
The following paper was originally published in the
Proceedings of the Fifth Annual Tcl/Tk Workshop

Boston, Massachusetts, July 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

xmb - dancing in the tar pits
Using Tcl/Tk to build a CASE environment

Henry R. Tumblin
CertCo L.L.C., New York, NY

Charles E. McElwain
Open Market, Inc., Cambridge MA

xmb - dancing in the tar pits
Using Tcl/Tk to build a CASE environment

Henry R. Tumblin Charles E. McElwain

CertCo L.L.C. Open Market, Inc.

55 Broad Street 245 First Street

New York, NY 10004 Cambridge, MA 02142

tumblin@certco.com mcelwain@openmarket.com

Managing software across multiple build platforms and environments can be thought of as
dancing around a tar pit; if you slip and fall then you may not be able to get out for a long
time! There’s far too much knowledge about the local build environment required to enable
software developers and release engineers to build, test, and release products. We intend to
show that by using Tcl/Tk as a CASE integration engine, the amount of time and training
required to bring a new developer, test or release engineer online is greatly reduced. Product
build environments become standardized and the cost of adding new platforms is reduced.

The challenge we faced was one of release engineers having to build on multiple platforms,
developers needing to build and test on a subset of these platforms, all working from a
variety of individual environments and experience levels.

The problems that had to be solved were:

distributing builds across the multiple platforms
centralizing knowledge of build configurations in a tool (for repeatability)
giving feedback on system resource usage and sharing
providing better feedback and control (via a UI) and minimize training
evolving a CASE tool towards greater maintainability, extensibility and reusability.
adding multiple projects, and co-ordinating and analyzing inter-project dependencies

We looked at solving these problems through a three layer tool containing: a point-and-click
GUI, a CASE kernel, and the remote tasks. The tool was based on a "build flow" which ran
through:

Select Project -> Select Platform(s) -> Select Options -> Distribute -> Analyze

The problem was then how to turn this into a programmatic flow using Tcl/Tk .

We built a small kernel representing these tasks, whose behavior is controlled by and
changeable via config files which are themselves Tcl. Scripts to execute on the remote hosts
were generated, then launched on the remote host. From within these scripts, host-specific
config files were sourced to enforce the build environment and policies, as well as
supplemental information, including compilers, compiler flags, paths, etc.

These scripts captured statistical information on each distributed build in the form of a Tcl

statement representing a database entry. The reduction code for this is a small kernel which
sources all database entries as text files and builds several structures as crosses of the data,
and provides an API to access these views.

With the CASE kernel implemented, we then built a point-and-click GUI using Tk . We
could now easily supplement the earlier Tcl kernel with point-and-click interfaces to the
above stages of the build process. Control, feedback and configuration was now also visual.
Training on the CASE environment became easier, intuitive and standard across multiple
platforms and projects.

For maintainability of the CASE tool, we had to minimize global state. We did this by a
hierarchical structuring of state data, class-oriented naming of procedures which contain
self-initialization (constructor) code, along with standard module headers for extracting
documentation.

In order to more easily support and analyze multiple projects, both within single invocations
and across multiple invocations of the CASE tool, we used the same techniques as in
handling the need to report resource usage via a Tcl-based database. A daemon was then
implemented to co-ordinate and serialize writing to the database, utilizing TCP primitives in
Tcl (thus avoiding the need for custom socket code).

Figure 1: Selecting a project or module to work
on. This list is generated from the underlying
source control system, CVS in this case.

Figure 2: Selecting different projects, omx,
Tcl,and Toolshed and multiple tags, main_line,

OMX_2_0_a_RC2, OMX_1_0_2_RC1, within one
of them.

Figure 3: Selecting build options for the current
project omx and tag main_line.

Figure 4: Watching a build in progress across
multiple platforms. One has succeeded, sun_55,
one has failed, sgi_62, and the others are still in

progress.

