
The following paper was originally published in the
Proceedings of the Fifth Annual Tcl/Tk Workshop

Boston, Massachusetts, July 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

Coding Techniques for Reducing Code Maintenance

Clifton Flynt
Flynt Consulting Services

Coding Techniques for Reducing Code Maintenance

Clifton Flynt
Flynt Consulting Services

Abstract
Tcl/Tk supports code constructs that can reduce

the amount of code that needs to be changed when code
is modified.

The following examples and brief discussion
explain some code conventions that can reduce code
maintenance.

Shell or C programmers are familiar with using a
switch statement to parse a command line. In Tcl the
command line parsing code can reformat the arguments
into Tcl commands. This allows new command line
arguments to be added without code modification.

One such convention is "-varName value", which
can be parsed by a set of code resembling example 1.

The names of global variables can be placed in a
list to be evaluated by procs which need access to them.
This creates a single point of change when new vari-
ables need to be declared global. Example 2 shows
sample code.

Menu construction can be data driven instead of
code driven. For example, a program which processes
the contents of files can have the file selection menu

built with the Tcl glob command. This allows new
files to be automatically included in the menu. The tra-
ditional method of hardcoding a list of items to place in
a menu would require a code modification whenever
new files are added (or a new BaseDirectory is selected
from the command line). See Example 3.

Saving and restoring state arrays can also be be
data driven instead of code driven. Tcl can report all of
the indices of an array. This list can then be used to
drive the code which saves these values. By saving the
variables as a Tcl command string, the state can be
restored with the source command. See Example 4.

Further examples and discussion are included in
the posters.

These conventions were developed while writing,
extending and maintaining TclTutor.tk which is avail-
able at:

http://www.msen.com/˜clif.

Clif Flynt can be reached asclif@clif.ypsi.mi.us

Example 1.

Scan command line for -Varname Value combinations

for {set i 0} {$i < [llength $argv]} {incr i} {
set arg [lindex $argv $i]
if {[string first "-" $arg] == 0} {

incr i;
eval [list set [string range $arg 1 end] [lindex $argv $i]]
} else {
puts "Bad argument: $arg"
}

}

Example 2.

Global variables are all declared in a single location

set globalList [list errorCode errorInfo stateArray argv argc]

proc GenericProc {} {
global $globalList; eval "global $globalList";
...
}

Example 3.

Add a list of files to a menu

foreach file [glob $stateArray(BaseDirectory)] {
$menu add command -label $file -command "ProcessFile $file"
}

Example 4.

Save state as a source-able file.

puts $stateFile "array set stateArray [array get stateArray]"

