
The following paper was originally published in the
Proceedings of the Fifth Annual Tcl/Tk Workshop

Boston, Massachusetts, July 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

A Typing System for an Optimizing
Multiple-Backend Tcl Compiler

Forest Rouse and Wayne Christopher
ICEM CFD Engineering

Berkeley, CA

A Typing System for an Optimizing Multiple-Backend Tcl

Compiler

Forest Rouse Wayne Christopher

ICEM CFD Engineering, ICEM CFD Engineering,

Berkeley, CA 94705. Berkeley, CA 94705.

Abstract

This paper describes the typing system used by the

ICE 2.0 Tcl compiler[Rouse]. The typing system

tracks the usage of variables and allows the com-

piler to reduce the number of instructions required

to carry out Tcl instructions. It will also allow fu-

ture improvements in code emission by making it

possible to carry out standard compiler analyses and

optimizations[Aho].

1 Introduction

Tcl has become a popular script-

ing language[Ousterhout]. In connection with the

rise of the internet as a popular medium for infor-

mation transfer, there is a high probability that it

will continue to grow in popularity. One of the ad-

vantages of Tcl as a scripting language is the lack of

explicit typing. Everything in Tcl is a string, there-

fore the complexity of both the programs written

in Tcl and learning the language itself are reduced

dramatically. Unfortunately, the simplicity of \ev-

erything is a string" makes optimizing compilation

extremely di�cult.

Additionally, the semantics of the language are not

formally de�ned but rather given by the implen-

tations of the various commands. Hence, di�erent

commands can and do treat language elements dif-

ferently. For instance, the command

set a(1) 3

treats the variable a(1) di�erently than the com-

mand

foo $a(1)

The variable a(1) is parsed di�erently in the two

cases. There is no di�erence between the two meth-

ods of parsing the variable name most of the time,

but in cases like

foo $a(this is an example)

it does.

Finally, Tcl commands can cause non-local side-

e�ects on variables. The act of placing a trace on a

variable and the actions on upvar and uplevel vari-

ables can cause any cached knowledge about the

variable's value type to become invalid. Any typing

system must be able to handle all possible non-local

e�ects.

Early tests with the ICE 1.0 Tcl to C compiler re-

veals some interesting statistics. We use a simple

ASCII �le format converter as a benchmark exam-

ple. This converter has about 430 lines of com-

mented Tcl code. The code has a high proportion

of string manipulation and relatively few arithmetic

manipulations.

The act of compiling control statements, recogniz-

ing Tcl words at compile time, and not copying

argument strings to invoked procedures results in

a factor of 3 speed-up. The �nal version of the

1.0 compiler has a factor of 7.5 speed-up on the

same benchmark. The 8.0a1 version of the Sun byte

compiler[Lewis] results in a factor of 4 speed-up.

Hence, the current compilers (the Sun on-the-
y and

the ICE 1.0-1.2 Tcl to C) to within a factor of two

rely on parsing the statements once (recognition of

Tcl words), and not copying strings when invoking

procedures. We must go to other optimizing tech-

niques to get larger speed-ups.

Placing constraints on the variable type and possi-

ble side-e�ects allows the compiler to avoid emitting

code to carry out traces or unnecessary type con-

versions. It will allow the compiler to safely remove

unnecessary code in the near future. This paper

describes the typing system, the related system of

\promises", and future optimizations based on the

typing system.

1.1 Overview of Compiler

The ICE Tcl compiler is an ongoing commercial

project started in 1994. It was �rst designed to

emit only C code. The Tcl to C translation has

proved useful to our customers because of the im-

proved performance of the Tcl code along with the

ability to hide their intellectual property. Obviously,

shipping just the Tcl code opens the program up to

both customers or anyone else with access to a com-

puter system.

However, most Tcl users like the convience of rapid

turn-around available using the Tcl interpreter. The

ICE 2.0 compiler has been redesigned so that in-

stead of emitting just C code, the compiler emits

an intermediate language that can be translated to

multiple backend languages. The �rst language that

will be available will an enhanced Sun 8.0 byte code.

This version is entering tests as of this writing. We

expect that both Java and C backends will be avail-

able by September of this year.

Users can \mix{and{match" emitters to tailor their

application. That is, users can have speci�c procs

compiled to \C" while others compile to any other

possible backend including bytecode.

The compiler builds a parse tree. The nodes of the

parse tree represent Tcl language elements. During

synthesis, code representing the language element is

emitted. The synthesis of both typing and overall

script attributes are also directed by the node. This

design makes it considerably easier to maintain and

extend the compiler than the 1.0 version.

The principle upgrade to the 1.0 system has been

the implementation of a C++ node to represent

variables. Variables are tricky because di�erent

statements parse variables di�erently. This design

allows all language elements to treat variables in the

same way.

2 The Typing System

We can describe the typing system to �rst order as

a set of attributes whose values at any point in the

program is the current Tcl type that is associated

with every recognized Tcl variable. This descrip-

tion is incomplete only because we must also follow

all allowable side-e�ects. Hence, the type attribute

includes whether or not the variable has a known

type, locality (global, local, upvar, uplevel, or argu-

ment), whether or not the variable has been unset,

whether or not the variable is possibly being traced,

whether or not the variable is in a loop, and whether

or not the variable is an array indexed with a con-

stant string, an array indexed with a variable string,

or is a run{time computed variable name, which we

call a dynamic variable (as in set $x 3).

Essentially the action of the typing system is to

properly synthesize these attributes after every state

change of the system. We can avoid emitting type

conversion statements if the variable is known and

is of the correct type. Other optimizing actions can

also be taken on some known variables. This reduces

the number of statements required in a compiled Tcl

program thereby reducing the execution time.

The di�culty comes from the fact that every Tcl

statement must be analyzed to determine the pos-

sible side e�ects it might have.

Consider, for example, the following sequence:

proc a {} {

set c 3

unset c

set x [list a b c d e]

set y [list set unset]

uplevel 1 {

unset a

[lindex $y 1] [lindex $x 1]

}

}

This sequence unsets variables \a", and \b" in the

scope of the caller, and the variable c in the scope of

proc a. Trival analysis is required for understanding

the e�ects on the variable c. Calling procedures

must analyze the e�ect of the proc to determine the

e�ect of unsetting \a". Finally, to determine that

the variable \b" is unset requires constant folding

along with the calling procedure determining the

e�ect of unsetting \b".

The current type analysis system in the ICE 2.0

compiler currently carries out analyses in the local

scope of the procedures. Recursive typing, or the

ability of the caller to analyze the e�ects of a proce-

dure on variables in its own local scope and constant

folding through variables are currently being tested.

In lieu of recursive typing and constant folding, the

current type system states whether a given proce-

dure unsets remote variables. This invalidates the

variable cache in all calling procedures. Any read or

write of the variable subsequent to the invalidation

of the cache will require that the variable will be

read via the standard procedure \LookupVar".

All Tcl statements that have an unanalyzable ef-

fect invalidate the cache in similar way. All com-

mands of the form \$x a b c..." (both on command

lines and in control statements), eval statements,

and variable traces can cause the variable cache to

be invalidated. Users can make \promises" { com-

piler directives that limit the e�ect of unanalyzable

statements. These compiler directives are not suit-

able for every Tcl program. For example, a user

cannot make a promise about statements computed

at run{time in a Tcl script that calls the following

procedure:

proc a {x} {

uplevel {

set c "unset $x"

eval $c

}

}

The reason is that the \eval" statement has the

side e�ect of invalidating the variables in the calling

scope.

2.1 Promises

The typing system is conservative. The worst case

scenario is used to synthesize attributes for unan-

alyzable statements. Users can constrain the ef-

fect of unanalyzable statements thorough the use

of \promises". Promises can be made about the

possible side e�ects of

� catch statements with variable bodies,

� dynamic statements ($x a b c ..),

� eval statements and control statements with

variable bodies,

� trace procedures (e�ect of variable traces), and

� uplevel statements with variable bodies.

Statements can be deemed \safe", \nounset",
and/or \notrace". Users invoke compiler directives
on the command line as in

Tcl_compiler -filescript -safe trace foo.Tcl

If the compiler directive is invoked in this manner,

the directive applies to the entire Tcl script in the

�le foo.Tcl. Additionally users can also direct that a

speci�c procedure scope be compiled with a speci�c

promise as in

proc -safe trace a {a b c ...} {

<proc body>

}

In this case, the \safe trace" directive applies to

procedure a and all procedures de�ned within its

scope.

The \safe" promise directs the compiler to assume

that no statement in that category unsets a vari-

able, changes the type of the variable, or establishes

an \unsafe" trace on a variable. The \nounset"

promise just directs the compiler to assume that

no statement in that category unsets a variable.

The \notrace" promise directs the compiler to as-

sume that no statement in that category establishes

a trace on the variable.

The promise that has the largest e�ect on any pro-

gram is the promise that variable traces are \safe".

Since every variable (including variables local to a

proc), the compiler must assume the worst about

every variable reference. The compiler analyzes if a

variable local to a proc has a trace on it. But all

non-local variables potentially have a trace placed

on the variable.

Consider the following code:

proc a {} {

trace variable a r trace_a

proc trace_a {name element op} {

set $name "foo"

}

b

}

proc b {} {

uplevel 1 {

set a 3

incr a

}

}

When compiling procedure b, seemingly the vari-
able \a" in procedure b could be typed as an inte-
ger and a string after the set a 3 statement. Un-
fortunately, the following incr statement will invoke
a read trace that will cause the variable \a" to be
changed to the string \foo". The type of \a" as
an integer must instead be changed to unknown be-
fore we compile incr a. The following is the code
emitted for the incr statement in procedure b:

__tempReturn_i = Tclc_InvokeTraces(

interp, a, "a", NULL, 0, "read");

if (__tempReturn_i != TCL_OK)

goto __tempLabel_1;

__tempReturn_i = Tclc_CheckVar(

interp, a, "a", NULL);

if (__tempReturn_i != TCL_OK)

goto __tempLabel_1;

__tempDummy_i =

Tcl_ConvertUnknownToNumeric(

interp, &a);

if (!(a->varAttr.typeAttr&TCL_TYPE_INTEGER)) {

__tempReturn_i =

Tcl_ConvertFromUnknownToDString(

interp, &a);

if (__tempReturn_i != TCL_OK)

goto __tempLabel_1;

Tclc_ErrIncrVar(interp,

a->value.allValue.dString.string);

__tempReturn_i = TCL_ERROR;

goto __tempLabel_1;

}

TCL_ONLYVALIDVAR(a, 2);

a->value.allValue.integer += 1;

__tempReturn_i = Tclc_InvokeTraces(

interp, a, "a", NULL, 0, "set");

All

of the code prior to a->value.allValue.integer

+= 1; is to assure the validity of \a" and that the

variable can be promoted to an integer.

However, if the read or write trace does not modify

the type of the variable as in

proc a {} {

trace variable a r trace_a

proc trace_a {name element op} {

global c

lappend c "$name $element $op"

}

b

}

proc b {} {

uplevel 1 {

set a 3

incr a

}

}

the script can be compiled with the promise of \safe
trace". The compiler will instead know the type of
\a" as an integer is still valid. The following code
is emitted for the incr statement in proc b:

__tempReturn_i = Tclc_InvokeTraces(

interp, a, "a", NULL, 0, "read");

if (__tempReturn_i != TCL_OK)

goto __tempLabel_1;

TCL_ONLYVALIDVAR(a, 2);

a->value.allValue.integer += 1;

__tempReturn_i = Tclc_InvokeTraces(

interp, a, "a", NULL, 0, "set");

A factor of three fewer lines of C code are emitted

in this case. We eliminate the check on the validity

of the variable \a", and the promotion of \a" to an

integer and the checks that both operations succeed.

That is, since we know any possible trace on the

variable \a" cannot have a side e�ect that modi�es

the type or validity of \a", we can avoid the checks

that assure the state of variable \a".

Test ICE 1.0 ICE 2.0 Speedup(%)

Loop 102 68 50

10! (using loop) 98 76 28

Sum 1958 648 200

List 17651 10669 53

Reverse list 28443 21663 31

Table 1: Comparison of the execution speeds of C

code produced by the Tcl 1.0 compiler and the Tcl

2.0 compiler on a variety of benchmarks. Times are

in � sec.

2.2 Tcl Lint

The in depth analysis of Tcl programs has led us

to release \Tcl Lint". This program is the ICE 2.0

compiler with no code generator. The compiler with

its ability to determine the possible side-e�ects of

statements allows us to create error or warning mes-

sages when a variable is used before it is set. When

there is no possibility for a variable to be set, an

error is reported. If an unanalyzable statement is

executed prior to variable usage, a warning message

is generated if the proper user modi�able warning

level is set.

Additionally, the compiler checks that usage of core

functions and user de�ned procedures matches what

is expected. Currently, we check that the number of

arguments matches the number of arguments given,

and for core functions, the usage of the function

matches what is expected. Extensive analyses of

catch, for, foreach, if, regexp, regsub, switch, and

uplevel are carried out.

Tcl Lint can warn of unanalyzable statements.

Statements like uplevel $a and switch $a $b $c

$d ... can be pointed out to the user. Tcl Lint can

also warn of procedures that use the implicit return

mechanism that are expected to actually return a

value. The compiler can slightly improve the code

emitted if it knows that a procedure does not actu-

ally return a value. Finally, control commands with

empty bodies are pointed out.

3 Current Status

Table 1 shows the speedups of the 2.0 compiler over

the 1.0 compiler. The benchmarks were carried out

on a Solaris 5.0 machine. We see that over a num-

ber of di�erent types of benchmarks, the e�ect of

having a typing system is relatively modest. The

speedups range from 25% to 50%. The benchmark

of summing numbers between 1 to 1000 achieved

factor of 3 speedup over the ICE 1.0 compiler is the

exception to this rule.

There is also a decrease in the amount of emitted

C code. We were able to emit a factor of 3.5 less

C code, compile to a factor of 2.5 less object code

and get a factor of 1.5 reduction in the executable

size with our standard benchmark. This reduction

occured in part to the fact we could use the promise

of \safe trace" in the benchmark.

4 Future Plans

The typing system is a prerequisite to all forms of

standard compiler optimizations. We must be able

to analyze the side e�ects of moving or eliminat-

ing code before we can carry out the optimizations.

Hence, we are now in the position to implement the

following standard compiler optimizations:

� recursive typing,

� constant folding,

� common subexpression elimination,

� loop strength reduction, and

� code motion.

The e�ect of these optimizations will be script de-

pendent.

We expect to have an early version of the 2.0 com-

piler with a bytecode emitter ready by the time of

the conference. It will emit C code and an extended

set of Sun bytecodes. The extended bytecode set

will take advantage of our typing information. We

hope to be able to present preliminary timing stud-

ies of emitted bytecode at the conference.

Finally, we are seriously thinking of using the com-

piler to emit Java bytecodes. One can regard the

\C" code emitter as a model for all other static

language emitters. The only real technical chal-

lange to emit Java, therefore, is a reasonable user

usage model. We most certainly can emit bytecodes

for the joint Java{Tcl interpreter and we believe

that a suitably constrained pure Java port of many

Tcl core functions could be written in a reasonable

length of time.

5 Conclusion

We have described a multiple backend compiler for

use in compiling Tcl. Additionally, it has a typing

system that allows the compiler to infer all possi-

ble side e�ects of Tcl statements. This improves

the code emission, speeds up the target code, and

makes it possible to include standard compiler opti-

mization techniques in near future to automatically

improve current Tcl scripts.

6 Acknowledgments

Our thanks to OpenMarket Corporation who par-

tially funded this work.

7 Availability

Both the ICE compiler and Tcl Lint are available

for electronic downloading at

ftp.dnai.com/users/i/icemcfd/tcl

or visit our web site at

http://www.icemcfd.com/tcl/ice.html

Users can request a demo license by downloading,

uncompressing, and untarring the software. Then

just execute the command

tcl compiler -hostid

and send the resulting information to

tcl@icemcfd.com

References

[Rouse] Forest Rouse and Wayne Christopher, \A

Tcl To C Compiler", Proceedings of the 1995

Tcl/Tk Workshop (1995), Toronto, Ontario,

Canada., July 1995

[Aho] Alfred V. Aho and Ravi Sethi and Je�rey D.

Ullman, Compiler Principles, Techniques and

Tools, Addison-Wesley, 1988

[Ousterhout] John K. Ousterhout, Tcl and the Tk

Toolkit, Addison-Wesley Publishers (1994).

[Lewis] Brian T. Lewis, \An On-the-
y Bytecode

Compiler for Tcl", Proceedings of the 1996

Tcl/Tk Workshop, Monterey, CA., July 1996

