
The following paper was originally published in the
Proceedings of the Sixth Annual Tcl/Tk Workshop

San Diego, California, September 14–18, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

A Tcl-based Multithreaded Test Harness

Paul Amaranth
Aurora Group, Inc.

A Tcl-based Multithreaded Test Harness

Paul Amaranth

Aurora Group, Inc.

email: paul@auroragrp.com

Abstract

This paper describes an implementation of a test
harness written in Tcl and C for Merit Network,
Inc. capable of running multiple structured tests si-
multaneously. Many available test tools are based
on a single threaded stimulus/response approach.
This is not always su�cient to adequately test cer-
tain classes of applications that manage multiple si-
multaneous requests. The design presented in this
paper is for a Tcl-based system capable of running
multiple simultaneous tests in the context of testing
a RADIUS authentication server. The design and
implementation illustrate novel applications of Tcl
as well as the rapid development and code reusabil-
ity inherent in using Tcl as an application glue lan-
guage.

1 Introduction

Merit Network, Inc is a nonpro�t entity a�liated
with the state universities of Michigan that is re-
sponsible for supplying Internet services to its mem-
ber universities and a�liates. As part of ful�lling
that mission, Merit Network, Inc. has developed
an implementation of an Authentication, Authoriza-
tion and Accounting (AAA) server based on the RA-
DIUS protocol. Through the free and licensed dis-
tributions of their server, as well as participation in
the IETF and RADIUS working groups, Merit has
been a driving force in the development of the RA-
DIUS protocol. Recently, Merit has been the key
player behind the formation of a RADIUS indus-
try consortium formed to foster industry coopera-
tion and shared development using the Merit AAA
Server as a base.

The formation of the consortium and the tran-
sition from a university based software package to
a commercially licensed package brought the real-

ization that current testing procedures were inade-
quate. In particular, tools were needed to

� Perform regression testing

� Simulate typical load situations

� Provide performance benchmarks

As far as practical, the tools developed would need
to meet the following goals:

� satisfy the requirements above

� be simple and convenient to use

� allow for canned and automated scripts

The RADIUS protocol is a simple UDP transac-
tion based client/server protocol. In a typical in-
teraction, an authentication request message is sent
from a Network Access Server (NAS) to the RA-
DIUS daemon. The message contains a prospective
user's ID and encrypted password. The daemon ei-
ther performs the authentication function locally,
looking the user up in a local �le, database or pass-
word �le, or hands o� the request to a remote RA-
DIUS server to be authenticated remotely. In the
latter case, while waiting for a reply from the re-
mote server, the initial server may handle other in-
coming requests. Once authenticated (or rejected),
the server returns a reply to the requesting NAS.
Subsequently, the NAS may send accounting mes-
sages containing billing information on the user's
session. These messages must be acknowledged and
processed.

The structure of the Merit AAA Server daemon
is arranged so that tasks that may take signi�cant
time intervals (consulting a database or password
�le, for example) are forked o� to a child process.
When the child process completes, it informs the
parent of the result and a response is ultimately

formulated as a reply. In the meantime, the parent
process may accept additional incoming RADIUS
messages, which may result in more child processes
and so on.

The problems involved in adequately testing soft-
ware of this nature are di�cult and complex. In-
teractions between multiple processes may result in
subtle errors. In many cases, however, it may be
adequate to formulate an authentication request or
accounting message, send it to the daemon and ob-
serve the reply. This at least serves to verify the
basic functionality. More thorough testing requires
loading the server with multiple requests until it
shows signs of stress [Myers, Deutch].

Merit has a simple tool used for general testing
purposes called radpwtst. This is a single threaded
tool that sends a message and waits for a reply. As
such, it was not su�cient for use in load or stress
testing, although it did serve to verify functionality.

Expanding the use of radpwtst in conjunction
with expect [Libes], was one approach considered.
This did not meet the goals of simplicity, ease of use
and multiple ongoing tests. The DejaGnu system
[Savoye] solves some of these problems and o�ers
the added advantage of a standard testing frame-
work, but also su�ers from the single threaded test
limitation. Consequently, the decision was made to
build a test harness facility. Design goals included:

� Ability to handle multiple simultaneous tests

This was a key requirement. The ability to launch
multiple simultaneous tests and match replies to
their appropriate origin allows for load testing and
benchmarking. Since any given test instance may
involve multiple interactions with the remote server,
each instance must maintain its own context and ex-
ist in a separate thread.

� Extensibility

It was considered important that new tests should
be added without having to modify the test harness
itself. Since it is not possible to imagine all possible
tests that may be employed, a mechanism was re-
quired that would provide a great deal of exibility
in the test structure.

� Simple and convenient to use

It was envisioned that programmers would write
test code to exercise their RADIUS daemon code
and to verify that bugs were �xed and stayed �xed
across releases. For this to be reasonable, it had
to be relatively easy to use and require a minimum
understanding of the test harness internals. That
is not to say writing a test is easy; it still requires
knowledge of the code being tested and the details
of the RADIUS protocol.

In addition, a secondary factor involved portabil-
ity. The initial development environment was a Sun
platform, but there there was a concern that the test
software could be ported with minimal e�ort should
the need arise.

Tcl was chosen as an implementation vehicle pri-
marily for its extensibility, portability and ability
to serve as a glue language to bring together pieces
of existing code under a new framework. An initial
prototype was constructed to provide functionality
similar to the existing radpwtst tool. A loadable set
of Tcl extensions was written that provided inter-
faces for initializing the data structure utilized by
the underlying radpwtst routines as well as sending
and receiving RADIUS messages.

The prototype proved surprisingly useful and a
number of di�erent tests were written using the fa-
cility. Embedding in Tcl resulted in a powerful pro-
grammable test facility. As an example, passwords
could be corrupted on a pseudorandom basis and
the expected reject response could be looked for. It
was also a relatively simple matter to check for one
of the key features of the Merit AAA Server: the
management of simultaneous user sessions. In this
case, an authentication request for a user should be
rejected if they had reached a con�gurable session
limit, otherwise it should pass. Failure to follow this
behavior is a serious error. It was a relatively sim-
ple task to write a Tcl test procedure that tracked
open sessions and reported when either authentica-
tion failed when it should have succeeded or vice
versa.

The initial success of the prototype was encourag-
ing, but key features were lacking, particularly the
management of simultaneous tests, i.e. multithread-
ing. Although more exible than the radpwtst tool,
it was still single threaded. In addition, writing tests
involved, in e�ect, writing an entire Tcl program.
Consideration of these issues led to the current de-
sign.

2 The Test Harness Design

The design presented is based on a round-robin
test scheduler [Tanenbaum, Say] or executive, inter-
preting test templates [Stocks]. Templates specify
test actions which are Tcl procedures. Templates
are compiled into an internal format and executed
by the test executive.

The test harness design is centered around the
test speci�cation or template. The syntax for the
test template is shown below in extended BNF:

<name>: <test>

<test>::= <setupProc>

[<delay>] [<postProc>]

{

[F: <test>]

[S: <test>]

}

<setupProc> ::= <Tcl procedure name>

<postProc> ::= <Tcl procedure name>

<delay> ::= <numeric value>

| $<Tcl global variable name>

| <open bracket> <Tcl procedure>

<close bracket>

<open bracket> ::= [

<close bracket> ::=]

Test clauses may be nested to any depth provid-
ing the ability to develop a decision tree based on
whether or not a particular test clause succeeded
(S) or failed (F).

The setupProc is a Tcl procedure that sets up
the parameters for the next outgoing RADIUS mes-
sage. On return from the procedure, the test har-
ness sends the message, puts the test instance in a
wait list and continues processing other tests. When
a response is received that matches the waiting test,
the postProc is executed. This is another Tcl pro-
cedure that can examine the data returned from
the RADIUS server. The postProc decides, based
on the returned data, whether the step succeeded,
failed or should be repeated.

The syntax describes a test object, which is the
basic entity managed by the test executive. When
a test is launched, a thread is created with an in-
stance speci�c data area that continues to exist for

the life of the test. This area maintains context
and provides private data storage that may be used
to communicate information from one step or pro-
cedure to another. At the completion of the test,
all associated data storage is freed. The test har-
ness allows instantiations of di�erent tests as well
as multiple instantiations of the same test to ex-
ist independently and simultaneously, each in their
own thread. Communication between test threads is
handled by global variables and default data values
that may be de�ned for each sequence of tests.

As a concrete example, consider the following test
template:

1 session: send_auth auth_recv

2 {

3 F: log_bad_auth

4 S: send_acct acct_recv

5 {

6 F: log_bad_acct

7 S: send_acct_atop \

8 [global max_session_length; \

9 randno $max_session_length] \

10 acct_recv

11 {

12 F: log_bad_acct

13 }

14 }

15 }

Although shown as block structured, the parser is
actually free format and all of the text might have
been written on single line.

Line 1 contains the test name (session), the ini-
tial setupProc (send auth) and the initial postProc
(auth recv). When the test is started, the send auth
procedure sets up the parameters for the initial RA-
DIUS message. On return, the test executive sends
the message and puts the test instance in a wait list.
When an appropriate reply is received, the post-
Proc auth recv is executed. This procedure looks
at the returned information and determines if the
test succeeded or failed and returns an appropriate
code. On a failure, the test executive evaluates the F
branch on line 3 (log bad auth) and the test termi-
nates. On a successful return, the send acct setup-
Proc on line 4 is executed followed by the acct recv
postProc when an appropriate reply message is re-
ceived. Once again, the postProc decides if the com-
munication exchange succeeded or failed and either
the log bad acct procedure on line 6 is executed or

the send acct stop and acct recv procedures on lines
7 through 10 are evaluated. In the latter case, the
Tcl expression enclosed in brackets is evaluated to
generate an integer delay time. This is an optional
value that may be used to add time delays in a test.
When this value is not present, the test will execute
each branch as rapidly as possible. In this instance,
a procedure is being called to generate a random
interval using a parameter set in a global variable,
presumably set in supporting routines. On a suc-
cessful return from acct recv, the test terminates
since there are no further test clauses.

This design provides a number of advantages.
The overall test is described in a compact manner.
Elements within a test description are Tcl proce-
dures allowing almost unlimited exibility and be-
havior options. At the same time, this allows for
libraries of standard procedures to be constructed.
New tests can then be constructed from basic build-
ing blocks.

Each test procedure is evaluated atomically by
the test executive. Consequently, there are no con-
currency issues when accessing shared data and vari-
ables. Test speci�c information is carried within an
instance data structure which exists for the life of
the thread and, in e�ect, provides an instance spe-
ci�c Tcl name space. When the test is started, the
data area is created and a handle associated with the
area is passed to all test procedures. A library of
procedures based on the prototype implementation
allows access to the data structure used to create
the RADIUS message. Most test procedures consist
of a number of calls to either set up the data struc-
ture or examine the returned data. The send auth
procedure, for example, might look like this:

proc send auth fdsg f

#||||||||||||||
Set up the authentication request
global lastid user auth port
global authtype rlm

Get a user/password pair.
Go round robin on it
incr user
if f$user > $lastidg f

set user 1
g

set usernm [format \%d%s" $user n
[idSu�x $authtype]]

set userpw [makePasswd $usernm]

if f[string length $rlm] > 0g f

set usernm [format "%s@%s" n

$usernm $rlm]
g

setRequestType $ds 1

setUser $ds $usernm

setPassword $ds $userpw

setPort $ds $auth port

clearAvPairs $ds

setSeqNo $ds [reserveSN]
puts "Auth request for $usernm"
return
g

As can be seen, this is a standard Tcl procedure.
The ds parameter is the handle to the instance data
structure. The global variables are de�ned and ini-
tialized prior to the test execution. Test IDs used for
authentication are generated on the y in a round
robin manner with the password generated from the
ID by the makePasswd function. The bold text indi-
cate functions which manipulate the RADIUS data
structure.

3 Implementation

An overview of the architecture is shown in Figure
1.

A �le containing the test template, possibly con-
taining Tcl procedures used in the test, is compiled
by a template parser. This is a Finite State Ma-
chine based parser which performs syntax checking
and compiles the template into an internal tree for-
mat. Any Tcl procedures found in the �le are added
to the Tcl interpreter.

3.1 The Parser

The parser tokenizes the input making heavy use
of the regexp function. The tokens are consumed by
a Finite State Machine module comprising a scant
50 lines of Tcl code. In part, this compactness is
due to the FSM description used. This is a Tcl list
where each element is a tuple consisting of a state

Test

Description

file

Template

and Tcl

procedures

Template Parser Test Executive

(RADIUS comm.

 and functions)

Dynamically

loaded Tcl

extensions

RADIUS packets

InterfaceUser

+ Tcl procedures

Compiled template

Figure 1: Architecture overview

name followed by one or more token/script/next-
state tuples.

As an example:

fStart ff? ftclLabelg Start2ggg
fStart2 f

fL ftestLabel getnextg startTestg
fX fg Endg
fnull fg Endg
f? ffparseError "Test must start

with a label."gg Endg
g

g

The state machine starts in the Start state and con-
tinues until it transitions to the End state. In the
�rst rule any token matches the rule and the pro-
cedure tclLabel is called. This procedure checks for
the reserved label tcl code: which indicates that Tcl
procedures following the label should be added to
the interpreter. If found, this procedure sets the
token type to X and the FSM will exit after it tran-
sitions to state Start2.

In state Start2, a label token (L) will cause the
two procedures testLabel and getnext to be exe-
cuted. The testLabel procedure sets up the environ-

ment for a new test while getnext causes the next
token to be fetched. This rule will then transition
to the startTest state. If an end of �le condition was
encountered, resulting in a null token, the FSM will
transition to the End state. Any other token will
result in the procedure parseError being called with
the error message shown.

The parser uses the eval Tcl function to evaluate
each procedure in the procedure list. Procedures
requiring parameters, such as parseError above, are
simply enclosed in curly braces so they become sin-
gle elements in the list.

The code breakdown for the parser is as follows:

Function Lines of Tcl
Tokenizing code 190
FSM code 102
State Machine description 61
Routines referenced by
FSM description 242

Debugging routines 81

The line count includes comments and white
space which inates the line count 20-50 percent.
The FSM code, for example, actually contains only
50 lines of active Tcl code.

Compiled test templates are stored in the Tcl
global name space as an array called tst testname

with each test step stored as a numbered element of
the array starting with array element 0.

3.2 The Test Executive

The test executive is at the heart of the test har-
ness. It provides the basic functionality required
to maintain multiple ongoing test threads. The ex-
ecutive is based on a simple Finite State Machine.
When a test is started, the associated Tcl setup pro-
cedure is evaluated, the resulting RADIUS message
is sent and the test goes into a Wait state. At the
same time, an entry is place in a timeout list. If a re-
sponse is not received by a settable timeout interval,
the message is retransmitted and the retry count is
decremented. If no response is received by the time
the retry count reaches zero, or a total timeout in-
terval has been exceeded, the test state will change
to either R (retry) or X (exceeded) and the associ-
ated postProc will be executed. The values of the
timeout interval and retry count may be controlled
by the individual test. Following the postProc, the
test will either end, if there are no more steps, con-
tinue processing with the next setupProc in the test,
or delay some time interval before continuing with
the next setup procedure. Figure 2 illustrates the
FSM used for evaluating the tests.

Tests are loaded into the execution queue after
they have been successfully compiled through a call
which speci�es the name of the test, the number of
tests to run and an interval value used to space the
tests. For added exibility, the interval value may
be either a �xed time interval, or a procedure which
returns an interval value. While the interval may
be speci�ed to millisecond resolution, it determines
the minimum time that will elapse between tests.
The actual time will vary depending on the internal
state of the test executive.

The test executive supports a number of ad-
ditional functions to simplify writing test series.
At the start of execution, prior to launching any
tests, the test executive will execute the procedure
test init if it exists in the Tcl name space. Simi-
larly, after all tests have completed, the procedure
test end will be executed. These procedures may
be used to initialize global variables, handle log�les
and manage general housekeeping.

For each series of tests, a similar process occurs.
In this case, the procedures are called test name init
and test name end where test name is the template
label. These procedures are passed a handle to an
instance data structure that will be used to initial-
ize the instance data structures of every test in the
series. Default initial conditions may be prepared
or other tasks speci�c to the test series may be per-
formed.

The test executive is written in Tcl with some
supporting functions in C. The C functions provide
for management of the instance data areas, access
to the communications data structure used to for-
mulate the RADIUS message and management of
the communications functions, including matching
incoming replies to the originating test. The man-
agement and execution of the test instance is han-
dled by Tcl functions.

A peculiarity of the RADIUS protocol is that the
only piece of information guaranteed to be present
in the reply message that may be used to match
incoming replies with outgoing requests is an 8 bit
sequence number. This allows only 256 outstand-
ing messages from a single source which would be
a severe limitation for any type of load test. The
current implementation solves this problem by us-
ing an array of sockets, any of which may have up
to 256 outstanding requests. An array of 20 sockets
has proven adequate in general use.

The initial implementation used a polling mech-
anism to manage the various state lists. Signi�cant
performance improvements were obtained by rewrit-
ing the C functions to use the dual-ported Tcl8.0 ob-
ject interface. A �nal rewrite replaced the polling
method with the Tcl event loop using timer (via
the after function) and vwait events. Since the com-
munication functions use C functions, the �leevent

Tcl command was not applicable and an additional
event type was required to indicate when incoming
data became available.

The test executive totals approximately 480 lines
of active Tcl code, excluding white space and com-
ments. The supporting C code totals approximately
4000 lines. In addition, the test executive leverages
the use of 15,000 lines of C from the Merit AAA
Server code base to handle many underlying require-
ments when dealing with the RADIUS protocol.

As a side note, although only the RADIUS
communications protocol has been referenced, the

Wait End

Start List

Outgoing
RADIUS
message

Incoming RADIUS
message

state->E

Timeout state->X

Retry limit state->R

Time Delay

Start
Execute

Setup Proc Postproc

Execute

No Post Procedure or ABORT return code

Identify next Setup Procedure

Start list is filled in by Interface program
Each entry has:
 Name of test
 Number of times to run test
 Time interval between tests
 Time next test can be started

*1

*2

*1 When sending an outgoing RADIUS message, the test adds an entry to the outstanding request list.
The test stays in the WAIT state until a response is received that matches the entry in the outstanding
request list, the retry limit is exceeded or the total timeout limit is exceeded.

*2 Incoming RADIUS messages are matched to tests using the sequence number. The state is changed
to EXECUTE and the postproc is executed with a status message of ’normal’.

*3 When there are no further steps in the test, the state changes to END and the test is finished.

*3

Figure 2: Test Executive State Machine

test executive was written to allow the addition
of other communication modules with minimal
changes. Test scenarios were envisioned where out
of band communication with some aspect of the
server environment would be necessary, mandating
this ability.

3.3 The User Interface

The template parser and the test executive com-
bine to form a powerful test driver with a great deal
of exibility. The user interface serves to glue these
pieces into a usable tool and focus the test onto spe-
ci�c tasks. To date, four di�erent interfaces have
been constructed.

� A generic test interface

This interface is a general purpose tool that is
used for executing speci�c template �les. The inter-
face supports a number of standard command line

arguments as well as a mechanism for passing arbi-
trary command line strings to the Tcl procedures in
the template �le.

� A session simulator

This interface simulates remote user login ses-
sions sending authentication and accounting re-
quests. Command line arguments allow session du-
ration and generation rate to be speci�ed. This is
used to exercise the Merit AAA Server as well as to
perform load testing.

� A �le driven session simulator

This interface is similar to the session simulator,
but the sessions are de�ned by a �le containing tim-
ing and user information and possibly optional pa-
rameters for each session. This can be used to re-
peatedly generate a known user load with a speci�c
makeup.

� A parameter driven test generator

This interface reads a test description �le that de-
scribes each interaction with the remote RADIUS
server. A default mechanism allows a basic RA-
DIUS message to be de�ned that may be altered and
customized by each following test clause. These cus-
tomization strings are syntax checked and converted
into Tcl commands stored in the instance data area.
The template Tcl procedures use the eval function
to execute these commands customizing the speci�c
test instance. This interface has been used for re-
gression testing and benchmarking.

All interface programs are roughly similar, share
many of the same functions and are all approxi-
mately 300 lines of Tcl. The parameter driven test
interface also includes another 200 lines of Tcl in
support routines, primarily for parsing the test de-
scription �le.

4 Performance

Initial development work for the test harness was
done in Tcl7.6 running on a Sun Ultra-1/140. Under
this environment, parsing a typical test template �le
required 1-2 seconds.

In order to better gauge test throughput, a test
template was constructed that would immediately
fail after sending a RADIUS request. This would
cause the post procedure to be scheduled for exe-
cution immediately after the setup procedure com-
pleted. The setup and post procedures contained
only a few Tcl commands necessary to gather statis-
tical information, minimizing the time required to
execute these procedures. This template provided
an upper limit of the test throughput.

Using the initial polling implementation and
Tcl7.6, the development system achieved a sus-
tained throughput of 19 test steps per second. Al-
though adequate for functional testing, this is far
below the level required for load testing. Although
not stated during the design stage, a goal of 1000
transactions/second was targeted as the utility of
the test harness as a loading tool became apparent
with use.

Using Tcl-8.0 with no other changes increased the
throughput to 26 per second. Rewriting the inter-

nal C functions to use the Tcl 8.0 dual ported ob-
ject interface and modifying some of the internal
data structures to decrease search times increased
the test throughput to 96 test steps per second.

Finally, rewriting the test executive to employ
the Tcl event loop and removal of the polling loops
allowed the development system to reach 149 test
steps per second. Running this version on a DEC
500MHz Alpha achieved 340 test steps per second.
This throughput is su�cient to meet the goal of
1000 steps per second if run as multiple processes
on a multi-processor system.

5 Conclusions

Most of the goals set at the start of the project
have been reached. The test harness has been in
use for new release testing and benchmarking pur-
poses. Canned tests using the de�ned interfaces are
simple and convenient to use for the programming
sta�. The use of Tcl has allowed for a highly exible
test environment, rapid prototyping and develop-
ment and the ability to leverage a signi�cant body
of existing code into the system. Development of
key parts of the system often required only a few
days due to the powerful nature of some of the Tcl
primitives combined with the interpretive environ-
ment. Rewrite of the system from polling to event
driven, for example, required only two days.

When running, the test harness typically uses 85-
95 percent of the available CPU resources. In CPU
intensive applications such as this, attention to ex-
ecution details is very important. As an example,
performance gains of 20 percent were observed when
list structures were modi�ed to minimize searching.

Performance is more than adequate for the ma-
jority of testing. The goal of 1000 transactions per
second appears to be reachable using an appropriate
multiprocessor hardware platform. Even the 130-
140 transactions per second available in the develop-
ment environment is su�cient to overload a targeted
server on many of the commonly available hardware
test platforms in use at Merit.

Porting to the DEC system mentioned in the Per-
formance section was trivial requiring only recom-
pilation on the target system. The test harness has
been ported and run on SunOS, Solaris, DEC Unix,

Linux and BSDi with no signi�cant changes.

The most di�cult area has proven to be the de-
velopment of an interface and template combination
that balances ease of use and exibility. Members
of the programming sta� are not yet con�dent of
their ability to develop new tests at this juncture.
This area should improve over time as experience is
gained in developing tests to exercise new features
added to the software product.

6 Code Availability

Interested parties should contact John Vollbrecht
at Merit Network, Inc. (jrv@merit.edu) for licensing
details.

References

[Deutch] Michael Deutch, Software Veri�cation and

Validation, Prentice-Hall, Englewood Cli�s, NJ
(1982).

[Libes] Don Libes, Exploring Expect, O'Reilly & As-
sociates, Sebastopol, CA (1995).

[Myers] Glenford Myers, The Art of Software Test-

ing, John Wiley & Sons, New York (1979).

[Savoye] Rob Savoye, The DejaGnu Testing
Framework,
http://darkstar.cygnus.com/rob/dejagnu toc.html,
(1996).

[Say] Janche Say, Ke-Hsiung Chung, Vernon Rego,
A Simulation Testbed based on Lightweight

Processes, Software Practice and Experience,
24(5) (May 1994), p. 485-506.

[Stocks] Phil Stocks, David Carrington, A Frame-

work for Speci�cation Based Testing, IEEE
Transactions on Software Engineering, 22(11)
(November 1996), p. 777-793.

[Tanenbaum] Andrew Tanenbaum, Operating Sys-

tems, Design and Implementation, Prentice-
Hall, Englewood Cli�s, NJ (1987).

