
The following paper was originally published in the
Proceedings of the Sixth Annual Tcl/Tk Workshop

San Diego, California, September 14–18, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

Using Tcl to Rapidly Develop a Scalable Engine
for Processing Dynamic Application Logic

Greg Barish
Healtheon Corporation

Using Tcl to Rapidly Develop a Scalable Engine for Processing
Dynamic Application Logic

Greg Barish
Healtheon Corporation

barish@isi.edu

Abstract

At Healtheon, we used Tcl to rapidly develop a scalable, high performance rule engine for
processing dynamic application logic. The nature of our application requirements, plus the

challenge of delivering robust software in a timely manner made Tcl an optimal overall
choice in our deployment. We were able to improve rule processing performance by careful
language construction and support for concurrent execution. We developed a mechanism

for implementing data-driven language extensions, called rule concepts, which allowed us to
present a customized language for each client, and encouraged rule reusability. Our

experience with using Tcl in our application system was also representative of software
engineering choices that small companies often make in pursuit of rapidly developing a

well-balanced system solution.

1 Introduction

At Healtheon, we used Tcl as the basis for the
implementation of a rule engine, a mechanism for
processing dynamic application logic. Our design,
implementation, and deployment were notable because
these phases revealed techniques for integrating Tcl in
environments which must meet the scalability and
performance demands of an on-line service.

In this paper, I initially describe the problem domain and
present how Tcl addressed the basic application and
system requirements. Next, I present the evolution of our
extensions (our rule language). This serves to illustrate
techniques for addressing the performance of run-time
interpreted languages and suggests a data-driven solution
for implementing dynamic extensions. Moreover, the
evolutionary description represents a case study for why
the adaptability of an extensible third-party interpreter
resulted in a more economical solution than having
implemented a custom rule processor ourselves. Finally, I
discuss various system integration and deployment
approaches towards improving the availability and
concurrency of a Tcl-based application service, outside of
modifying the interpreter itself.

An important sub-theme of this paper is one of software
engineering. In particular, I refer to the "rapid rate" of
development and deployment of our Tcl-based rule engine
as a feature. Since we are a small company, quickly
deploying reliable software is a constant demand, and I
imply several times why Tcl was uniquely qualified to
address not only the basic unit requirements, but was also

the best overall solution in terms of system integration and
robust operation.

All too often, software are solutions are heralded only for
their elegance at handling a single complex problem. Less
commonly rewarded are software solutions which
successfully meet several software engineering demands,
in addition to achieving basic unit functionality. These
demands include the ease of integration, method of
maintenance, and time and resources required for
development. They can be referred to as economical
features of software development. A novel aspect of our
use of Tcl was how well we found it at addressing these
broader issues and thus providing us with the best overall
solution.

1.1 The Healtheon Benefit Manager

At Healtheon, one of our key applications is a on-line
benefit management system, called Benefit Manager,
which employers can use to process employee benefits.
Administrators use the system to choose and customize
benefit packages and plans for their employees.
Subscribers use the application to make and update their
benefit choices. These bulk of these selections are usually
done once a year, during a series of weeks known as Open
Enrollment.

Since Benefit Manager exists as an on-line Internet
service, with concurrent sessions potentially numbering in
the tens to hundreds of thousands, it must also wrestle with
requirements for availability, scalability, high
performance, and fault tolerance. These demands are also
true of other applications employing the on-line service

model, such as America On-Line, Yahoo, and Amazon. In
this sense, Benefit Manager is representative of a model of
application deployment becoming increasingly common in
commercial, transaction-based systems.

1.2 Benefit Rules

One of the key application requirements of the Benefit
Manager application was the need to support the encoding
and processing of benefit rules. Benefit administrators at
a given company specify these rules and associate them
with benefits, plans, and selections for various types of
employees. Rules figure such things as benefit and plan
eligibility, plan costs and credits, plan dates of effectivity,
validation of selection combinations, and several other
such determinations.

Rules are run on behalf of a given subscriber and are
frequently a function of some demographic, employment,
or existing benefit attribute associated with that subscriber.
For example, a certain medical plan geared towards
retirees might have an eligibility rule based on the
employee age. Another example would be a case where a
legacy benefit plan is only available to subscribers who are
already enrolled in that same plan for the current benefit
period (a rule based on existing selection information).

However, there are also rules which are partially based on
the particulars of a specific transaction. For example, an
employee may be eligible for medical plan M and dental
plan D, but not eligible for the selection of both of them.
Thus, such rules are run based on the session data
associated with the transaction.

Processing rules always involves the generation of rule
results, which vary based on the type of rule. For
example, eligibility rules return true/false results, cost rules
return dollar amounts, and effective date rules return
calendar dates. While most rules typically return a single
result, some do return multiple results, and some even
return an unbalanced number of results (i.e., one result on
success, two results on failure - the second result being the
error message).

At Healtheon, rules are expressed in a rule language. They
are associated with the appropriate benefit, plan, or other
relevant object in our data model. Therefore, a many-to-
many relationship between employees and benefit
information exists and thus most rules are shared by large
groups of employees.

Typically, making benefit selections during Open
Enrollment results in between 100 and 150 rules being
processed per subscriber. However, although rules are
shared, employers will still have a high number of total
rules on the system, to provide coverage for all types of
employees and support all possible benefit and plan
combinations. It is not uncommon for a typical employer
of 10,000 employees to have over 500 rules on the system.
Rule population varies by company and is more of a

function of their existing benefits complexity rather than
the company size.

1.2.1 Pre-Computation

One might be tempted to ask why rules could not be pre-
computed, to remove the burden of run-time interpretation.
Generally, it is not practical to pre-compute rules. For one,
rules are often date-sensitive. Consider a plan eligibility
rule such as: "a subscriber is eligible for plan if that
subscriber has been in the same plan for at least two
years". If that rule is pre-computed a month before a
subscriber actually tries to choose that plan again, it might
obviously return different results.

It could be suggested that rules be pre-computed on a daily
basis, perhaps during times when the system is relative idle
and better able to engage in such CPU-intensive activity.
This is still impractical when considering the workflow of
a benefits enrollment. Frequently, subscribers will use
Open Enrollment to first change demographic data before
selecting benefits. Thus, the same session is often used for
both tasks. Sudden changes in personal information would
therefore often cause the pre-computed rules to be invalid.

It is conceivable that a dependency graph could be
constructed such that only those rules which need to be re-
computed after such scenarios actually are, but leads to
drastic increases in solution complexity. It would have
required a sophisticated parsing (actually, compilation)
technique to be employed whenever rules were updated in
the system. Moreover, this effort implies that a solution
for detecting indirect requests for data retrieval be
implemented. This is analogous to the problems
associated with detecting pointer-based references, such as
that which is done during data flow analysis for purposes
of compilation.

2 Choosing Tcl

We decided to use Tcl as the basis for our rule language
for two major reasons: (a) the effectiveness with which it
fulfilled our basic application and system requirements and
(b) that it was, from a software engineering perspective,
the most economical of the solutions available.

During this discussion, it is useful to also relate
observations which led up to our decision, since it
illustrates why a language like Tcl becomes attractive to a
small company which needs to rapidly deliver reliable
software.

2.1 Application and System Requirements

As described earlier, the most serious application unit
requirements we had on the interpreter was that it needed
be easy to extend and would contain support for
moderately complex data structures and their associated
data manipulation functions. Obviously, Tcl met both of
these demands easily.

System-level requirements included those of attaining high
performance, scalability, and availability. Although the
choice of interpreter and language design did have some
impact on these challenges, it later turned out that it was
better to deal with these issues at a higher level of software
- the rule engine itself. I describe these approaches in later
sections of this paper.

Still, an important additional system-level requirement to
address at this point had to do with the ease of integration.
As a small software company, we were concerned about
how development and runtime system would be affected
by incorporating Tcl. While using third party software can
be attractive for how much it can enhance an existing
system, difficulty related to integration often results in
subtracting away any profit which was made.

For example, we were immediately concerned about
performance issues associated with parsing. We were also
questioning how we our use of multithreading might
impact Tcl. Other issues included: integration with C++,
integration issues with CORBA (our choice for distributed
application development), API portability, effect on
system security, and the time required for integration.

2.1.1 Code Maturity

Many of our concerns about integration had to do with
how comfortable we felt trusting the code. We did not
want to build and deploy a system only to find out that we
were plagued by problems with a third-party API.

In addition to being one of the most prolific, freely
available interpreted languages, Tcl had been around for
several years. We knew that it was heavily used and
extended by others in the industry. We felt that there was
an excellent chance that the code would be stable and
efficient.

Even more attractive was the fact that we were not simply
integrating with a code library - we had access to the
source code itself. Thus, during debugging, we were able
to ensure that various bugs were definitely not Tcl-related.

It should be noted the opposite is nearly always true when
dealing with third-party code which has been purchased.
In those scenarios, developers have to deal with support
teams which look at various potential bugs on a case-by-
case basis. In terms of efficient software engineering, this
is highly undesirable in terms of both time and cost. Even
worse, though the developers typically have already paid
large amounts of money to use commercial third-party
software, they often then have to pay additional fees for
support!

This is not to suggest that the universe of industry
software engineering problems would be resolved if
companies just gave away their code. Tcl is unique in this
respect, and the above observation is merely a testament to
this specific case.

2.1.2 Simplicity of Extensibility

There was a minimal learning curve associated with
figuring out how to extend Tcl: only one API call was
necessary. Understanding the related data structures and
requirements involved in writing an extension were also
very simple. We successfully tested an extension the same
day we downloaded the software.

Later, we also found great value in the ability to remove
commands from the language (see Security, later in this
section).

2.1.3 Portability

At the time we needed to choose a rule language, it was
unclear whether our system would be running under Sun
Solaris or Windows NT. That Tcl had been ported to
several platforms made this concern a low-priority issue
during consideration and allowed us to continue
development on the rule engine in parallel, without delay.

Furthermore, in looking at the code organization, we could
see that the operating system dependent code was well
distinguished from the generic code, so we felt that any
modifications or platform-specific enhancements we might
have to make on our own would be an easier task than
usual.

For example, our platform team had come up with a
lightweight, portable thread library [Kougiouris97] which
we thought we might need to incorporate somehow in the
interpreter itself. Given the distinction of operating system
dependent code, we felt it would be easier than usual to
know what parts of Tcl might be affected and where to
find the related code.

2.1.4 Security

Initially, it was unclear who would be coding the rules we
needed and how it would be done.

Would they be coded from clients through a Web
interface? If so, then what kind of impact could forged
rules have on our system, in addition to destroying the
correctness of the rules themselves? Would clients be
composing rules through a graphical editor (which would
more or less guarantee correct syntax – at least there would
be a finite bound on the range on input we would be
receiving) or did we have to worry about the horrors of
handcoded rules (which might bring along things like
infinite loops)?

Most of these questions would have become serious issues
had we not been able to disable parts of the existing API.
The fact that we could take out some of the control flow
commands, like for and while - which we didn’t need for
our rules – allowed us the best of both worlds. Thus, in
addition to our own command set, we could still harness
Tcl for parsing, variable support, and mathematical
functionality, without having to worry about the risk of

commands with potentially serious consequences,
commands we didn’t need.

2.2 Software Economics

It is important to emphasize that we did not view Tcl as
necessarily an optimal rule language solution. Certainly, a
more attractive scenario would be one in which we built
our own custom parser, or even more attractively - our
own rule virtual machine. Then, we could pre-compile the
rules and remove the parsing element altogether.
However, such tasks require significant investments in
additional time and development staff. As a small
company, we could not afford to make that kind of
investment.

Furthermore, there was additional risk involved at
investing in an a more optimal solution. More time spent
on developing a complex solution would result in less time
for system integration, meaning that overall system
stability and robustness would be sacrificed. Even more
disturbing was the fact that, as mentioned earlier, rule
language requirements were volatile. Building
extensibility into our own parser or virtual machine would
be more complex, require an addition investment in time
and resources, and thus increased risk.

What was very obvious to us was that using Tcl gave as a
near-optimal language solution at a fraction of the cost.
We predicted (and were later proved correct) that building
a rule engine based on Tcl would require minimal
investment in time and development staff, and would lead
to more time to be spent on system integration, thereby
increasing our ability to address system robustness. At
Healtheon, we felt that even the most sophisticated and
cutting edge unit technology looked poor if the entire
system it is integrated into does not hold together well.
The whole was not simply the sum of its parts.

3 The Rule Engine

Before discussing the rule language further, it is
worthwhile to first understand the approach we took
towards designing the rule engine, the mechanism which
housed the Tcl-based rule interpreter.

The Benefit Manager rule engine provides a simple,
lightweight API for processing benefit rules. The engine
exists as a C++ class library which Healtheon CORBA-
based application servers can link with at compile time.
Applications merely make a single call to the
interpret() function when they want to process a rule.
The rule engine eventually calls Tcl_Eval() to process
the logic and then returns a list of zero or more rule results
back to the application.

One of the novel aspects regarding integration of the rule
engine with Tcl was how easy it was to gain access to
important rule engine data structures during the course of
interpretation. It is easiest to understand this profit by way
of example. Recall that one of our rule processing

requirements was the ability to send back rule results after
an interpret. One of the extensions we made for this
turned out to be the command EligibleWhen, which
would return a boolean result of true if the list of
arguments passed to it were all non-zero. A sample rule
which used this command would be:

EligibleWhen [IsMarried];

Figures 3a, 3b, and 3c show key parts of the Rule Engine
related to this example extension. They reflect three of the
important integration stages: (i) runtime initialization of
commands (in the Tcl interpreter) based on data structures
automatically generated from our data model, (ii) when the
call was made to Tcl_Eval(), in the course of rule
processing, and (iii) the implementation of the extension
itself - the code which actually performs the logic and
stores the rule results.

In particular, Figure 3a shows the simple loop used for
creating commands upon Rule Engine initialization. The
important part of this phase is to note that a subset of the
commands (those tied to the data model) were
automatically generated by the data model DDL itself ,
which allowed us the flexibility to change our model
without having to, say, rewrite lexer rules every time.
This process is described further later in this paper, in
section 5.1.

TCM TclCmdMap[] =
{
 ..
 {"EligibleWhen",
 RuleLanguage_EligibleWhen}
 ..
}

int
RuleMotor::initialize()
{
 ...
 ...
 for (int i=0; TclCmdMap[i].fn!=NULL; i++) {
 Tcl_CreateCommand(
 m_interp,
 TclCmdMap[i].name,
 TclCmdMap[i].fn,
 (ClientData)this,
 (Tcl_CmdDeleteProc*)NULL);
 }
 ...
 ...
 }

Figure 3a: Initialization

Figure 3b shows the integration point with Tcl during rule
interpretation. Rule Engine worker threads, called Rule
Motors (described later, in section 6.2), make the actual
call to Tcl_Eval() themselves and keep private data
structures for rule result aggregation.

Finally, Figure 3c shows how the example command
acquires the pointer to the worker thread which is running
the rule (the particular Rule Motor) , performs its
necessary logic, and then associates the result of the rule
with the motor responsible for rule invocation.

Notice that a pointer to a rule engine data structure is
specified when making the Tcl_CreateCommand() call
in part (i). During runtime, (ii) is invoked to perform the
rule processing. Then, during interpretation, the data
structure from (i) can be accessed by casting the callback
pointer upon entry to extension, as shown in (iii). Upon
return in (ii), the modified data structure can be analyzed.
This was a major asset at runtime, since it prevented us
from having to marshal data between steps (ii) and (iii).

There are several other important issues related to
improving performance, availability, and scalability of the

rule engine in terms of deployment. However, before
discussing these issues, it is first useful to understand the
nature of the Tcl extensions we made, in other words, the
rule language.

4 Rule Language Design

It took us two iterations to arrive at an effective rule
language. Both are worth describing because they
illustrate how Tcl became so valuable to us while our
application system matured. The first attempt saw us
make only a few extensions to Tcl, enough so that we
could retrieve information from our database and process
rule results. The resulting language was sufficient but
problematic.

The second attempt was far more effective because, by
then, we had a much clearer picture of the rule
requirements. It gave us time to look at how clients
wanted to encode rules and adapt the language
accordingly. Again, it should be noted that had we not
used Tcl, the prospect of iterating the rule language as we
did would have been far more risky and less likely to
succeed.

4.1 Take One: The Minimalistic Approach

The initial version of the Healtheon rule language included
less than 10 commands, each of which was essentially a
generic mechanism for addressing the language
requirements.

For example, we had one command (DbGet) for retrieving
subscriber information from the database. This extension
took a table and attribute name as arguments, issued a
dynamic SQL query to our database, and would return the
associated values for that subscriber.

We found numerous problems with this approach:

• data model exposure: In order to specify the
arguments of a DbGet, the user was obviously
required to understand our data model. Exposing a
data model is generally not good practice - the
system should present a consistent interface to all
users for the long term. Exposing the low level
details of the model hampers the ability to change
the model.

• command usage ambiguity: If the table name
could be any one of our tables, how could we
enforce that the author specified the correct number
and type of table keys in order to resolve a unique
row? Again, this would clumsily expose the
underlying data model. Even worse was that it
made the DbGet command more ambiguous - it was
unclear how many arguments it needed for a given
call.

• greater parsing demands: We had to assume that
clients might enter table names and attributes in

RuleResultList*
RuleMotor::interpret(
 char* a_rule)
{
 m_ruleResults->clear();
 ...
 ...
 int code = Tcl_Eval(m_interp, a_rule);
 ...
 ... During eval, results will accumulate
 ...
 return m_ruleResults;
}

Figure 3b: Access

int
RuleLanguage_Tcl_EligibleWhen(
 Tcl_Callback* a_ptr,
 int argc,
 char** argv)
{
 RuleMotor *theMotor = (RuleMotor*)a_ptr;

 ..
 ..
 (analyze arguments, determine T or F)
 ..
 ..
 if (noneAreFalse) {
 theMotor->appendBooleanResult(TRUE);
 }
 else {
 theMotor->appendBooleanResult(FALSE);
 }
}

Figure 3c: Processing

varying styles - wrong case, slight misspelling, etc -
and we needed to determine how to handle such
input. Furthermore, there was simply more to
parse: having a generic data retrieval command
such as DbGet implies that additional parsing will
need to be done to figure out exactly what to get.

• manual data typing: Tcl is typeless, so after
getting the data back, the value essentially became
a string. Any other function which took the result
of a DbGet as an argument would have no idea
what kind of actual type it was dealing with, unless
it was overtly specified by the author.

For example, consider the problems with
comparing two dates - the subscriber’s hire date at
the company and his birth date. Although we
would want to say:

if [Compare LessThan
 [DbGet Subscriber BirthDate]
 [DbGet Subscriber HireDate]]
then
 ...
endif

this would be problematic unless the type
information was included:

if [Compare date LessThan
 [DbGet Subscriber BirthDate]
 [DbGet Subscriber HireDate]]
then
 ...
endif

These issues are representative of those associated with
implementing the other generic extensions we did in our
initial language definition. We found that they placed a
heavy burden on the rule author, they are far more prone to
error, they incurred greater parsing demands, and they
were overly verbose. Perhaps the greatest crime was that
rule author, the most valued client of all, was presented
with an ambiguous, cumbersome interface.

Despite all of these problems, there was one important
benefit to our initial version of the language: the speed at
which we could implement a functioning rule processor.
The rule engine became one of the first modules of the
alpha portion of the application software to actually work.
This milestone allowed the engineering team to focus more
on system integration issues and re-assign developers to
other projects which were not yet completed.
Additionally, it allowed us to begin coding rules for some
of our initial clients.

4.2 Take Two: The Final Cut

With proof of concept under our belt, the second version of
Benefit Manager saw us revisit the design of the rule
language. By this point in our development, we were now

made clearly aware of the problems associated with
implementing generic commands. For the second release,
we wanted less verbose rules, less parsing, decreased
burden on the rule author to understand various uses of the
same command, and a syntax which generally left fewer
opportunities for user error.

4.2.1 Improving Data Access

Early in the process, we attained a major milestone by
developing a new paradigm for data retrieval. Our
approach was to create a Tcl extension for every possible
attribute of every table in our retrieval domain. The name
of these commands was the concatenation of the table and
attribute for that item.

Implementing each potential retrieval as an extension also
gave us the opportunity to hide the data typing associated
with that item. For every database command, our rule
language supported two styles of execution. In the first, no
arguments were specified and the string (typeless) value of
the attribute was resolved. The second form required
comparison arguments and returned either true or false,
depending on the result of the comparison. It was this
second form of data access and comparison which gave us
the opportunity to implement automatic datatyping.

Figure 4a shows the how a rule based on subscriber salary
would be authored in the first and second versions of the
rule language. Obviously, the second version is more
compact, less cluttered, incurs less runtime parsing, and
makes the data typing automatic and transparent.

4.2.2 Improving Rule Result Repor ting

Another major language improvement was to make rule
result reporting easier. As was the case with data access,
the first version of the rule language placed the burden of
declaring the rule result type in the hands of the author.
Even more concerning was that authors might forget to
return a result (leaving the application confused about the
status of rule satisfaction) and the high potential that
certain control flows might not lead to any results being
reported.

Version 1:

if [Compare double >
 [DbGet Employee Salary] 50000]
then
 ...

Version 2:

if [EmpSalary > 50000] then ..

Figure 4a: Improving Data Access

To address these issues, we devised specific styles of
commands which would encourage full reporting. The
heart of the problem was the reliance on IF-THEN logic.
Such logic was characteristic of most rules and we
attempted to implicitly capture that logic in our new
commands, improving code compactness and removing
some of the potential for coding errors.

Figure 4b shows how an benefit eligibility rule appears in
both versions of the language. Obviously, the first version
contains more code and places a higher degree of
responsibility on the author in terms of control flow
checking. The second version makes the IF-THEN logic
implicit in the EligibleWhen command. This command
simply takes a space delimited list of values and returns
false (i.e., "not eligible") if any of these values are zero.

There are some other worthwhile observations to make
about the effect of the language metamorphosis. These
included the number of commands in the language: it did
require more work on the author’s part to know what the
categories of commands were. However, we felt that this
was not unusual for a scripting language. Also, many of
the command names were predictable.

Another related, but subtler, aspect was the level of
redundancy in the new language. Recall that we had to
process several types of rules: eligibility, costs, credits,
dates of effectivity, etc. Now, while there were close to 10
types of rules to deal with, we were always returning a
single result, the type of which was either boolean, double,
or date. This implies that we really only needed three
distinct commands for returning rule results.

While critics might lobby for one mechanism for returning
a type of double, there was an obvious subtle benefit to
having distinct commands on a rule type basis: increased
language transparency. For example, we were freer to
update the semantics of eligibility instead of forever
remaining tied to the notion that it only represented either
True or False.

By making these changes to the rule language, we
improved the performance of rule interpretation,

decreased the potential for error, and hid the ugliness of
data typing. Most importantly, from the authoring point of
view, the rules were much easier to read and understand.
This, in turn, made them easier to author.

4.2.3 Rule Concepts: Dynamic Extensions

It is often desirable to customize a language to best meet
the specific needs of a client. Each company has its own
way of doing business, its own business logic concepts,
which frequently play a role in rule processing. Our goal
was to do what was possible to support the expression of
rules in these simple, familiar terms, to improve the
usability of the rule language, as well as to promote rule
compactness.

Our solution was to support the declaration of rule
concepts, company-specific extensions to the rule
language. In this sense, the rule language was thus a union
between the base language and the concepts for a given
company. In practice, rule concepts were simply macros
to facilitate the simple expression of a awkward or
complex computation.

Suppose a company is based in California and frequently
uses the state tax rate in their benefit plan cost rules. They
might want to express a cost rule as something on the order
of: "the cost of this plan is $200 plus 1% of the employee’s
salary multiplied by the state tax rate". We might want to
capture "tax rate" as a concept. To do this, they would use
our administration interface to name a new language
command called TaxRate and define its meaning.
Optionally, if the phrase "one percent of <some number>
times the tax rate" was a frequently used computation, the
company could even define that as a concept (i.e.,
OnePercentAndTaxOf),

The benefits of rule concepts are three-fold: they provide a
key level of functional abstraction in the language, they
increase the re-usability of rule code in the system, and
they also allow us to personalize Tcl to best address the
specific business language of our clients.

5 Language Integration

The new version of our rule language was also notable in
terms of the issues it raised related to system integration.
Some of these had to do with the management of having
over 150 Tcl extensions, specifically in terms of proper
maintenance and namespace clashing. Other issues
involved the relationship of the language to the application
data model and how useful application-level data objects
might be represented .

5.1 Automating Generation of Tc l Extensions

With over 100 commands for data access alone, there was
concern about the ability to manage the development of
these extensions without assigning more programming
staff to the task. Since the nature of all of these extensions

Version 1:

if [Compare double >
 [DbGet Employee Salary] 50000]
then
 ReturnRuleResult boolean true;
else
 ReturnRuleResult boolean false;

Version 2:

EligibleWhen [EmpSalary > 50000];

Figure 4b: Improving Rule Results

were the same (retrieve data, optionally provide
comparison logic), we decided to spend time developing a
mechanism for automatically generating the code for these
extensions. Our process for this is shown in Figure 5a.
The typical cycle of development was to first update the
data model as required, export the associated data
definition language (DDL) to a file, use the DDL to the
automatically generate source code for the Tcl extensions,
and finally rebuild the extensions library. This level of
automation allowed us to efficiently adapt the data model
as required. In fact, DDL revisions became a far more
problematic issue for the applications themselves (which
often referred to attributes and tables literally) than it was
for the rule engine.

5.2 Naming Issues

One additional issue we encountered was that of the
command namespace management. For example, all of
the tables which could be data access candidates in rules
contained attributes which were named the same, but
included in different tables for various reasons (they were
foreign keys or just deliberate duplicates of information for
purposes of security via data partitioning). What this
meant, for example, was that we could have a field in the
demographic table called "Birth_Date" and a field in the
employment information table called "Birth_Date". We
needed to mechanism to establish closure [Neuman89], to
ensure name uniqueness.

We took the common route of prepending a unique (table-
based) prefix to each command. Thus, a rule for
comparing birth dates would appear as:

if [EmpAge == [BenAge]]
then
 ...
 ...

This would compare the age of the subscriber as listed in
the employment (Emp) information with the age of the
subscriber in the benefits (Ben) table.

There is additional naming complexity when considering
how to deal with implementing rule concepts. For
example, if two companies want to create a concept called
ComputeTax, how should this be resolved? Should the
company who first requested this concept be awarded the
right to name it? More alarming was the privacy aspect of
concepts: since the same rule interpreter was used by all
parties, did this mean that a concept designed by one
company would be accessible by all other companies?
Namespace collisions are common problems when using
Tcl, mostly due to the lack of scoping in the language
[Libes95].

Our solution to this problem was to implement run-time
dynamic scoping. The basic idea was that the Tcl
interpreter would consist of the normal extensions of the
rule language, plus the union of all concepts (company-
based extensions). This meant that, even though two
different companies declared their own version of a
concept like ComputeTax, there was only one extension
made. At runtime, a hash table of concepts was
maintained in memory. Thus, for ComputeTax, the hash
bucket associated with that entry would contain a linked
list of two elements, representing both versions of the
concept.

The methodology for concept resolution - or closure - was
simple: since rules are always run on behalf of a
subscriber, simply determine which company providing
benefits for that subscriber and use that company
identifier to choose which concept to execute.

5.3 Data Model Aliasing

As described in 5.1, we generated our extensions based on
the data model itself. However, we remained concerned
about the potential for legacy rules - ones which were no
longer valid after a data model update. For example, if a
client had written a rule like that in Figure 4b (version 2)
and we suddenly decided to rename that attribute to
"AnnualSalary", we would indirectly invalidate an
existing rule. The lack of a mediator between the rule
language and the data model remained problematic.

To address this issue, we devised a map-based mechanism
for ensuring data model transparency. The methodology
consisted of a scheme in which multiple names, known as
aliases, could refer to the same attribute. Thus, if an
attribute name was changed, we could simply amend the
map to include support for the old name by providing an
alias, without modifying the actual company rules

Generate extensions
source code

Rebuild rule engine

Update data model

Figure 5a: Code Generation Methodology

themselves. Multiple Tcl extensions would therefore be
created for the same attribute, but only one extension
would actually be implemented. The rest were simply
pointers to this code. The notion of aliases is not new, it is
simply a variation on an implementation of symbolic links
[Lampson85].

Obviously, while aliases succeeded in resolving the issue
of attribute name changing, they did not help out when an
attribute was removed from the data model. This is a more
complex problem and one where a resolution may not be
possible.

6 System Integration and Deployment

The underlying platform software at Healtheon is a
scalable distributed object system. Among other features,
it contains support for high availability, concurrency, fault
tolerance, security, and naming. In this part of the paper, I
discuss techniques for the integration and deployment of
the rule engine such that these system features could be
exploited in an attempt to improve scalability.

In particular, I show describe our experiences with
improving rule engine availability and performance.
While the former was not successful, the latter was very
successful, and led to increased scalability of the resulting
software upon deployment. While these experiences only
marginally related to Tcl itself, they represent ways in
which Tcl can be integrated into systems to both address
general reliability as well as to counter performance
problems associated with run-time interpretation.

6.1 Improving Rule Engine Avai lability

As described earlier, building an application in our system
which used the rule engine requires linking with the
associated library.

Initially, we had wanted to improve the availability of the
rule interpreter by wrapping the rule engine in a CORBA
shell and allowing an object request broker (ORB) or
separate load balancing tool to launch the number of rule
engine instances necessary to deal with given client
demands. This would have prevented a misbehaving,
frequently crashing application from also destroying
access to the rule engine for other servers.

While this would have improved availability and fault
tolerance, it would have also severely hampered
performance. Recall that processing a set of selections for
a given subscriber results in over 100 rules being
processed. If the rule engine existed as a distinct server,
this would lead to an unacceptable number of network
calls.

An alternative, slightly more optimized approach would
have been to simply combine a CORBA module for the
rule engine with the other modules for the Benefit
Manager application in the same server. When multiple
modules exist in the same server, a form of optimized,

lightweight RPC [Bershad90] is often used. This results is
what is essentially a local function call.

While this reduces the data copying and network overhead,
it does not address the needless marshalling of data
between module boundaries. Since the workflow of rule
processing is such that one segment of C++ code (the
application) is calling another (the rule engine), the
arguments passed to the rule engine must thus be
marshaled into CORBA types, even though these
arguments are never even transmitted with a networking
protocol.

In the final analysis, we stuck with our original idea of
using a C++ class library as the basis for the rule engine,
as the sacrifices to be made for improved availability were
not worth the price is decreased performance.

6.2 Concurrent Rule Execution

On a more positive note, we did have far more success
with improving performance by increasing rule processing
concurrency. Specifically, we made improvements to the
rule engine itself, in terms of thread safety, without
needing to investigate a Tcl-based solution for
multithreading.

To achieve acceptable concurrent processing, we designed
the rule engine to support pools of rule motors - each
essentially a wrapper around a rule interpreter data
structure - several of which would be available when rules
needed to be processed. Thus, each motor supported its
own Tcl_Interp data structure, as depicted in Figure 6a.

When handling requests for rule interpretation, the rule
engine motor dispatcher would grab the process mutex,
search for an available motor, hand off the request to that
motor, and mark it as taken. In the event that all motors
were occupied, the rule engine would simply wait for a
broadcast signal (sent when a motor was done with
processing a request) and then choose that motor as the
destination for the incoming request.

It should be noted that there was no need to support
multithreading for reasons of correctness in processing,
since the internal Tcl data structures which cannot support

Motor

Motor

Motor

Motor

Dispatcher

Figure 6a: Concurrent Rule Processing Via Rule Dispatcher
Each Rule Motor contains a Tcl_Interp*

RULE ENGINE

APPLICATION

concurrency (the global variables) are only related to those
Tcl commands for file and process management,
commands which we did not support with our rule
language.

However, multithreading was important for purposes of
supporting high concurrency and thus improved system
throughput. Simply using a thread-safe version of Tcl
would not have been an optimal solution, since what was
really needed was for the entire engine to support
concurrent access. Therefore, maintaining pools of
interpreters was a more reasonable solution to the problem.

7 Discussion

Employing Tcl as the foundation for our dynamic logic
engine ultimately proved to be successful. We were able
to rapidly construct a powerful rule language, through a
combination of our own extensions as well as leveraging
existing Tcl functionality. The ease at adding and
removing language commands allowed us to write code
generators and easily adapt to rapidly changing design
requirements with minimal integration.

The rate at which we were able to develop the rule engine
allowed us to reallocate our resources and spend more time
improving system performance and overall integration. If
we had simply devoted several months to the development
of our own parser or pre-compiler, we would have not
been able to adapt to the moving target of volatile design
requirements, all too common at a small company.

There were some disadvantages to using Tcl, but most of
them were expected. We ran into some performance
problems, some due to our own parsing and some related
to the Tcl parser. We almost certainly could have achieved
better performance through a more lightweight,
application specific parser or even rule virtual machine
which would process pre-compiled rules. However, these
would have been impractical solutions and would have
forced us to sacrifice crucial aspects of overall system
integration.

At a larger company, development teams have more time
to approach milestones, and can afford to spend long
periods of time in the design and prototyping phase. Also,
larger companies tend to deliver a tool they think addresses
a market demand and then tackle customer requirements in
future releases. In short, they can easily push products into
the market channel.

In contrast, a small company cannot afford to simply throw
software out onto the market. It needs to be highly
sensitive to the requirements of its core customers, as
much of a moving target as that can be, while still
delivering a well-balanced product: it thus becomes
essential to deploy something quickly, but which still
ensures correctness and robustness, despite changing
requirements. Using Tcl allowed us to meet the necessary
requirements, quickly deploy advanced functionality, and
to spend more time improving system integration.

8 Acknowledgements

I wish to thank the following people at Healtheon for their
continued input and support related to the care and feeding
of the rule engine: Mohammad Alagebandan, Giamma
Clerici, Kittu Kolluri, Shankar Srinivasan, and Theron
Tock.

9 References

[Lampson85] Lampson, B., "Designing a global name
service". In Proceedings of the 4th ACM
Symposium on Principles of Distributed
Computing, August 1985.

[Libes95] Libes, D., "Managing Tcl’s Namespaces
Collaboratively", Proceedings of the
Fifth Annual Tcl/Tk Workshop ’97,
Boston, MA, July 14-7, 1997.

[Neuman89] Neuman, C., "The Need for Closure in
Large Distributed Systems". Operating
Systems Review, 23(4):28--30, October
1989.

[Kougiouris97] Kougiouris, P., Framba, M., "A Portable
Multithreading Framework". C/C++
User’s Journal. August 1997.

[Ousterhout94] Ousterhout, J., The Tcl/Tk Toolkit,
Addison-Wesley, 1994.

[Bershad90] Bershad, B.N., Anderson, T.E..,
Lazowska, E.D., Levy, H.M.,
"Lightweight Remote Procedure Call".
ACM Transactions on Computer
Systems, 8(1):37--55, February 1990.

