
The following paper was originally published in the
Proceedings of the Fifth Annual Tcl/Tk Workshop

Boston, Massachusetts, July 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

A Tcl/Tk-Based Video Annotation Engine

M. Carrer, L. Ligresti, and T.D.C. Little
Multimedia Communications Laboratory

Department of Electrical and Computer Engineering
Boston University



A Tcl/Tk-Based Video Annotation Engine

M. Carrer, L. Ligresti, and T.D.C. Little

Multimedia Communications Laboratory

Department of Electrical and Computer Engineering

Boston University, Boston, Massachusetts 02215, USA

tdcl@bu.edu

The population of a video database requires tools

for manipulation and annotation of raw video data.

Characteristic of this requirement is the need to

satisfy many disparate video-based application do-

mains. In this extended abstract we describe the de-

sign and development of a video annotation engine

called Vane (Fig. 1), intended to address the issue of

domain-independent video annotation. Rather than

relying on a single, general data model and appli-

cation interface, we developed a dynamic interface

and data model using the Tcl/Tk environment and

SGML document type de�nitions (DTDs). This ap-

proach allowed us to implement an intuitive graphi-

cal user interface application that is easily portable

to di�erent systems. The outcome of our work is

a multipurpose, domain-independent video anno-

tation application that has been developed taking

advantage of Tcl/Tk features for easy construction

and recon�guring of GUI widgets at execution time.

Thereby o�ering a novel application model appro-

priate for the domain.

We built Vane so that the DTD can be modi�ed

in many of its parts to suit the needs of the annota-

tor and to better describe the current domain under

analysis. Opening a new annotation in Vane means

identifying its associated DTD. The particular DTD

is then parsed by a Tcl procedure, resulting in the

loading of its syntax rules into an array in memory.

When the annotation of one of the de�ned SGML

elements is requested by the annotator, a new, top-

level window is built (Fig. 2). Attributes belong-

ing to these elements are mapped to a Tcl/Tk wid-

get according to their type. These can be pop-up

menus, form entries, listboxes, or text areas for at-

tributes such as content transcripts. De�ning a new

DTD for a new annotation, or changing part of an

existing DTD, does not a�ect the implementation of

Vane, rather, these changes are accommodated by

the construction of the user windows from the DTD

on-the-y.

Once the syntax of the annotation document has

been extracted from a DTD, each of its �elds is

associated with its semantics from a corresponding

SGML document. The latter carries the video infor-

mation as annotation data. An additional Tcl pro-

cedure handles the output produced by an SGML

parser by loading the �eld values into an annotation

array. Because the array indices are based on the

DTD array, and therefore on the DTD syntax, iden-

ti�cation of format mismatches is easily accommo-

dated. The reverse process, writing-out annotation

metadata to SGML, is therefore straightforward as

well. In this case we generate SGML output by fol-

lowing the syntax rules stored in the DTD array.

The result is a \generated" SGML document which

is certainly consistent with its own DTD.

With respect to the static user interface of Vane

(Fig. 1), the canvas widget and its associated prop-

erties were used extensively. Each element appear-

ing in the main window represents a \hot-spot" with

an associated Tcl/Tk binding. Because the binding

is based on a motion event, a simple dragging of

the mouse pointer over an annotation element au-

tomatically updates other information boxes in the

window. This o�ers to the annotator a set of eas-

ily accessible shortcuts to check the progress of the

annotation process.

In summary, we have used Tcl/Tk as a scripting

language and toolkit for the implementation of our

annotation tool. The outcome of our work is Vane,

a multipurpose, domain-independent video annota-

tion application. It has been developed to achieve a

dynamic, run-time-recon�gurable user interface by

taking advantage of the unique characteristics of

Tcl/Tk. The tool is currently in use to annotate

a video archive comprised of educational and news

video content in the Multimedia Communications

Lab.

Additional details of the Vane implementa-

tion can be found at the following URL: http:

//hulk.bu.edu/pubs/papers/1996/carrer-vane96/

TR-08-15-96.html.



Figure 1: Screenshot of the Vane Workspace Window

Figure 2: Screenshot of a Vane Annotation Window


