
The following paper was originally published in the
Proceedings of the Fifth Annual Tcl/Tk Workshop

Boston, Massachusetts, July 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

InvenTcl: Interpretive 3D graphics using
Open Inventor and Tcl/[incrTcl]

Sidney Fels, Silvio Esser, Armin Bruderlin and Kenji Mase
ATR MI&C Research Laboratories

Kyoto, Japan

InvenTcl: Interpretive 3D graphics using Open Inventor and

Tcl/[incr Tcl]

Sidney Fels, Silvio Esser, Armin Bruderlin and Kenji Mase,

ATR MI&C Research Laboratories

Seika-cho, Soraku-gun, Kyoto, 619-02, JAPAN

fels@mic.atr.co.jp +81 774 95 1448 fax: +81 774 95 1408

Abstract

Open Inventor is an object oriented 3D graphics

toolkit written in C++. Because Open Inventor

is written in C++, typical user code development

consists of a program/compile/debug iteration cy-

cle. This paper introduces InvenTcl which is an in-

terpretive version of Open Inventor using Tcl/Tk [4]

and [incr Tcl] [3]. The advantages of InvenTcl in-

clude: script-able and direct manipulation of 3D ob-

jects in an Open Inventor scene, easy prototyping

of 3D graphics and animation, and low-bandwidth

communication of 3D scenes and animations (using

scripts).

Discussion

There are three command types provided by In-

venTcl which correspond to the main functions avail-

able in Open Inventor: object creation commands,

object interaction commands and animation com-

mands. For object creation there are command

names for instantiating objects. These commands

have the same name as the class names in Open In-

ventor, e.g. in InvenTcl there is a command called

SoSeparator1 which creates a new separator [incr

Tcl] object with corresponding methods to access

the public methods de�ned in Open Inventor for an

SoSeparator. For interaction, InvenTcl has bind-

ing mechanisms to allow Tcl procedures to be called

when objects in the 3D scene are selected. For ani-

mation commands, InvenTcl provides access to an-

imation functions found in Open Inventor (i.e. en-

gines and sensors). To illustrate creation commands

with an example, the following code shows how a

simple scene graph is created interpretively:

SoSeparator >root>separator1

SoMaterial >root>separator1>material1

SoCube >root>separator1>myCube

This series of commands adds an SoSeparator node

separator1 to the root node, an SoMaterial node to

separator1 and an SoCube node to separator1. These

1An SoSeparator is a common object used in Open Inven-

tor programming. It is used to isolate the e�ects of nodes in

a group from other nodes in a scene graph.

commands coupled with other Open Inventor com-

mands would display a cube with the material prop-

erties speci�ed by material1.

Notice, that we use the `>' notation to specify par-

ent/child relationships.

There are four main technical issues to deal with to

make Open Inventor interpretive:

1. accessing Open Inventor's object functions and

the object's public methods and variables from

the Tcl interpreter,

2. Open Inventor event management within

Tcl/Tk,

3. binding Open Inventor objects to Tcl proce-

dures and interaction modes,

4. synchronization of Open Inventor and Tcl pro-

cessing.

To implement access to Open Inventor objects from

Tcl we write command wrappers around the C++ in-

stantiation functions for the Open Inventor library

classes. Thus, a Tcl command is created with the

same name as an Open Inventor class for instanti-

ation. To access public variables such as �elds, we

provide command-line options like width, length, or

radius. Alternatively, �elds can be set after creation

analogous to the Tk con�gure commands using In-

ventor's callback functionality with the appropriate

ClientData pointer set. Our current implementa-

tion does not work e�ectively with the inheritance

relationships speci�ed in the Open Inventor class li-

braries and has commands which are tailored to our

project [1]. In particular, we do not have convenient

access to all the public methods for our classes. To

remedy this we plan to use a utility called Itcl++[2]

to convert Open Inventor object's methods into [incr

Tcl] classes. Itcl++ is a utility which converts C++

class hierarchies into [incr Tcl]. It provides access

to public methods inside each class and preserves

the inheritance hierarchy. In [2], 32 classes and 190

member functions from the Open Inventor library

were converted to [incr Tcl]. Using this utility we

plan to convert the remainder of the class hierar-

chy of Open Inventor and integrate it with our no-

tation, event handling, binding and synchronization

techniques (see below). On top of the class hierar-

chy created with Itcl++, we will add the operator

'>' for specifying parent/child relationships. Having

this operator is useful for integrating Open Inventor

scene graph descriptions with path speci�cations in

Tcl/Tk. Itcl++ does not provide access to any pub-

lic variables. We are currently addressing this is-

sue by altering our approach for providing con�gure

style access to public variables to work with Itcl++.

An Open Inventor event handler is installed as an
asynchronous handler in Tcl to manage any Open In-
ventor events. Implementation of event management
within Tcl does cause some performance penalty.
Here is the Open Inventor event manager we use:

XtInputMask m;

XEvent event;

XtAppContext t;

t = SoXt::getAppContext();

if(m = XtAppPending(t)) {

if (m & XtIMXEvent){

SoXt::nextEvent(t, &event);

SoXt::dispatchEvent(&event);

} else {

XtAppProcessEvent(t, m);

}

}

The main role of this handler is to �nd events which

are related to Open Inventor and dispatch them to

Open Inventor.

The main interaction command in InvenTcl is the

Ibind command. The Ibind command allows users

to bind an event and a callback procedure to objects

in the Open Inventor scene graph. When used with

objects in the scene graph this command is analo-

gous to the canvas widget bind method for binding

to objects on the canvas. However, our current ver-

sion of InvenTcl allows only one scene graph and the

Ibind command implicitly binds to objects in the

one and only scene graph. Thus its syntax resem-

bles the Tk bind command even though the objects

that are bound are more like 3D versions of the can-

vas widget. Further, we do not provide support for

Tcl binding to some of the interaction buttons and

sliders that are provided by Open Inventor. Here is

an example of the Ibind command:

Ibind >root>player>p5 <Ctrl-Button-1-Up>

fputs "here"g

The binding mechanism is implemented using a com-

bination of the event callback mechanism provided

in Open Inventor and a Tcl HashTable addressed by

each object in the scene graph which is bound. Each

object (referenced by a path in the scene graph) in

the hash table has a structure associated with it to

keep track of the bound callback function and any

user call back data. In the example above, the path

speci�ed is >root>player>p5 and the callback func-

tion is fputs "here"g. The event which triggers the

callback is a <Ctrl-Button-1-Up> event. When an

event occurs, i.e. <Ctrl-Button-1-Up>, an Open

Inventor callback node in the scene graph calls a

generic callback handler. This generic callback han-

dler looks in the hash table to see if the scene graph

path which was selected is in it. If so, the generic

callback gets the associated structure from the hash

table and calls the bound callback function with the

user data.

Synchronization between autonomous event driven

Open Inventor activities and Tcl/Tk is performed

using a global semaphore.

Summary

In summary, to date, the following is working:

� Implementation of a small subset of the Open

Inventor library with limited access to public

variables and methods.

� Integration of event management of Open In-

ventor and Tcl/Tk events.

� Implementation of a 3D binding mechanism al-

lowing selection of 3D objects to call Tcl proce-

dures.

� Implementation of synchronization between

Open Inventor and Tcl/Tk.

Our current work is focussed on enhancing Itcl++

to translate all of Open Inventor's class library. To

do this, we are modifying Itcl++ to allow access to

public variables. Further, the classes created using

Itcl++ are being integrated with our mechanisms for

event handling, binding and synchronization. Once

complete, we plan to use InvenTcl to create a 3D

mega-widget canvas using the Tk [4] canvas widget

as a model for design.

[1] Bruderlin, A., Fels, S., Esser, S., and Mase, K.

Hierarchical agent interface for animation. In Ani-
mated Interface Agents IJCAI workshop, to appear

in Workshop Proc. of the International Joint Con-

ference on Arti�cial Intelligence (IJCAI'97) (August
1997).

[2] Heidrich, W., and Slusallek, P. Automatic gen-

eration of Tcl bindings for C and C++ libraries. In

Proc. of the Tcl/Tk Workshop (July 1995).

[3] McLennan, M. [incr Tcl]: Object-oriented pro-
gramming in Tcl. In Proc. 1st Tcl/Tk Workshop

(University of Berkeley, CA, USA, 1993).

[4] Ousterhout, J. K. Tcl and the Tk Toolkit.
Addison-Wesley, New York, 1994.

