
The following paper was originally published in the
Proceedings of the Fifth Annual Tcl/Tk Workshop

Boston, Massachusetts, July 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

3wish: Distributed [incr Tcl] Extensions for
Physical-World Interfaces

Brygg Ullmer
MIT Media Lab
Cambridge, MA

3wish: Distributed [incr Tcl] Extensions for Physical-World Interfaces
Brygg Ullmer

MIT Media Lab
20 Ames St., E15-445

Cambridge, MA 02139 USA
ullmer@media.mit.edu / http://www.media.mit.edu/~ullmer

Abstract

The creation of physical-world interfaces seamlessly
integrated with the physical environment poses new
implementation and interface challenges for the Tcl
language. 3wish is a suite of [incr Tcl] class libraries
and C/C++ extensions which supports user interfaces
integrating distributed physical sensors, displays, and
3D graphics. The poster presents an overview of
3wish, its application to physical-world interfaces, and
its implementation of distributed sensors, displays,
object proxies, and platform-independent 3D graphics.

1. Introduction

Traditional 2D graphical user interfaces have been
well-supported by the Tcl/Tk language. A new kind of
user interface, “tangible user interfaces,” uses physical
objects and surfaces as physical interfaces to digital
information. [1] These interfaces require sensing and
augmentation by multiple physical-world sensors and
displays, often distributed across several computers.

Tcl and the [incr Tcl] object/namespace extensions are
well-suited for this style of user interface. Tcl’s plat-
form-independent, high-level operation, coupled with
[incr Tcl]’s OOP class and namespace mechanisms,
jointly support the rapid integration of access methods
for distributed platform-specific sensors and displays.
At the same time, new features are required to cleanly
support physical-world interaction and distributed op-
eration. 3wish is a suite of [incr Tcl] class libraries and
C/C++ extensions that addresses these needs.

2. 3wish

3wish is designed to support user interfaces driven by
physical objects. These physical objects must sense
and process their physical state (position, orientation,
etc.), coordinate among each other, and display various
outputs (graphics, sound, etc.) to the user. Some of
these sensors and displays are physically attached to
interface objects; examples include position-trackers
and flat-panel displays. Other sensing and display is
performed on behalf of passive physical objects. For
example, computer vision is used to track objects,
while transparent objects are illuminated by back-
projected displays. A sample interface is pictured in
Figure 1, and discussed in detail in [3].

Figure 1: Image of metaDESK-based 3wish application

3wish hides these implementational details from the
user interface. 3wish provides an [incr Tcl]-based
“proxy” class for each physical object. [2, 3] These
classes provide methods for querying object state and
activating supported displays. However, underlying
sensor/display coordination is hidden by the API. This
abstraction supports a high degree of flexibility in con-
structing complex interfaces without becoming im-
mersed in implementational minutia.

3. Distributed sensors and displays

At its lowest level, 3wish communicates with drivers
for physical-world sensors and displays, currently op-
erating on both SGI and Wintel platforms. Tcl 7.6’s
load command is used to load drivers for devices
with C and C++ API’s, where Tcl-DP 4.0 is used to
communicate with serial devices.

Sensor APIs are implemented using an [incr Tcl] sen-
sor class which provides caching and optional interpo-
lation for sensor values. The same class is shared on
both client and server machines; peer server and client
classes work to synchronize sensor client and server
states. Client sensor value requests are non-blocking,
using the most recent cached/interpolated value avail-
able.

New sensor implementations usually require no addi-
tional networking code, as client/server code is ab-
stracted from individual sensor fields and access meth-
ods. Similar display support is underway, though is
currently at an earlier stage of development.

4. Object proxies and namespaces

Applications do not query sensor and display clients
directly. Instead, [incr Tcl]-based “proxies” are pro-
vided as API’s for each physical object. The resulting
object-centric access methods are independent of the
underlying sensing/display technologies employed. An
illustration of this “proxy-distributed” or “proxdist”
architecture is illustrated in Figure 2, and discussed
further in [2] and [3]. Distributed namespaces are used
to provide clean distributed coordination and avoid
host/port/protocol dependencies.

Sensors

Tangibles

Displays

Workstation

PC PC

Sensor Proxies

Tangible Proxies

Display Proxies

Sensor Clients

Sensor Servers

Display Clients

Display Servers

Physical World Digital World

Namespace Clients

Namespace Server

Figure 2: Diagram of 3wish sensor/display architecture

5. 3D Graphics

A first iteration of 3wish developed a set of platform-
independent 3D graphics extensions, inspired by the
2D Tk toolkit. 3wish’s 3D graphics core draws on the
Open Inventor (OIV) toolkit, using TGS’s OIV port on
non-SGI platforms. 3wish provides commands for
asserting named OIV/VRML geometries, binding
events involving these geometries to Tcl callbacks, etc.
3wish also supports registering scene graphs across
multiple 2D and 3D displays, binding graphical
geometries to physical objects, as well as providing
other distributed graphics capabilities.

References

[1] Ishii, H., and Ullmer, B. “Tangible Bits: Towards
Seamless Interfaces between People, Bits, and Atoms.”
In Proc. Of CHI’97, pp. 234-241.

[2] Ullmer, B. Behavioral Realizations of Proxy-Distributed
Computation. http://www.media.mit.edu/~ullmer/-
courses/agents/paper1.html March 1996.

[3] Ullmer, B., and Ishii, H. “The metaDESK: Models and
Prototypes for Tangible User Interfaces.” Submitted to
UIST’97

