
The following paper was originally published in the
Proceedings of the Fifth Annual Tcl/Tk Workshop

Boston, Massachusetts, July 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

Agent Development Support for Tcl

R. Scott Cost, Ian Soboroff, Jeegar Lakhani, Tim Finin,
Ethan Miller and Charles Nicholas

Computer Science and Electrical Engineering
University of Maryland Baltimore County



Agent Development Support for Tcl

R. Scott Cost, Ian Soboro�, Jeegar Lakhani, Tim Finin, Ethan Miller and Charles Nicholas

Computer Science and Electrical Engineering

University of Maryland Baltimore County

Baltimore, Maryland 21250

frcost1, ian, jlakha1, �nin, elm, nicholasg@cs.umbc.edu

In the past few years, the explosive growth of the

Internet has allowed the construction of "virtual"

systems containing hundreds or thousands of indi-

vidual, relatively inexpensive computers. The agent

paradigm is well-suited for this environment because

it is based on distributed autonomous computation.

Although the de�nition of a software agent varies

widely, some common features are present in most

de�nitions of agents. Agents should be autonomous,

operating independently of their creator(s). Agents

should have the ability to move freely about the In-

ternet. Agents should be able to adapt readily to

new information and changes in their environment.

Finally, agents should be able to communicate at a

high level, in order to facilitate coordination and co-

operation among groups of agents. These aspects of

agency provide a dynamic framework for the design

of distributed systems.

Tcl is an ideal language with which to build

agents, because scripts written in Tcl may be used

on any machine that can run Tcl, and because the

Tcl language environment itself is highly portable.

Additionally, Tcl/Tk greatly facilitates rapid proto-

typing and quick development of small applications.

We present TKQML, the integration of an

agent communication language, KQML [6] (Knowl-

edge Query Manipulation Language) into Tcl/Tk.

TKQML can be used to build KQML-speaking

agents that run within a TKQML shell. TKQML

can also be used to bind together diverse applica-

tions into a distributed framework, using KQML as

a communication language. Tcl's embeddable na-

ture allows one to easily add agent communication

facilities to existing code. As such, TKQML can be

used to enhance the functionality of new or existing

systems built using a Tcl framework, by allowing

easy integration with agent-based systems.

KQML is a language for general agent communi-

cation. It was developed as part of the Knowledge

Sharing E�ort [7], a DARPA project exploring agent

communication and knowledge reuse. KQML is a

language based on speech acts, such as \tell", \ask",

and \deny", which describe the nature of a message

without reference to its content. Agents commu-

nicate application-speci�c information embedded in

general, higher-level KQML messages. A compre-

hensive semantics [4] for KQML outlines protocols

for agent \conversation." Additionally, most imple-

mentations provide facilities for message handling,

agent naming and resource brokering.

Problems of software mobility, communication,

and autonomy have not been neglected within the

Tcl community. Existing Tcl-based solutions to

agent issues, such as AgentTcl [2] and Tacoma [3]

have emphasized security and mobility, but fall

short with respect to communication. AgentTcl

agents, using TCP/IP, exchange bytes strings which

have no prede�ned syntax. In Tacoma, agents must

meet in order to communicate. Others projects,

such as Tcl-DP [9, 5] provide excellent packages for

communication, but lack su�ciently exible sup-

port for higher level languages. TKQML bridges

this gap.

The CARROT project (Co-operative Agent-

based Routing and Retrieval of Text, formerly

CAFE) is an ongoing e�ort at UMBC to develop

a distributed architecture for text-based informa-

tion retrieval [1], and has served as a testbed for

TKQML. This project employs a brokered environ-

ment of clients and servers. Users make queries

through a World-Wide Web-based client, which are

routed intelligently by a broker agent to an appro-

priate information source. The broker makes these

decisions by gathering information, or metadata,

from each source, and deciding which database the

query most resembles. A ranked set of results is

returned to the client.

A heterogeneous set of text-indexing engines,

such as Telltale [8] and mg [10] manage large sets of

text data. These engines have been augmented into

agents with TKQML. The broker agent communi-

cates transparently with these information servers



via KQML. All components consist of C/C++ ap-

plications bound to TKQML with a Tcl/Tk shell.

One agent, the Agent Control Agent (ACA) is writ-

ten entirely as a TKQML script. Our experience

with CARROT has shown that TKQML can facil-

itate quick prototyping and rapid development of

agents and their GUIs, reducing the time neces-

sary to build large agent-based systems. Figure 1

presents a sample system, in which agents of varying

types communicate via KQML.

TKQML

Telltale

IR Engine
(C++)

Broker

TKQML

(C)

Prolog

System

Expert
MG

IR Engine

TKQML

(C)

Agent

Control

Agent
(TKQML)

Java

Agent

Figure 1: A system of agents speaking KQML. Some

entities have been augmented with TKQML, while

other have native KQML abilities.

Both Tcl and KQML are powerful tools in the de-

velopment of agent-based systems. TKQML com-

bines the two, making it possible to bene�t from

both the light weight and portability of Tcl scripts

and the high-level communication support of KQML

with one package. We feel that its power, simplic-

ity and potential for future development make it an

ideal platform for the development of agent-based

systems.

References

[1] Grace Crowder and Charles Nicholas. Resource

selection in CAFE: An architecture for network

information retrieval. In Proceedings of the Net-

work Information Retrieval Workshop, SIGIR

96, August 1996.

[2] Robert Gray. Agent Tcl: A exible and secure

mobile-agent system. In The Fourth Annual

Tcl/Tk Workshop Proceedings. The USENIX

Association, 1996.

[3] Dag Johansen, Robbert van Renesse, and

Fred B. Schneider. An introduction to the

TACOMA distributed system. Technical re-

port, University of Tromso, June 1995.

[4] Yannis Labrou. Semantics for an Agent Com-

munication Language. PhD thesis, University

of Maryland Baltimore County, 1996.

[5] Peter Liu, Brian C. Smith, and Lawrence A.

Rowe. Tcl-DP name server. In Proceedings of

the 1995 Tcl/Tk Workshop. The USENIX As-

sociation, July 1995.

[6] James May�eld, Yannis Labrou, and Tim

Finin. Evaluation of KQML as an agent com-

munication language. In J. P. Woolridge and

M. Tambe, editors, Intelligent Agents Vol-

ume II { Proceedings of the 1995 Workshop

on Agent Theories, Architectures and Lan-

guages, Lecture Notes in Arti�cial Intelligence.

Springer-Verlag, 1996.

[7] Ramesh S. Patil, Richard E. Fikes, Pe-

ter F. Patel-Schneider, Don Mckay, Tim Finin,

Thomas Gruber, and Robert Neches. The

DARPA knowledge sharing e�ort: Progress

report. In Charles Rich Bernhard Nebel

and William Swartout, editors, Principles

of Knowledge Representation and Reasoning:

Proceedings of the Third International Confer-

ence (KR92). Morgan Kaufman, 1992.

[8] Claudia Pearce and Charles Nicholas. TELL-

TALE: Experiments in a dynamic hypertext

environment for degraded and multilingual

data. Journal of the American Society for In-

formation Science, April 1996.

[9] Brian C. Smith, Lawrence A. Rowe, and

Stephen C. Yen. Tcl distributed programming.

In Proceedings of the 1993 Tcl/Tk Workshop.

The USENIX Association, June 1993.

[10] Ian H. Witten, Alistair Mo�at, and TimothyC.

Bell. Managing Gigabytes: Compressing and

Indexing Documents and Images. Van Nos-

trand Reinhold, 1994.


