
The following paper was originally published in the
Proceedings of the Fifth Annual Tcl/Tk Workshop

Boston, Massachusetts, July 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

TxRx: An ONC RPC Interpreter

Cristian S. Mata
Department of Computer Science, State University of New York

Stony Brook, NY



TxRx : An ONC RPC Interpreter

Cristian S. Mata
�

Department of Computer Science

State University of New York

Stony Brook NY 11794-4400

cristian@cs.sunysb.edu

1 Introduction

TxRx is a run-time environment for ONC RPC

tightly integrated with the Tcl language. Open Net-

work Computing Remote Procedure Call [RFC1831]

is a widely supported interprocess communication

protocol currently on the standards track of the

IETF. The eXternal Data Representation (XDR) is

the language used by ONC RPC to describe inter-

application communication. TxRx provides an in-

terpreter for XDR and support for the features of

ONC RPC.

TxRx improves the process of building distributed

applications by eliminating most of the steps re-

quired to develop such a program. TxRx makes Tcl

scripts compatible with existing client-server appli-

cations and facilitates access to system services like

NIS and NFS.

RPC uses the procedure call abstraction to model

the process of sending a request to, and receiving a

reply from, a remote computer. The message sent

to the remote is an encoding of the parameters of

the procedure. The return value from the procedure

call is the reply message received from the server.

TxRx is intended for use in instances where compat-

ibility with existing systems is important e.g. when

existing client-server systems need to be upgraded.

2 Implementation

TxRx is a Tcl dynamically loadable package. It con-

sists of a compiler/interpreter for XDR and code

that implements RPC communication. A developer

de�nes the communication protocol between two ap-

plications by specifying the remote procedures, pa-

rameters and return values in XDR. The next step

{ at run-time { is to load the protocol description

�Supported by NSF grants CCR-9201585 and CCR-

9501192 and by a grant from Hughes Aircraft.

using a TxRx command. The �le with the protocol

description is compiled by TxRx into bytecode.

In ONC RPC the internal data structures used by

the protocol { the RPC headers { are de�ned us-

ing XDR. TxRx takes advantage of this feature by

using a data driven approach: RPC headers are

bytecode-compiled with the user protocol. When

a message arrives from the remote computer, the

incoming data stream is parsed according to the in-

structions stored in the bytecode. Conversely, out-

going data, including RPC headers, are converted

from Tcl data into binary data by interpreting the

bytecode program.

TxRx is layered, with di�erent abstractions imple-

mented at each level. The base level is the XDR

interpreter. Its function is to create and manage ob-

jects that encapsulate the communication protocol.

The level above it implements remote procedure call

functionality and handles data bu�er management,

timeout and network transport semantics. The user

level deals with authentication and security issues.

RPC processing in TxRx is independent of the com-

munication channel. One advantage is that connec-

tion setup between client and server is done sepa-

rately from data transfer.

3 Experimental results

The goal of TxRx is to reduce development time

and improve application portability. The idea be-

hind the experiments is that local processing times

are small compared to network latency and through-

put. The typical workload consists of RPC calls

with variable payload size with little processing on

both the server and the client. The time perfor-

mance of TxRx is compared to the performance of a

C program generated with rpcgen. All experiments

were executed on Sun workstations running Solaris.

The data in Figure 1 re
ects the di�erence in speed

between TxRx and C code. The times are the av-



erage times in seconds required to execute a given

number of iterations. The client and server are on

the same local network. The C code implementation

is about 4 times faster than TxRx .

Figures 2 and 3 graph the ratio of times between

TxRx and C clients with respect to the number of

RPC calls respectively data transfer size between

client and server. Somewhat surprisingly, there are

no major di�erences in behavior when client and

server are located on the same computer { label

\Local" { or on the same Ethernet segment { la-

bel \Ether". The increase in the ratio of execution

times can be attributed to the interpreted approach

{ Figure 2 { of TxRx . When client and server are

hosts on the Internet { one host in edu, the other

in com { performance becomes a function of overall

data tra�c on the Internet.

Figure 3 is the time ratio between TxRx and C code

with respect to the size of the data transfer. In this

case the key to understanding the graph is the struc-

ture of the transferred data { in this case a linked

list. The performance ratio between TxRx and C-

code decreases when the complexity of the data

structure increases.

4 What next?

TxRx is currently implemented as a \C code + Tcl

script"[TxRx] extension. This is for convenience

and for e�ciency reasons. As Tcl evolves { with

the introduction of the bytecode compiler and na-

tive binary data handling in version 8 { it becomes

possible to implement TxRx as a script only exten-

sion. E�ciency aside, this makes interesting appli-

cations possible, like a WebNFS [RFC2055] client

coded entirely in Tcl.

References

[RFC2055] Brent Callaghan. SUN Microsystems,

Inc. WebNFS Server Speci�cation, October

1996. http://www.sun.com/webnfs/

[RFC1831] Raj Srinivasan. SUN Microsystems,

Inc. RPC: Remote Procedure Call Protocol

Speci�cation, Version 2. Request for Com-

ments 1831, Standards Track, August 1995.

http://ds.internic.net/rfc/rfc1831.txt.

[TxRx] Cristian Mata. SUNY Stony Brook. TxRx :

An ONC RPC extension for Tcl.

http://www.cs.sunysb.edu/~cristian/txrx.html

0

2

4

6

8

10

12

14

16

18

0 20 40 60 80 100 120 140

T
im

e 
(s

ec
on

ds
)

Number of RPC calls

"C-code"
"TxRx-code"

Figure 1: Execution time as a function of the num-

ber of calls

0.5

1

1.5

2

2.5

3

3.5

4

0 20 40 60 80 100 120 140

T
im

e 
ra

tio
 b

et
w

ee
n 

T
xR

x 
an

d 
C

 c
lie

nt
s

Number of RPC calls

Local
Ether
Inter

Figure 2: Performance ratio vs. number of calls

0.5

1

1.5

2

2.5

3

3.5

4

0 500 1000 1500 2000 2500 3000 3500 4000 4500

T
im

e 
ra

tio
 b

et
w

ee
n 

T
xR

x 
an

d 
C

 c
lie

nt
s

Transfer size (in bytes)

"s.Inter"
"s.Ether"
"s.Local"

Figure 3: Performance ratio vs. transfer size


