
The following paper was originally published in the
Proceedings of the Fifth Annual Tcl/Tk Workshop

Boston, Massachusetts, July 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

A Flexible GUI Design System

S. D. Mullerworth
The Meteorological Office

Bracknell, UK



A Flexible GUI Design System

S.D.Mullerworth

The Meteorological O�ce

Bracknell, RG12 2SZ

UK

sdmullerworth@meto.gov.uk

The Generic Hierarchical User Interface (GHUI) is

a design package for creating forms-based user in-

terfaces and was written at the UK Meteorological

O�ce. The intention is that the package is simple

enough, that a basic, working interface can be writ-

ten quickly by developers with little experience of

the package, but that later, the interface can be en-

hanced by incorporating application speci�c code.

Generic functions provided by the GHUI include a

client/server database system that allows users to

save and copy work, a hierarchical tree widget for

navigating with ease among a large number of win-

dows, a exible function for processing users' in-

put into a text format that is suitable for control-

ling the related application, a function for creat-

ing uncomplicated input windows containing stan-

dard text, entry box, button and table widgets, and

an error checking facility to prevent input of in-

valid responses. Application speci�c functions can

be added to provide, for example, additional input

validation checking or non-standard input windows.

A GHUI-based user-interface is speci�ed by a set of

text control �les with a simple syntax. For example,

each input panel, such as the one shown in the �gure

overleaf, is speci�ed by a list of instructions in a

single control �le. Amongst other control �les is a

register that contains declarations for each of the

data items set by the user, and a set of template

�les that de�ne how the input to the application is

to be converted to a format suitable for running the

related application.

An important design aim was to ensure that each of

the types of control �le was easy to understand and

therefore easy to write. The constraints that this

design aim placed on the format of control �les had

an additional advantage in that it was then pos-

sible to write additional functions that reread the

same control �les for di�erent purposes. For exam-

ple, rather than using TclTk commands, input panel

control �les are written in a higher level GHUI lan-

guage. Such an approach has enabled a number of

useful generic functions to be written that base their

output on these �les; for example, a function that

creates a text description of a user's settings. Such

generic functions would be more di�cult to imple-

ment if the use of TclTk commands to enhance the

appearance of input panels was allowed.

The GHUI was written to create the Uni�ed Model

User Interface (UMUI). The Uni�ed Model (UM)

to which the UMUI interfaces is a very large, exi-

ble modelling package used by the Met. O�ce both

for its wide-ranging forecast products and for its

climate prediction programmes. To o�er the full

exibility of the UM to users, the UMUI requires

some two hundred separate input windows. While

professional looking applications have been devel-

oped using only the generic functions provided by

the GHUI system, the UMUI takes full advantage of

the opportunities for incorporating application spe-

ci�c code.

Much of the application speci�c code in the UMUI

relates to the validation of user input. Each item in

the database can have one of a standard set of checks

applied to it, for example, to constrain the range of

a numerical input. Alternatively, a specially writ-

ten validation routine can be speci�ed which enables

complex conditions and cross-checks with other in-

put to be applied. Tcl is an e�ective language for

creating the required short scripts.

Another more substantial piece of application spe-

ci�c TclTk code provides the UMUI with a non-

standard input window design in an area where the

basic nature of the standard GHUI input panel was

unsuitable. Although all the application speci�c

code in the UMUI has been written in TclTk, clearly

it would be possible to use other languages or incor-

porate input panels created by other GUI applica-

tion builders.

All extensions are incorporated into the application

in almost the same way as the standard GHUI func-

tions; generally by listing the name of the function

in the appropriate control �le. Thus, the fact that



Figure 1: A simple example input panel from the

UMUI showing entry boxes, a set of radiobuttons

and a table widget. The three buttons at the bot-

tom of the window are common to all panels. `Help'

brings up local help for the window, `Close' and

`Abandon' close the window with or without sav-

ing changes.

a function is application speci�c is transparent to

the user, yet such functions are relatively uncoupled

from the GHUI system and they are thus unlikely

to be a�ected by GHUI system upgrades.

The decision to design the GHUI rather than use an

existing GUI application builder was made in part

because of the need to use public domain software as

it was intended that the UMUI was to be distributed

free. Use of text control �les has brought some other

signi�cant advantages when compared with many

GUI application builders. Firstly, alterations can be

done quickly with a text editor and no compilation

or rebuilding process is required. Secondly, the �les

are readable by humans which is useful, for exam-

ple, when searching for a particular question on one

of 200 panels; simply search the input window con-

trol �les for a particular string. Thirdly, again with

regard to the number of windows required, the text

format is much less cumbersome than the C code or

resource �les generated by many GUI packages.

Our experience demonstrates the feasibility of main-

taining a suite of GHUI-based applications. Incor-

poration of application speci�c code to overcome the

restrictions of the generic functions has not caused

signi�cant problems. The GHUI can provide the

basis for user interfaces to a whole class of scien-

ti�c packages. The GHUI approach, of designing

an application to provide basic core functionality

which can be enhanced with application speci�c

code, could be applied to other classes of application

where common requirements can be identi�ed.


