
The following paper was originally published in the
Proceedings of the Sixth Annual Tcl/Tk Workshop

San Diego, California, September 14–18, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

Iclient/Iserver: Distributed Objects using [incr Tcl]

Lee F. Bernhard
Bell Labs Innovations for Lucent Technologies

Introduction

Since the Tcl/Tk core added sockets and safe interpret-
ers, using Tcl/Tk to create networked applications is
very simple. This simplicity opens up a realm of appli-
cations in which users can communicate and share
information using Tcl/Tk over a network. With the Tcl/
Tk Plugin[1], programmers can bring a networked
application right to the user’s desktop via a web
browser.

Networked applications are usually developed in the cli-
ent/server paradigm, in which a server provides central
services, and client programs access these services over
a network. A server might control a database, and cli-
ents might communicate with the server to query and
manipulate the data. Or a server might host a multi-
player card game, and clients might connect in to play
the game.

In all of these applications, the server centralizes shared
data. It synchronizes the actions of the clients, so that,
for example, one client can’t access a data record while
another is updating it. The server also broadcasts signif-
icant changes, so that when one client modifies a data
record, other interested clients automatically know
about it.

A significant problem in writing client/server applica-
tions lies in defining the application programming inter-
face (API) between the server and the client. The server
has some subset of procedures that it wants to publish to
the client to allow the client access to its services; the
difficulty lies in providing an API that publishes these

procedures in a way that is both simple and manageable
in terms of size and complexity. In a networked card
game, there might be a procedure to query the list of
games, a procedure to join a game, a procedure to query
a hand, a procedure to play a card, a procedure to check
the score, and so on. Even for a simple application like
Hearts, the number of access procedures can quickly get
out of hand.

Iclient/Iserver greatly simplifies the development of cli-
ent/server applications by allowing the programmer to
implement clients and servers with Tcl/Tk and the [incr
Tcl] object system[2][3]. With just a few lines of code,
programmers can set up an object server that publishes
its objects to any connected client(s). In a stand-alone
[incr Tcl] script, class methods provide the major inter-
face for performing operations and manipulating data.
By publishing its objects, the server allows clients to use
the same interface that the server script uses to access its
objects. The server’s existing object system becomes
the API for clients to access server services, eliminating
the bother of writing procedural wrappers around each
server object.

Iclient/Iserver is not the only solution to provide distrib-
uted objects; perhaps the most widely recognized solu-
tion to providing distributed objects is the Common
Object Request Broker Architecture (CORBA)[4][5], a
distributed object standard designed by the Object Man-
agement Group (OMG) after eight years of discussion
and collaboration. It uses a model of an “object bus”
that clients use to access remote objects. CORBA
builds upon the successes and services of previous tech-
nologies like RPC and TP monitors. It is an ambitious

Iclient/Iserver: Distributed Objects using [incr Tcl]

Lee F. Bernhard
Bell Labs Innovations for Lucent Technologies

Now at Scriptics Corporation
lfb@scriptics.com

Iclient/Iserver is a simple distributed object framework for [incr Tcl] applications that enables its clients to synchro-
nize activities and share information. Using Iclient/Iserver, clients can access objects living on a remote server tran-
parently, making building client/server applications both easy and intuitive. Iclient/Iserver is conceptually similar to
the widely used CORBA standard, but is much simpler, intended for building smaller, client/server applications where
the cost and complexity of a CORBA implementation cannot be justified.

In this paper I describe the use of Iclient/Iserver for sharing server objects among clients. I explain the underlying
architecture and implementation of the distributed object system. I conclude by illustrating how to use Iclient/Iserver
to build a simple networked version of the card game Hearts.

framework, allowing clients to access objects imple-
mented in a different language than the client program.
But its ambition also makes it a complicated framework
to learn and work with; the complexity is hard to justify
when creating smaller client/server applications. Addi-
tionally, CORBA’s goal of allowing multiple languages
to share components requires a translation layer (IDL)
that isn’t necessary, for example, in building small Tcl/
Tk applications.

There is already support for procedural client/server
development in the Tcl/Tk community. The Tcl-DP
extension [6][7] makes it easy to set up RPC-style cli-
ent/server applications with a procedural API. It
includes some support for simple, slot-based struc-
tures. The GroupKit extension [8][9] is another RPC-
based solution with slot-based structures, designed with
collaborative applications in mind.

There are a number of extensions that allow Tcl scripts
to access CORBA objects and services. These exten-
sions make it easy to write Tcl scripts that control
CORBA distributed components, and several have facil-
ities for creating Tcl structures that other CORBA cli-
ents can access. They don’t work seamlessly with [incr
Tcl]; they require class descriptions written in a neutral
language format, IDL.

Iclient/Iserver is similar to these packages in some
respects, occupying a space somewhere between the
convenience and simplicity of Tcl-DP and Groupkit and
the robust object support of CORBA. It lets both clients
and servers take full advantage of object-oriented tech-
nology. Instead of using a simple, slot-based object
model, Iclient/Iserver uses [incr Tcl] to provide a full-
featured, class-based model. Classes can encapsulate
data and related operation, with support for public, pro-
tected, and private members. [incr Tcl] also supports
single and multiple inheritance, so that classes can share
functionality.

Iclient/Iserver harnesses [incr Tcl]’s existing code base
and adds a quick, easy way to distribute objects. With
Iclient/Iserver, programmers can concentrate on design-
ing classes that provide core functionality; they can add
the client/server capability almost as an afterthought.

Counter: A Simple Example

Suppose you have a Counter class with an object
named foo . This object contains a number, which pro-
grammers can increment and query using the methods
bump and value . An object like this could help clients
to generate serial numbers for processes, orders, transac-

tions, etc. Programmers can create the object on the
server and make it available to clients with the follow-
ing code:

package require Iserver
class Counter {
 inherit ::iserver::Distributed
 method bump {} {return [incr count]}
 method value {} {return $count}
 private variable count 0
}
Counter foo
iserver::listen 8066

The server begins by initializing the Iserver pack-
age , thereby creating commands and base classes that
the server needs. It then defines an [incr Tcl] class
Counter with two methods bump and value . By
inheriting from the Distributed class, the
Counter class is able to share its objects with clients.
The server creates a Counter object called foo , and
then opens a socket on port 8066 and waits for clients
to connect and start using foo .

Now suppose there are two clients that would like to use
the server’s foo object. Each client needs to load the
Iclient package, and then connect to the server. It
does so by creating a Server object, and telling it to
connect to the server listening at port 8066 on the
machine sercial.micro.lucent.com .

package require Iclient
set serv [::iclient::Server #auto \
 sercial.micro.lucent.com 8066]
$serv resolve class Counter
$serv resolve object foo
foo bump

Now that the client is connected to the
object server , it can attach itself to the Counter
foo . To do this, the client resolves the names of both
the class, Counter , and the object, foo . In other
words, the client has gone to the server and created its
own, local copy of Counter and foo , which it can use
to access the actual, server entities of the same names.
All the client needs to do is call the bump method on its
object, and Iclient will take care of running bump on the
server object foo .

The local copy of foo is merely a client-side stub.
Methods are not truly implemented on the client side;
instead, the client methods serve as an interface for call-
ing corresponding methods on the server object foo . A
client stub can also be considered conceptually as a
local, client-based, reference to a server object.

Now imagine that the clients want to use the Counter
foo in a simple GUI. A label will store the current
value of foo , and a button will allow the client to bump
the value of foo . If one client changes the value of
foo , the GUI of the other client should update to show
the new value as well.

...
button .bump -text "Bump" -command {
 foo lock {
 .count configure -text [foo bump]
 }
}
pack .bump -side left -padx 6 -pady 10
label .count -text [foo value]
pack .count -side left -padx 6 -pady 10

foo watch lock {
 .count configure -text [foo value]
}

This example uses two object services of Iclient/Iserver:
lock and watch .

When pressed, the .bump requests a lock on foo . It
then increments its value by calling the bump method.

Interprocess communication presents a host of concur-
rency problems that occur when two clients try to
manipulate the same resource at the same time. In Icli-
ent/Iserver, most method calls will be atomic, unless
they access the event loop. To be certain of exclusive
access to a server object, a client should request a lock
whenever modifying a server object.

Locks are especially helpful when a client needs to
manipulate a server object with multiple method calls,
where the entire series of operations needs to run atomi-
cally. By acquiring a lock on a server object, a client
gains exclusive control of that object.

In a slightly more complicated scenario, clients may be
using the Counter object to keep track of the current
bid price in an auction. Clients will check the current
price, and if it falls below maxBid , they will bid by
incrementing the Counter foo .

if {[foo value] < $maxBid} {
 foo bump
}

What makes this example different is that the clients
want to check the state of an object, make a decision
based on that state, and then call another method on the
object to change it. Without locks, there is a classic race
condition where it is possible for a client to make the
wrong decision about whether to bid.

Imagine that the bid price is one less than maxBid for
each client. The object server processes client requests
in the order they are received. If both clients check the
value of foo , they will both receive the same value and
decide to bump the Counter . When this occurs, one
of the clients will exceed their maximum bid, because
the state of foo will have changed between the time the
client checked its value, and the time it tries to bump the
foo .

Locks solve this problem nicely by allowing each client
to check foo and bump its value without interruption
from the other client. immediately:

foo lock {
 if {[foo value] < $maxBid} {
 foo bump
 }
}

This is guaranteed because once the first client acquires
the lock on foo , it is the only client allowed to access
foo until the lock is removed. If another client tries to
access foo while the first holds the lock, it will have to
wait until the lock is released.

By default, clients will ten seconds for the lock; if that
time expires, the lock method raises a Tcl error. Cli-
ents can adjust the timeout factor by providing a value,
in milliseconds, for the -timeout option of the lock
method. A timeout of zero indicates that the client
should give up waiting if it cannot obtain the lock. If the
client may need to wait for a noticeable period to obtain
a lock, it will likely wish to display a watch cursor, or
some other GUI indication that the client is busy. The
lock method provides two more options, -suspend
and -continue to allow the client to run a script
immediately before waiting for the lock, and immedi-
ately after the lock is obtained. The Counter clients
may use this to display a message in the label .count
as they wait for the lock:

foo lock {
 .count configure -text [foo bump]
} -timeout 20000 -suspend {
 .count configure -text “Acquiring lock”
} -continue {
 .count configure -text “Lock acquired”
}

One more detail remains to be explained: when one cli-
ent bumps the value of foo , the other clients need to
know that foo has changed in order to update their dis-
plays. Clients can watch objects, and register a call-
back that will run when a particular event occurs to the
object. This is similar to a variable trace or to a binding

on a Tk widget. Keeping track of an object being locked
is rather straightforward. The clients can watch for
foo to be locked; when that occurs, they know that foo
has changed, and they can call the value method to
learn the new value of the Counter . Clients can
watch any object, looking for well-defined or custom-
defined events to occur. Well-known events include
lock , destroy , and resolve . Distributed
objects can report custom events by using the report
method, as in the following:

class Counter {
 inherit ::iserver::Distributed
 method bump {} {
 report "bump"
 return [incr count]
 }
 ...
}

The last services that Iclient/Iserver provide are the abil-
ity to restrict use of a server object to a subset of con-
nected clients. An object server gives each of its clients
an unique id, and can use this id with the Distrib-
uted class’s restrict method. Here a server
restricts use of the object foo to a single client with cli-
ent id client1 :

foo restrict {client1}

Architecture

Applications written using Iclient/Iserver are con-
structed with a client/server architecture where the
server program provides central services for the client
programs connected by a network. The server helps the
clients to interact by holding shared information and
synchronizing the clients’ access to this information.

In any client/server architecture, an API mediates
between clients and server services. In the remote pro-
cedure call (RPC) approach, the server program pub-
lishes a set of commands that clients use to
communicate with the server. An RPC approach works
well for procedural applications, such as vanilla Tcl
scripts, where command provide the only interface for
performing operations.

An [incr Tcl] script uses classes to encapsulate data and
related commands into a single entity. Each class has a
well-defined set of methods that act as the interface for
working with objects of that class. By invoking these
methods, it is possible to access and manipulate the data
contained by the object.

Turning an [incr Tcl] script into a client/server applica-
tion should be a process that keeps the interfaces
defined by the classes intact. A RPC approach does not
work well with [incr Tcl] scripts because it requires
wrapping each method with a procedure. there to be a
procedural wrapper for accessing the methods of an
object. Adding a procedural communication mecha-
nism to an object-oriented design breaks up the design
of classes. At best, it is inelegant. At worst, it is tedious
to set up and confuses the interface created by the class
methods. It would be much better to allow clients to
access server objects in the manner that the server
manipulates its object: by calling the methods defined
for the object.

That is the goal of Iclient/Iserver. The server uses [incr
Tcl] to create classes and objects with well-defined
interfaces. Iserver provides a base class, Distrib-
uted , that publishes derived classes and their objects,
so that clients connecting to the server can use those
objects across a network socket.

Iclient provides the client access to server objects by
creating local copies, or stubs, which act as references to
the server objects. When a client access a client stub,
the stub encapsulates the server communication required
to access the corresponding server object.

It is possible for a client to be connected simultaneously
with multiple object servers. Iclient provides a class
Server to help client scripts to keep track of a given
object server connection. When a client wants to con-
nect to a new object server, it creates a new instance of
this Server class and feeds it information about the
hostname and port number of the object server. The
methods of the Server class provide a secondary API
that clients use to access an object server, to create client
stubs, create new server objects, destroy server objects,
and inquire about objects available on the server.

fred

barney

Counter objects

Server Clients

Server objects are visible on Clients

barney

fred

barneyIs
e

rv
e

r

Ic
lie

n
t

Iclient and Iserver are currently implemented as Tcl
scripts that rely upon [incr Tcl] to provide classes and
objects. The first alpha of Iclient/Iserver used [incr
Tcl]’s namespace facility, but the revised version uses
[incr Tcl] 3.0 and Tcl 8.0 namespaces. Iclient and Iser-
ver use namespaces to encapsulate the classes and com-
mands that they introduce.

Distributed Object Model

This section describes in detail how the Iclient/Iserver
distributed object model works. It covers the two ways
clients can create client stubs for server objects. It dis-
cusses the underlying commands and classes that the
stubs use to communicate with the server. It also
describes how sockets, fileevents, and safe interpreters
form the primitive communication framework.

The central task for Iclient/Iserver is to allow clients to
access server objects in a manner consistent with
accessing ordinary [incr Tcl] objects in a stand-alone
application. To do this, a server object must appear as if
it lived locally, on the client. It must also have the same
methods as the server object, and the client must be able
to call those methods as with ordinary [incr Tcl] objects.

To accomplish this, Iclient/Iserver literally creates a cli-
ent-side object to act as a stub for the server object the
client would like to use. These stubs are [incr Tcl]
objects; therefore, the client requires a class declaration
to produce the stub. The Server class that servers as
an API to access an object server provides a method
resolve that resolves the binding between the client
stub and the server object.

Iclient/Iserver provides both implicit and explicit mech-
anisms for resolving references to server objects. In the
implicit model, the client code does nothing to resolve
references to server objects. The client merely connects
to an object server, and starts using well-known objects.
To return to the Counter example, suppose a client
runs the following code:

package require Iclient

set serv [iclient::Server #auto \
 sercial.micro.lucent.com 8066]
foo bump

The client has connected to an object server but has
done nothing to link the server object foo to the client.
The client proceeds anyway, calling the bump method
of foo . The Tcl parser looks for a command named
foo but cannot find one defined. Ordinarily, the parser
would raise an error saying that the command foo does
not exist. But Iclient has changed the way Tcl handles
unknown commands by introducing its own handler into
the built-in unknown command.

This handler knows about the object servers that the cli-
ent is attached to, and it asks each object server if it can
identify the name foo .

$server ask identify foo

The ask command is a primitive to Iclient and Iserver
that allows a process to send a Tcl command to another
process and wait for the result. In this case, the client
sends the script “identify foo ” to the server, who
will evaluate the identify command. This command
looks to see if foo is either the name of a distributed
class or a distributed object on the server. The server
determines that foo is an object, and sends a reply to be
evaluated in the client:

respond 1 0 "object Counter"

The respond command is used to tell the client that the
server has a formulated a response to one of its ask
requests. It reads the return code and the return value
from the server, and learns that foo is an object of
class Counter . The client knows that foo is a
Counter object, and tries to create it on the client side:

Counter foo

Unfortunately, the client has also never seen the com-
mand Counter before. The unknown command runs
again, this time looking for Counter , and asks the
server if it knows of a name Counter:

$serv ask identify Counter

This time the server replies that Counter is a class.
The client asks the server to supply a class stub for the
Counter class:

$serv resolve class Counter

Counter foo

The server must now generate a stub for the class
Counter , and pass the stub for the client to use. This

Iserver

[incr Tcl]

Tcl

Server

Iclient

[incr Tcl]

Client

Tk

Tcl

Tcl Package Architecture of Client and Server

involves creating a new class declaration that has only
the public methods of Counter . These stub methods
are not implemented as they are in the client class dec-
laration; instead, each is a wrapper around an interface
that runs the same method on the server object. The
stub class declaration created for the Counter class
might look like this:

class Counter {
 method bump {args} {
 return [eval $server ask object \
 invoke [namespace tail $this] bump \
 $args]
 }
 method value {args} {
 return [eval $server ask object \
 invoke [namespace tail $this] value \
 $args
 }
 ...
}

Now the client has a stub for the Counter class. It can
now try to resolve a reference to foo .

$serv resolve object foo

The client asks the server to help it resolve a reference
to foo. This causes the client to create a client stub
called foo using the class declaration previously gener-
ated by the server. With the stub in place, the client can
now invoke methods on the stub; when it does so, the
stub will ask the server to invoke its own object named
foo and will use the response from the server as its
return value.

This rather detailed chain of events is illustrated in the
figure below. What is important to realize is that all this
detail was handled by the Iclient package; the client
script set this into motion by the innocent looking call of
foo bump . The entire process of resolving is transpar-
ent to the programmer, who needed only to create an
object on the server, and use that object on the client.

The advantage to this system is that the client code does
not have to declare server classes or objects explicitly
before using them. Iclient performs late binding to the
server objects, doing it only when necessary, and han-
dles all the details of class and object stub generation.
But implicit resolving requires Iclient to search through
all the object servers connected to a client--usually this

represents only a single server, but that does not have to
be the case.

To solve these problems, Iclient also offers an explicit
interface for generating client stubs. A client can
request a stub from a Server object, by calling that
object’s resolve method.

set serv [Server #auto sercial 8066]
$serv resolve class Counter
$serv resolve object count mycount

Above, a client has created a Server object to connect
to an object server. It then resolves two references, one
to the server class Counter , and another to the server
object count . The process of resolving references is
the same from this point on; the server helps the client to
generate a class declaration and a client stub. The dif-
ference is that the client script programmer has explic-
itly resolved the references before trying to access
server objects.

Iclient/Iserver primitives

Iclient/Iserver relies upon a handful of primitives to
organize message passing between clients and servers.
These primitives include ask , tell , and respond .
Whenever a client communicates with a server, or a
server communicates with a client, one or several of
these primitives are used.

For example, when a client asks a server to create a stub,
the client sends a command to the server including the
request. The ask primitive allows the client to send a
Tcl command to the server, evaluate that command on
the server side, and learn the result. It works by sending

identify foo

foo object Counter

resolve class Counter

class Counter {method bump...}

object invoke foo bump

7

foo bump

7

C
lie

n
t

S
er

ve
r

Highlights of Implicit object binding;
Client accesses Server object foo for the first time.

a Tcl command through the client’s socket to the server,
and supplying the server with a callback. The server
uses a fileevent to notice that there is traffic from the cli-
ent, and reads the command off the socket. It evaluates
the command within the limited context of a safe inter-
preter, and generates a return value. To report the result
of the operation, the client sends the client’s callback
over the socket, along with the server’s result. The cli-
ent reads the callback, evaluates it in its own safe inter-
preter, and returns the server’s result.

respond 1 0 “object Counter”

The respond command is used to tell the client that the
server has a formulated a response to one of its ask
requests. It reads the return code and the return value
from the server, and learns that foo is an object of
class Counter .

A third primitive, tell , allows a command to be run
asynchronously on the other side of the socket. For
example, a client can tell a server to invoke the bump
method on object foo . The client won’t wait for a
response; the command will run on the server side
whenever the server has a chance to process it. Mean-
while, the client has moved on to other things.

Iclient/Iserver makes heavy use of core Tcl sockets, file-
events, safe interpreters, and the unknown handler to
implement distributed objects. Other sources [10] dis-
cuss how to connect two processes with Tcl sockets so
that each can send and evaluate Tcl commands on the
other. Iclient/Iserver follows this approach, and extends
it for use with objects.

The server evaluates commands sent from its clients in a
safe interpreter, to prevent malicious clients from evalu-
ating destructive commands in the main interpreter.
Imagine if a client ran a troublesome command:

$server ask exec rm -rf .

The server evaluates the command exec in its safe
interpreter, but exec is not defined there. Instead of
happily eating up the filesystem, the command raises an
error, and the server is safe from harm.

All of the commands that clients call to identify, resolve,
create, manipulate, and destroy server objects are
defined in the main interpreter, to allow these com-
mands to access the objects there. To allow the clients
to call them, the server creates aliases in the safe inter-
preter, so that when a client asks to run the command
identify , it does so in the main interpreter of the
server.

Application: Hearts

In this section, we will build a game of Hearts that
allows four players across a network to meet and play
the card game Hearts.

Hearts is a card game usually played by four or more
players around a table. Our game will allow players to
meet up at a hearts server running in some well-known
location, choose a game to join, and then play a game of
Hearts. Each player will need to have his own interface
with which to play the game.

A client/server approach is natural for this application.
There are multiple players, each of whom have their
own cards that they want to hide from the others. Each
player will be running their own client to play the game,
but will need to coordinate their play with the other cli-
ents. A Hearts server will manage the deck of cards,
synchronize the actions of the clients, and control the
flow of the game.

One possible approach to implementing this application
is to build a stand-alone version first, that runs on a sin-
gle machine and lets players take turns playing. There
are a lot of details to organize for each game of Hearts--
players playing cards, checking their score, organizing
their hands--and the engine needs to keep track of what
cards have been played, decide whether a player has
selected a valid card, etc. On top of this, there are many
concurrent games of Hearts being managed by the same
server. This problem is neatly solved using an object
approach, to help encapsulate each of the Hearts games
being played, and to establish a convenient interface
between the client and server parts.

The Gamemanager class manages Game objects, help-
ing clients to create, join, and quit new games. It also
allows clients to register as players, with names and
email addresses.

The server initializes itself by defining all the classes it
will use during its lifetime, and by creating a well-
known Gamemanager object, gm.

package require Iserver
class Gamemanager {
 method games {}
 method players {}
 method newplayer {option args}
 method newgame {option args}
}
class Game {
 method players {}
 method join {}
 method quit {}

 method cards {}
}
...
Gamemanager gm
iserver::listen 8181

This is the main script for my Hearts server application;
the bulk of the work comes in creating the classes that
the server will use to manage games of Hearts.

When a client connects to the Hearts server, it displays a
GUI showing descriptions of the various games in ses-
sion, and the players taking part in the selected game.
To learn this information, the client uses the well-known
Gamemanager object gm.

The following block shows how a client might fill a list-
box .games with description of the Game objects that
the Gamemanager gm knows about. The binding
places the selected Game’s players in the listbox
.players . The button .join asks to join a Game.

proc show_games {} {
 global games
 .games delete 0 end
 set games [gm games]
 foreach game $games {
 set desc [$game description]
 .games insert end $desc
 }
}
proc show_players {game} {
 .players delete 0 end
 set players [$game players]
 eval .players insert 0 $players
}
bind .games <ButtonPress-1> {

 set idx [.games curselection]
 set game [lindex $games $idx]
 show_players $game
}
button .join -text “Join” -command {
 $game lock {$game join}
}

This block of client code begins by asking the Gamem-
anager object gm for a list of Game objects. The
names of the game objects will be rather dull strings like
game1 or game7. The client calls the description
method of each Game object to get a short description of
the Game, placing this in the listbox .games . When
the user selects a description in the listbox .games , the
binding calls the players method of the correspond-
ing Game object, and uses those names to fill the
.players listbox.

The .join button allows a player to join a Game that is
forming. Since this alters the state of that Game, the
button command requests a lock before joining. All the
players in that game will want to know that a new player
has joined. They automatically learn this by watch ing
the Game object; when the lock is requested, the clients
ask the Game object for the new list of players, and
update their listboxes.

$game watch lock {
 show_players $game
 show_games
}

Now the GUI changes as players enter and leave games.
The client also monitors the Gamemanager to watch
for Game objects being added:

gm watch lock {
 .games delete 0 end
 set games [gm games]
 foreach game $games {
 .games insert end [$game description]
 }
}

Suppose our player has selected a Game, and it has
filled with players. It is now time to begin a game of
Hearts. The view of the available games is replaced
with a canvas showing the game table, with the player’s
cards at the bottom, and a view showing the cards that
others have played in the center. The player can see the
current score of the game at the upper-left corner. A
chat box at the bottom allows the player to send mes-
sages to the other players in the game.

Hearts client game selection screen

To generate the hand, the client calls the cards method
of a Game object. Assume for our purposes that the
name of the Game object for this game is stored in the
variable game. The following client code requests a list
of cards in the player’s hand, and draws them on the
canvas by calling a command on the client.

card_draw [$game cards]

When the player is ready to play a card, they drag the
card to the center of the table. The game of Hearts is
played by following an order of play. One player leads
by playing a card on the table, then play moves around
the table in a circle. If our client tries to play a card, the
server must first decide if it is that player’s turn.

The Turn object keeps track of the order of play for a
given trick, and prevents players from playing out of
turn. Players invoke the play method of the Turn
object in order to play a card.

To do this, the client requests a lock on the Turn object.
The Turn class exists primarily to regulate whose turn
it is, and to allow only the appropriate player to play a
card. To accomplish this, the Turn object establishes a
set of locks on itself for each of the players playing the
game. These lock requests enter a queue, and are
entered in turn order. If a client tries to access the turn
object prematurely, then that client must wait for the
players ahead in the play order to play their cards; as
soon as they are finished, then our client acquires the
lock and plays a card.

Client Code

$turn lock {
 $turn play DK
}

Server Code

class Turn {
 inherit ::iserver::Distributed
 private variable order;
 method newturn {}
 method discard {}
 private method accept {card}
 method play {card} {
 set player [::iserver::current]
 set turn [lindex $order]
 if {$player == $turn} {
 accept $card
 report $discard
 return
 } else {
 error "Not your turn"
 }
 }
}

The Turn object controls the order of play. With every
trick, the Turn object calculates the order of play based
on the rules of Hearts. When a player attempts to play
a card , the Turn object asks Iserver who this client is,
and checks to see if it is the client’s turn. If it is, the
Turn object accept s the card , and reports a dis-
card event to let the other clients know to redraw their
canvases. If the player should not be able to play yet,
the Turn object does not let the player play.

All of the clients are going to be interested in the cards
that the other players have played, in order to draw them
in the center of the canvas. To watch for players playing
cards, each client watches the Turn object. When
another client accesses the Turn object to play a card,
the server notifies each of the clients, who then learn
which cards were played and draw them:

turn watch discard {
 set cardsPlayed [$turn discard]
 discard_draw $cardsPlayed
}

Notice that the script a client runs in response to watch
event can do anything; it does not need to limit itself to
accessing just the object being monitored. The client is
watching the turn object to see when a card is played;
once it is notified, it calls the discard method of the
Turn object to learn which cards were played, and then
draws them using the discard_draw command.

There are situations in which it is more convenient for a
server to broadcast commands to its clients than for the
clients to register interest in an event using watch .
Players communicate with one another by using an
object of class Chat that lives on the server. When
players wish to talk to the others in the game, they call
the mesg method of the Chat object, and pass their

message along. The easiest way for the Chat object to
communicate the message along to the clients is to keep
a list of listening clients, and then remotely invoke a
procedure on the client side to

Server Code

class Chat {
 method listen {} {
 set client [::iserver::client]
 ::iserver::list_add listeners \
 $client
 }
 method talk {mesg} {
 set speaker [::iserver::client]
 foreach client $listeners {
 ::iserver::tell $client rpc \
 chat_mesg $speaker $mesg
 }
 }
 variable listeners
}

Client Code

$serv rpc chat_mesg {speaker mesg} {
 .chat.text insert end $speaker $speaker\
 "\t$mesg" $speaker
 .chat.text see end
}

With distributed server objects, locks, and watch call-
backs, the task of organizing a multi-player card game is
made easier.

Conclusions

Using class methods as a natural interface between cli-
ents and server, distributed server objects allow efficient
encapsulation of data and operations.

It allows encapsulation of data and operations and uses
class methods as a natural interface between clients and
server.

Iclient/Iserver fills a niche between simple Tcl-based
remote procedure call systems like Tcl-DP and compre-
hensive object brokers that follow the CORBA standard.
It provides an easy way to construct client/server appli-
cations while eliminating the need to write a separate set
of remote procedure calls. Distributed server objects,
visible and accessible by all connected clients, provide a
natural interface for sharing information. The locking
and object watching services provide synchronization
and event notification to avoid concurrency headaches,
including the need to poll continuously to see if the
server has changed.

Using Iclient/Iserver protocols, starting to create client/
server applications is easy, requiring trivial changes to
the server objects that will be distributed and a few lines
of code on the server and client ends to establish a con-
nection. After that, the client resolves the objects it
wishes to use, and invokes server object methods
through its own client stubs.

While the approach is convenient, it can generate a lot
of server traffic, since every remote method call requires
a network transaction. Future work will examine how
best to allow clients to cache additional information in
their client to avoid talking to the server to perform
read-only operations. This will obviously involve
increased complexity in designing classes, and may
raise a new set of concurrency issues, but it stands to
improve performance and scalability where many cli-
ents access a single server.

Future work will also improve security in the system, to
allow servers to authenticate connecting clients. Present
security is achieved by evaluating socket traffic through
a safe interpreter, which restricts the entry-points to the
server to the methods of its distributed objects. If the
server could authenticate its clients, then it could pro-
vide distributed objects that performed more trusted
operations with greater security. Finer control over the
methods that a given server object publishes to a spe-
cific client could also help to create more flexible server
classes.

With version 3.0, [incr Tcl] has become a pure extension
to Tcl/Tk, allowing vanilla interpreters to use classes
and objects by loading [incr Tcl] as a package. With this
support, these developers who enjoy the flexibility of
scripting and the structure of an object system can use
[incr Tcl] without having to build their own custom
interpreters. By loading Iclient/Iserver, these same
developers can use their existing classes as interfaces
and construct client/server applications faster and more
easily than ever before.

Acknowledgments

Thanks to Michael McLennan and George Howlett for
many useful discussions about client/server architec-
tures and distributed objects, and for their help with this
paper. Thanks also to Michael McLennan for his help in
designing the interface for Iclient/Iserver software.
Finally, thanks to Robin Valenza for losing sleep to edit
this paper.

References

[1] Jacob Levy, “A Tk Netscape Plugin,” Proceedings
of the Fourth Annual Tcl/Tk Workshop ‘96,
Monterey, California, July 10-13, 1996.

[2] Michael J. McLennan, “[incr Tcl]: Object-Oriented
Programming in Tcl,” Proceedings of the Tcl/Tk
Workshop, University of California at Berkeley,
June 10-11, 1993.

[3] Michael J. McLennan, “The New [incr Tcl]:
Objects, Mega-Widgets, Namespaces and More,”
Proceedings of the Third Annual Tcl/Tk Workshop
‘95, Toronto, Ontario, Canada, July 6-8, 1995.

[4] Robert Orfali, Dan Harkey, and Jeri Edwards. The
Essential Distributed Objects Survival Guide. John
Wiley and Sons, 1986. ISBN 0-471-12993-3.

[5] http://www.omg.org

[6] B. C. Smith, L. A. Rowe, and S. Yen, “Tcl Distrib-
uted Programming,” Proceedings of the Tcl/Tk
Workshop, University of California at Berkeley,
Jule 10-11, 1993.

[7] Peter T. Liu, Brian Smith and Lawrence Rowe,
“Tcl-DP Name Server,” Proceedings of the Third
Annual Tcl/Tk Workshop ‘95, Toronto, Ontario,
Canada, July 6-8, 1995.

[8] M. Roseman and S. Greenberg, “Building Real
Time Groupware with GroupKit, a Groupware
Toolkit,” ACM TOCHI, March 1996.

[9] Mark Roseman, “Managing Complexity in Team-
Rooms, a Tcl-Based Internet Groupware Applica-
tion,” Proceedings of the Fourth Annual Tcl/Tk
Workshop ‘96, Monterey, California, July 10-13,
1996.

[10] Mark Harrison, Michael McLennan. Effective Tcl/
Tk Programming. Addison-Wesley, 1998. ISBN 0-
201-63474-0.

