upcoming
Tkl 8.1 release (which we need for the send
command and DDE support for Win32), and also
requires a native thread implementation of Java, that
constrains our choice of target systems. This means
that if we are to continue to leverage our investment in
the Cobweb library, as well as gain the new
functionality we want in the 8.1 release, we are forced
to abandon Java integration with Tcl Blend; if we
choose Jacl, we will have to re-implement certain
portions of the library that requires Tcl functionality
not present in the 1.0 release.

The recent 1.0 release of the Java Foundation Classes
(aka Swing) further compounds our dilemma, since
Swing provides a number of useful Java widgets for
building applications. Our current plan is thus to
reimplement Caubview using Jacl, using Tcl Blend as
an intermediate step. We will re-write the UI portions
to use JFC, and work on integrating as much of the Tcl
functionality as possible. In this way, we hope to (yet
again) leverage our investment in generating platform
portable and extensible code.

Back to the Future

We do not regret our decision to use Tcl/Tk, but we
are not sure we would make the same decision again,
especially with the advance of Java in the last two
years. The problems we have encountered with Tcl/Tk
over the years can be summed up as follows:

• Ongoing problems with integration of new
extensions (installation scripts, namespace
collisions). In addition, interfaces to various
components are all just a little bit different (a
PAD widget is almost a Tcl canvas widget,
but not quite). There are also performance
differences (sometimes vast) between
extensions under Win32 and Unix.

• Each release of Tcl breaks some amount of
working code

• Feature lag between platforms (e.g. send
under Win32), and timely availability of older
extensions.

• No coherent O-O strategy (incr Tcl seems to
be the O-O package of choice, but, again, it
lags the field).

Finally, it is still much too hard to determine what
extensions are available, or to ascertain the quality of

these extensions. It is our fervent wish that the Tcl
community can create an organizational equivalent to
CPAN (perhaps ETEN, the Exhaustive Tcl Extension
Network)).

For us, cross-platform functionality and equivalent
performance are critical for the ongoing success of
Tcl/Tk, and we urge developers of Tcl extensions to
provide support for both Unix and Win32 platforms.
There is increasing evidence that Windows/NT will
continue to gain importance even within the research
community. Our own work environment combines
Win32 desktop machines linked to Unix file and
compute servers, and we expect this situation to
become even more common.

Given the above, how should Tcl/Tk development
proceed in the immediate term? We believe that in
order to be successful, Tcl needs to return to its roots:
a small, easy-to-use embedded interpreted language,
acting as a "glue language" for scripting other
components. Just as Tcl/Tk provided this capability for
the combination for C and the X graphical widgets, we
believe that Jacl can provide this capability for Java
and the AWT/JFC widget set. The combination of Tcl
scripting and Java components thus holds great
promise for stemming the tide of Wintel hegemony,
and providing a powerful cross-platform solution for
application developers.

Acknowledgments

This research was supported in part by the Defense
Advanced Research Projects Agency (DARPA) under
the contract number F19628-95-C-0042. The views
and conclusions contained in this document are those
of the authors and should not be interpreted as
representing the official policies, either expressed or
implied, or the Defense Advanced Research Projects
Agency or the U.S. Government. The research efforts
upon which these findings are based was performed at
the Open Group Research Institute.

Special thanks are due to John LoVerso and Scott
Meeks.

Caubweb is a trademark of The Open Group Research
Institute. Other trademarks are the property of their
respective companies.

Availability

The Distributed Clients project has completed. The
last release of Caubweb is available at
http://www.camb.opengroup.org/RI/secweb/dis_clients
/oasis.html. Caubview remains a moving target: those

interested in more information should contact the
authors.

References

[Bederson96] Bederson, B., Hollon, J. D., et. al.
Pad++: A Zoomable Graphical Sketchpad For
Exploring Alternate Interface Physics.
http: //www.cs.unm.edu/pad++/papers/jvlc-96-
pad/index.html

 [Bederson97] Bederson, B., Hallon, J., "A Zooming
Web Browser", Proceedings of SPIE Multimedia
Computing and Networking 1996, Volume 2667, pp
260-271
ftp://ftp.cs.unm.edu/ pub/pad++/spie96_html.ps.gz

[Brighton97] Brighton, A., Tree-4.0.1 - A Tree Widget
for Tk4.0 based on C++ and [incr Tcl],
http://www.neosoft.com/tcl/ftparchive/sorted/devel/tre
e-4.2.README

[Dublin98] Dublin Core Metadata,
http://purl.oclc.org/metadata/dublin_core/, valid as of
4/6/98.

[Fielding96] Fielding, R., et.al, "Hypertext Transfer
Protocol: HTTP/1.1", World Wide Web Journal, 1(4),
Autumn, 1996, O’Reilly and Associates, pp. 89-186.

[Hirsch97a] Hirsch, F.J., Meeks, W.S., & Brooks, C.,
"Creating Custom Graphical Web Views Based on
User Browsing History", Poster Proceedings, 6th
International World Wide Web Conference,
http://www.opengroup.org/www/waiba/papers/www6/
hg.html

[Hirsch97b] Hirsch, F.J., "Building a Graphical Web
History using Tcl/Tk", Proceedings of the 5th Tcl/Tk
Workshop, USENIX Association, pp. 159-160.

[Johnson97] Johnson, R., Tcl and Java Integration,
http://www.sunscript.com/java/tcljava.ps (as of
3/30/98).

[Lam97] Lam, Ioi K., Smith, Brian C., "Jacl: A Tcl
Implementation in Java", Proceedings of the 5th
Tcl/Tk Workshop, USENIX Association, pp. 31-36.

[LoVerso97] LoVerso, J., & Mazer, M.S., "Caubweb:
Detaching the Web with Tcl", Proceedings of the 5th
Tcl/Tk Workshop, USENIX Association, pp. 19-29.

[Lamping95] Lamping, J., Rao, R., Pirolli, P. (1995)
"A Focus+Context Technique Based on Hyperbolic
Geometry for Visualizing Large Hierarchies",
Proceedings Chi’95, ACM SIGCHI, New York.

[Meeks95] Meeks, W.S., Brooks, C.L., Mazer, M.S.
"An Architecture for Supporting Quasi-agent Entities
in the WWW", Intelligent Agents Workshop
Proceedings, ACM Conference on Information and
Knowledge Management, December 1995,
http://www.opengroup.org/ww/waiba/papers/
CIKM/CIKM.htm

[Munzner95] Munzner, T., Burchard, P., (1995)
"Visualizing the Structure of the World Wide Web in
3D Hyperbolic Space", Proceedings of the First
Annual Symposium on the VRML Modeling Language,
ACM SIGGRAPH, New York, pp. 33-38.

[Perham97] Perham, Mike, et. al., “Redesigning TCL-
DP,” Proceedings of the 5th Tcl/Tk Workshop,
USENIX Association, pp. 49-54.

[Ousterhout93] Ousterhout, J. and Rowe, L.A,
"Hypertools: A GUI Revolution," The X Journal, 2(4),
March-April 1993, pp. 74-81.

[Shneiderman97] Shneiderman, B., Designing The
User Interface, 3rd edition, Addison-Wesley, 1997, p.
523.

