
The following paper was originally published in the
Proceedings of the Fifth Annual Tcl/Tk Workshop

Boston, Massachusetts, July 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

Simple Multilingual Support for Tcl

Henry Spencer
SP Systems

Simple Multilingual Support for Tcl

Henry Spencer

SP Systems
henry@zoo.toronto.edu

ABSTRACT

The first, and often largest, step toward internationalization of an interactive application is
translation of its output messages, prompts, etc. into the desired language. This is typically done
with a ‘‘message catalog’’: the program supplies a key of some kind, which is looked up in the
catalog to yield the appropriate translation. While this basic approach is impossible to avoid
(given the infeasibility of automated translation), the engineering details matter a great deal.

Programmers can cope with almost infinitely messy interfaces if they must (as witness X pro-
gramming before Tk), but convincing them to use a new interface voluntarily requires ease of
use. Ideally, doing it right should be easier than doing it wrong. If there are concrete benefits
from doing it right, doing it right can beslightly harder than doing it wrong. However, message-
catalog facilities are almost always quite a bit harder to use thanputs. Hence applications typi-
cally use message catalogs only when it is explicitly demanded by the requirements, and
retrofitting an application to use a message catalog is painful.

A carefully designedmessage-catalog facility can be almost as easy to use asputs, and
retrofitting it into a program can be relatively easy. The lookup key should be the message in the
original language. Simple provisions for nested subtranslations, untranslated substrings, disam-
biguating tags, and either explicit (call a procedure) or implicit (done as part of output) transla-
tion are essential. Doing all this for Tcl takes care but is practical.

Introduction
Building applications that are portable across

computers is easy. Building applications that are
portable across national, linguistic, and cultural bound-
aries is not easy. Many issues need to be addressed:
character sets, screen layout, language, formatting con-
ventions, etc. Parameterizing an application to auto-
matically adapt itself to all of these things is an
unsolved problem, but much can (and should) be done.

The first, most obvious, and arguably worst prob-
lem is language. Most applications have words evident
ev erywhere in the user interface, even when the inter-
face is graphical. Even applications which strive for a
purely pictorial interface—not as easy as it sounds, not
as culturally neutral as one might think, and often not a
good idea—typically have words hidden in places like
error messages. Other areas of internationalization can
cause misunderstandings and problems, but if users
simply can’t understand what the application is saying,
they can’t even get that far.

Automatic translation by software is not yet fea-
sible; human languages are too complex and there is too
much context required. Translation of an application’s
messages, prompts, etc. from one language to another is
necessarily done by humans. The most obvious tech-
nique, simply modifying the program by editing in a
new version of the messages, is unappealing because it
creates a new version of the program which must then
be maintained separately. What is wanted is a level of
abstraction which permits the same program to use dif-
ferent sets of messages depending on the user.

The obvious way to do this, found in many exist-
ing applications and even some standards, is a ‘‘mes-
sage catalog’’: the program supplies a key of some
kind, which is looked up in the catalog to yield the
appropriate text. (Whether the catalog contains all ver-
sions of the text, with an identifier for the language
used as a secondary key, or whether a change of lan-
guage implies switching to a new catalog, is an issue of
terminology rather than basic concept.)

While this basic approach is impossible to avoid
(given the infeasibility of automated translation), the
engineering details matter a great deal. This became
clear when a customer (Cancom Business Networks)
asked about the possibility of a French-language ver-
sion of an existing interactive user interface, which (like
so many) had been written in English without any con-
sideration of support for other languages. Some prelim-
inary experiments suggested that careful design of the
internal interfaces would make a very large difference
in the amount of pain involved.

Upon reflection, the problem generalizes, because
a facility which is easy to retrofit is also usually easy to
use in the first place. The reverse is less often true,
because structural decisions are easier to get right the
first time than to fix later, but there is still a correlation:
facilities which don’t hav e structural implications are
much easier to retrofit and are also somewhat easier to
use.

The overall desire was for a facility which would
be both easy to retrofit into the existing application and
easy to use for future applications. We dubbed the
resulting software package ‘‘Transit’’.

Interface Design
Programmers can cope with almost infinitely

messy interfaces if they must (as witness X program-
ming before Tk), but simple and easy-to-use interfaces
are popular for more reasons than just because pro-
grammers are lazy. Programming well is hard enough
without adding unnecessary difficulties. As a result,
there is great temptation to class almost any difficulty as
unnecessary unless there is convincing evidence other-
wise.

If you want people to do things right, doing it
right should be easier than doing it wrong. If there are
concrete benefits from doing it right, doing it right can
be slightly harder than doing it wrong: most good pro-
grammers are willing to take alittle bit of extra effort
for well-defined benefits. But a facility which is painful
to use will be used only when it is compulsory.

Message-catalog facilities are almost always
painful to use. In C, the usual approach is to make the
programmer call a function which returns a string to be
used as the format forprintf. Often the messages must
be numbered, because the key used to locate the mes-
sage is numeric. The possibility that items to be substi-
tuted into the string byprintf might not be in the same
order in all languages results in clumsy circumlocu-
tions, notably the XPG3 [1] position specifiers found in
Tcl’s format command (which indicate, by number,
which of printf’s arguments should be converted by

eachprintf conversion specifier).

The obvious conversion of this approach into Tcl
isn’t any happier. In Tcl, one would at least use a string
as the key, but other complications intervene.

Tcl does have aprintf equivalent,format, but it is
not frequently used for simple output: Tcl substitutions
are a simpler and easier way to get things into strings.
Precisely because string manipulation is rather easier in
Tcl, Tcl output strings tend to be constructed in more
complex ways, often by assembling output a piece at a
time rather than relying on a single invocation offormat
to do all the work. Forcing Tcl output back into the C
mold would be a significant backward step in ease of
use. (Running into this problem in a retrofitting experi-
ment was what triggered deeper thought about the prob-
lem.)

Moreover, precisely because Tcl is much more
string-oriented, the basic structure of Tcl output is often
more complicated. For example, an error message
reporting a system error during a file access would typi-
cally include both the file name and an indication of the
nature of the error. In Tcl, the latter arrives in the appli-
cation as a string, and would itself need translation
(given that both circumstances and good judgement for-
bid meddling with the Tcl core). This means that build-
ing a typical output string can involve multiple calls to a
translation facility. Things get even worse when deal-
ing with input abstractions, which can build complex
messages out of prompts, current values, defaults, etc.

After considerable thought, Transit evolved as a
rather un-C-like facility which is both easier to use and
more versatile than the typical C message catalog. We
think the result is almost as easy to use asputs. Some
details are still evolving.

Limitations
Certain issues were ruled to be beyond the scope

of Transit, to keep it manageable. We believe that solu-
tions for most of these belong elsewhere anyway.

We decided that we would not get involved in the
complications of character sets. Our definition of a
‘‘character’’ is whatever Tcl gives us, and a ‘‘string’’ is
just a sequence of those. Transit maps strings to other
strings. It ignores questions like how many bits are in a
character, and whether it takes one or several of them to
put a single symbol on the screen. We assume that the
message-catalog writer has adequate tools for compos-
ing the catalog, and that if Transit pumps the specified
strings out, the results will be as desired. Any special
arrangements needed to render the characters of the
translated message on the user’s screen are handled by

other means. (We suspect we will probably end up pro-
viding for language-specific setup and teardown strings,
at the very least, but the issue hasn’t come up yet.)

We assume that no serious changes in the tech-
nique of interaction are needed. In particular, Transit
ignores the issues of character sets whose text runs
right-to-left or vertically. Much of this comes under the
heading of character sets, discussed above, but it’s pos-
sible that some amendments to interactive techniques
might also be in order. We simply don’t know enough
about this to deal with it.

Transit makes no particular attempt to address
details of formatting of structured values, e.g. whether
the decimal point is written as a period or a comma.
We think this is best dealt with by the facilities that are
doing the formatting, e.g. Tcl’sformat primitive, and
we haven’t had enough need for it so far to plunge into
it ourselves.

Finally, at the moment we’re restricting Transit’s
environment to Tcl, because that’s what our current
applications are using. (Variable user environments and
slow communications links dictated a text-only lowest-
common-denominator interface for this work.) Gener-
alizing this to include Tk is certainly interesting, and
we’ve tried to keep an eye on the possibility, but what
we have to talk about now was done for Tcl.

The Programming Interface
Our first decision was that the main programming

interface to Transit would be namedputs. With some
trepidation, we decided that Transit would rename the
real puts and define its own procedure by that name,
functioning as a wrapper around the real one. While
this did incur some worries, it also eliminated a lot of
fiddly little code changes in the retrofitting process.
The wrapper does translation of any text sent tostdin,
stdout, or stderr, and leaves everything else alone.1 This
avoids interference with file and network I/O that hap-
pens to useputs.

The second decision, fairly obvious both from the
nature of Tcl and from the choice ofputsas the inter-
face, was that the key used to look up a message in the
Transit catalog would simply be the message itself, in
the original language of the program’s author. Again,
this makes retrofitting tremendously easier, but it also
has less obvious benefits. It eliminates the need to
define a whole new key space, and also the error-prone
maintenance of the relationship between that key space

1 It would be desirable to provide for user selection of translated
file descriptors, eventually, but so far the need has not arisen. We
includedstdinout of general paranoia.

and the program. It provides a ‘‘message of last resort’’
for use when the key lookup fails, instead of having to
say ‘‘the program wanted to tell you something but I
don’t know what it was’’; even a message in the wrong
language is often better than a mysterious number or no
information at all. And last but not least, it makes the
program easier to read, to write, and to test.

These two decisions, together, meant that a lot of
the code didn’t hav e to change at all. Disregarding
issues of initialization, the Transit equivalent of

puts "hello, world"

is

puts "hello, world"

As mentioned earlier, there is a problem with
messages which are built up out of multiple parts, by
substituting substrings into a master string. Some of
the parts themselves need to be translated (e.g., error
messages) while some shouldn’t be (e.g., filenames).
Moreover, the translation of the master string needs to
be donebeforesubstitutions are made, because the con-
tents of the substitutions are unpredictable, so only the
pre-substitution master string can appear in the message
catalog.

The obvious approach—explicitly invoking trans-
lation for each translated substring, and then substitut-
ing them into a translated master string—is obviously a
nuisance, but worse, it doesn’t work very well. Because
the order of substitutions may change with translation,
the substitution really has to be done with a call tofor-
mat, not with Tcl substitutions. This would require
substantial rewriting of retrofitted code and would be a
considerable nuisance in new code.

Some thought about the problem led to a crucial
observation: the translation of the master string doesn’t
haveto be done before the substitution, if the substitu-
tion is made reversible. The solution that evolved was
to mark substrings within the overall string, and parse
the markings at translation time. This typically makes
it possible to retrofit translation by just inserting suit-
able markings, which requires no structural changes to
the code. Tw o flavors of substring brackets are needed,
one for translated substrings (henceforth usually just
‘‘substrings’’) and one for untranslated substrings (‘‘lit-
erals’’).

Much of our existing code uses balanced single
quotes to delimit things like filenames in error mes-
sages. This made it easy to decide how to bracket liter-
als: using balanced single quotes (` ´) for literals
greatly reduced rewriting. So this:

puts "cannot find file `$name´"

results in a message-catalog lookup of ‘‘cannot
find file ` ´ ’’ (where the is used to show the
substitution point) and then substitution of the untrans-
lated $name into the translation. This does not deal
with all cases, but we’ll come back to that in a moment.

Translated substrings do need new brackets, espe-
cially sincethesebrackets must vanish before final out-
put. They hav e to be reasonably easy to type, because
in either retrofitting or new code, there are going to be
quite a few of them. We settled on double angle brack-
ets (<< >>) as a distinctive and easy-to-type set of
brackets which seldom appear in strings. So this:

puts "*** oops: <<$complaint>>"

results in$complaint being translated and then sub-
stituted into the translation of ‘‘*** oops: ’’.

So far, this seems to address only two out of four
possibilities. We hav e substring brackets which vanish
before final output, and literal brackets which don’t.
There is obviously a requirement for literal brackets
which vanish, for interpolation of numbers etc. And it’s
conceivable that there will be a need for a substring
which happens to be surrounded by single quotes.

To avoid intruding further on the vocabulary of
strings, we decided to use combinations of our existing
brackets. To force translation of a quoted substring, we
put substring brackets inside literal brackets
(`<< >>´); the substring brackets vanish but the lit-
eral brackets don’t. To substitute without translation
but with no quotes in the output, we use the opposite
combination (<<` ´>>), which vanishes completely
from the output. (The translate-quoted combination is
reasonably intuitive; the unquoted-literal one is less so,
but seemed the simplest choice.)

Translated substrings are scanned recursively in
case they hav e their own bracketed substrings. Literals
arenot scanned recursively. The latter seemed right in
itself, but on inspection it also gav e us a bonus: the van-
ishing literal brackets can be used to quote most of the
other brackets, if sometimes a bit clumsily (e.g.,
<<`<<´>> puts<< into the output). This also yields a
way of putting single quotes around a literal string
which might contain closing single quotes used as apos-
trophes (<<``isn´t´´>> puts `isn´t´ into the
output), a problem which otherwise resists simple solu-
tion.

Initially, we decided that inability to find a string
in the message catalog would simply result in the string
being used untranslated, with no error generated. Sig-
nalling an error in this case would help debugging, but

it would also require that the message catalog contain
translations for some pretty vacuous strings, which
serve only as containers for translated strings. For
example, an error-printing routine contains

puts "*** <<$complaint>>"

which would require a translation for ‘‘*** ’’ if a
string with no translation caused an error. This was a
valid point, but after some experience, we reversed the
decision, with two flourishes.

First, the message catalog can specify a regular
expression indicating which strings are too vacuous to
require translation. Second, the application can specify
a procedure to be called for non-vacuous strings which
don’t hav e translations. If the procedure signals an
error (as the default one does), that error aborts the
translation. If the procedure instead returns a string,
then that string is used as the ‘‘translation’’ of the
unknown one. Our major application has such a proce-
dure, which logs the problem and then returns the origi-
nal string enclosed in conspicuous delimiters.

The translation of a (sub)string is not rescanned,
so another way to put awkward sequences into the out-
put is to give them names and translate them (e.g., one
might define<< as the translation oflb in all lan-
guages, so<<lb>> would put<< into the output).

This observation spurred another thought. One
disadvantage of using the original message strings as
search keys is the possibility of duplicate keys, particu-
larly with short substrings. For example, single-letter
abbreviations for commands (e.g.q ‘‘quit’’) need to be
translated, but can easily be used for different purposes
in different places in the program.2 One can obviously
avoid this by using an arbitrary unique string as the key,
but this neutralizes most of the advantages of using the
original-language message as the key. We decided that
a tag of the form#string# , if found at the beginning
of a (sub)string being translated, vanishes before output
ev en if no translation is being done.

With the addition of tagging, it is possible to also
do limited input handling using the translation facility,
by translating the strings and patterns used for input
recognition as well. This doesn’t fully solve the prob-
lems of multilingual input, but so far it has sufficed for
our relatively limited and structured interactions.3

2 We do not address the more difficult problem of collisions
between such abbreviationsafter translation; preparation of a trans-
lated message catalog is not always easy!

3 There is a bit of a practical annoyance here because Tcl’sswitch
statement, in its usually-preferable form (entire body enclosed in a
single set of{}) doesn’t do substitutions into its patterns. So far we
haven’t devised any elegant solution for this.

For these and other purposes, it is useful to have a
slightly richer programming interface, with some fur-
ther primitives that are expected to be less often used.
The translate procedure does the full translation pro-
cess on its string argument and returns the result; it
takes a-quote option which wraps the output in
<<` ´>> to prevent further translation. As a con-
venience for input handling, thetranslating procedure
(name chosen because it contains ‘‘in’’) prepends
#input# to its string argument and then looks the
result up in the message catalog. The procedure
untranslatable specifies a procedure (possibly with
arguments) to be called when an untranslatable string is
found.

Finally, there needs to be a way to indicate what
translation is desired. While almost unlimited complex-
ity is possible here, we’ve tentatively opted for a very
simple solution:translatetoactivates the whole facility,
and it takes an argument to indicate the language, which
is used to form the filename of a message catalog. (By
convention, following various precedents, language
‘‘C’’ means ‘‘no translation’’; this is not quite the same
as not invoking Transit at all, because the various disap-
pearing substring brackets are still stripped out, as are
tags.) An optional second argument indicates the direc-
tory where the file can be found; failing that, the direc-
tory name is obtained from the environment variable
TRANSIT_DIR. In the interests of localizing perfor-
mance impact,translatetoreads the entire message cat-
alog into memory so that lookups can be done quickly.

Message Catalog
For the message catalog itself, we opted for a

very simple form with some hooks for future expansion.
It’s a text file, with the usual text-file conventions of#
introducing a comment line, backslash at the end of a
line indicating continuation, and empty lines being
insignificant.

The message catalog begins with aprelude, ter-
minated by a single line containing only ‘‘--- ’’. The
prelude contains declarations, one per line, providing
overall control; their syntax is that of Tcl commands.
After that, the file is a sequence of translations, one per
line.

The prelude was originally just a hook for future
expansion, with an eye on character-set issues. Now it
does have one type of declaration,vacuous , for speci-
fying what strings do not need translation. For exam-
ple, the declaration

vacuous {[ˆa-zA-Z_0-9]*}

says that any string which doesn’t contain anything

alphanumeric does not require translation.

Each translation is a key, followed by ‘‘-> ’’ (pos-
sibly surrounded by white space), followed by its
translation.4 Within the key, substring locations are
marked using the translate brackets (not necessarily
implying a translated substring, just a matter of not
inventing yet another syntax) and arbitrary names,
which can then be used in the translation. For example:

change <<x>> to <<y>> -> \
changez <<x>> ` a <<y>>

This avoids the endless counting of parameters found in
schemes (e.g., XPG3) where insertions are numbered
rather than named.

Ke ys and translations can optionally be sur-
rounded by balanced single quotes, to provide for
including white space at beginning or end (where it is
normally stripped) or having one string or the other
include the sequence ‘‘-> ’’.

Experience
Experience with this facility has been rather lim-

ited as yet, but so far the decisions seem to be working
out reasonably well. The bracket syntax is sometimes
clumsy, but overall it’s causing much less grief than our
earlier experiments with a more C-like model in which
ev erything had to be run through aformatvariant.

Using matched single quotes as the literal brack-
ets saved a lot of rewriting in this code, although that’s
obviously a function of how one usually composes mes-
sages. The normal substring brackets are okay; we
haven’t used quoted substrings yet. The unquoted-lit-
eral brackets (<<` ´>>) see a fair bit of use and are
annoyingly clumsy.

A minor annoyance of the bracketing approach is
that the brackets foul up string-width calculations in
procedures which try to format output (e.g., showing a
long list in as many columns as will fit on the screen).
So far it’s been practical to deal with this by having
such procedures invoketranslateexplicitly, do their for-
matting, and then use unquoted-literal brackets to sup-
press further translation.

There is obviously a potential problem arising
from using brackets that are notguaranteedto be absent
in normal text. We had one nasty surprise: the first time
an error message like

`$type´ invalid

was substituted into substring brackets in a statement

4 We’re considering declaring that a line ending in ‘‘-> ’’ is implic-
itly continued, which would appear to be helpful.

like:

puts "*** <<$message>>"

the result was:

puts "*** <<`$type´ invalid>>"

which produced major internal indigestion and a gar-
bled complaint about mismatched brackets. We had to
do two things to fix this.

First, we revised Transit’s error reporting to mini-
mize garbling. In particular, it was a serious mistake
for the error message (which naturally got translated!)
to attempt to report that it was looking for´>> ! Pro-
ducing a somewhat less informative message turned out
to be the easiest way out of this one.

Second, after a bit of floundering we decided to
strip leading and trailing white space within substring
brackets before using the remaining contents as a key.
This lets us write the problematic statement as:

puts "*** << $message >>"

which evades the problem of the two opening brackets
merging. We were a bit concerned that the white-space
stripping might cause difficulties, but in practice we’ve
found white space showing up at the ends of translated
strings only at the outermost level, e.g. in things like

puts "<<$prompt>>: "

and since the trailing space is not within any substring
brackets, it is exempt from the stripping. (This required
minor revisions to the parsing, which originally started
out by wrapping the outermost level in brackets to elim-
inate treating it as a special case!)

We’v e seen no other problems with nested brack-
ets, even in an application which often has them several
levels deep. Some care has been needed to establish
conventions for who supplies brackets and who doesn’t,
but it is immensely convenient to be able tomakesuch
choices rather than having them dictated by Transit.

There is an obvious problem with using the origi-
nal messages as keys: it’s difficult to systematically
enumerate the key space, to be sure you’ve supplied all
necessary translations (especially after the program
changes) and that there are no duplicates which need to
be tagged. At the moment, all we’ve come up with is
thorough testing, aided by use of anuntranslatablepro-
cedure which logs unknown strings.

For debugging the translation arrangements them-
selves, it is sometimes desirable to be able to bypass
translation in output. This is the dark side of the con-
venience of havingputs do translation. The third or
fourth time we ran into this, we added a procedure

untranslated, which invokes the systemputs without
translation, passing any arguments through.

Conclusion
Careful attention to the engineering of a message-

catalog facility is important, particularly in Tcl where
strings are everywhere and output is built up in complex
and flexible ways. Forcing everything into a C-based
model, centered on aprintf equivalent, is awkward for
new programs and requires labor-intensive structural
changes to old ones. A more sophisticated approach
using substring bracketing works much better.

Acknowledgements
Cancom Business Networks first brought up the

question of multilingual support, and has been patient
while it was sorted out. Although major parts of Transit
were developed independently by the author, Cancom
was the first guinea pig for it and some of the develop-
ment necessarily ended up being done on their time;
they hav e graciously agreed that it can remain freeware.

Although Transit is not part of the Shuse account-
administration system [2], its first major uses have
occurred in connection with Shuse developments.

Doug Berry of Cancom supported and encour-
aged this work. Ozan Yigit made a number of useful
comments, and in particular made a suggestion which
ev entually turned into theuntranslatablefacility. Toby
the cat kept me company during late-night work ses-
sions when everybody else had given up and gone to
bed.

Av ailability
Transit is copyrighted but freely redistributable.

It’s available for anonymous FTP onftp.zoo.toronto.edu
aspub/transit.tar.Z.

References
[1] The X/OPEN Group,X/OPEN Portability Guide,

3rd edition (‘‘XPG3’’), 1990.

[2] Henry Spencer, Shuse: Multi-Host Account
Administration, in Proceedings of the Tenth Sys-
tems Administration Conference (LISA ’96),
Usenix Association 1996.

