
The following paper was originally published in the
Proceedings of the Fifth Annual Tcl/Tk Workshop

Boston, Massachusetts, July 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

A Tcl-based Self-configuring Embedded System Debugger

Dale Parson, Paul Beatty and Bryan Schlieder
Bell Labs Innovations for Lucent Technologies

A Tcl-based Self-configuring Embedded System Debugger

Dale Parson, Paul Beatty and Bryan Schlieder (dparson@lucent.com)

Bell Labs Innovations for Lucent Technologies

Abstract

The Tcl Environment for Extensible Modeling is a
software system from Bell Labs for the simulation,
hardware emulation and debugging of heterogeneous
multiprocessor embedded systems. These embedded
systems contain one or more digital signal processors or
microcontrollers that execute real-time software written
in assembly language and C. Tcl provides an
environment in which embedded system designers can
interact easily with their designs. Tcl serves as a
processor query language, a modeling language for
connecting and scheduling processors, an extension
language for adding both model and environment
enhancements, and as a user interface implementation
language. Tcl’s C API and calling conventions provide
C and C++-level standards and portable libraries. The
Tcl interpreter extends readily into a self-configuring
simulation-emulation-debugging tool set. This tool set
can use new processor types and new processor
arithmetic without tool recompilation. This paper looks
at exploitation of Tcl from a system perspective, and at
some technical problems and solutions in applying Tcl.

Introduction

Our group in Bell Labs builds software generation and
execution tools—compilers, assemblers, linkers,
simulators, hardware emulators and debuggers—for a
variety of Lucent Technologies embedded digital signal
processors (DSPs). Some processors vary at core
architectural levels, while other processors differ only
with respect to I/O circuitry or memory configuration.

Tcl [1] provides a means for separating processor-
specific details from the debugging environment of our
simulation and emulation tools. Our Tcl Environment
for Extensible Modeling (TEEM) couples a Tcl/Tk-
based user interface to a C++ queryable model
technology. TEEM configures itself at startup time to
support a user-specified set of processors. It queries its
processor models to determine processor-specific
signals, registers, I/O and memory configurations, and
debugger arithmetic semantics.

Tcl finds productive application throughout our
environment. From large-scale architectural issues to
localized implementation considerations, Tcl provides
structure and code that considerably enhances the power
and maintainability of our tools.

Section 1 describes where TEEM fits into our system for
development of embedded software. Section 2 discusses
how Tcl is connected to processor models to support
embedded simulation. Section 3 shows how hardware
emulation fits into the system. Section 4 discusses the
multi-process TEEM graphical interface and our
strategy for minimizing application knowledge and
communication overhead. Section 5 shows how TEEM
may be coupled into third-party environments as a
coroutine. Section 6 summarizes our discoveries.

1. Embedded system software generation
and execution

Figure 1 is a bird’s-eye view of Lucent’s Wireless and
Multimedia software tools for embedded system
programming and debugging. A compiler or assembler
translates source code into an object format that a linker
binds into an executable file. Compilers for different
processors can produce output with different object file
formats (COFF, ELF, etc.). Executable file format is one
processor-specific system parameter.

The software generation system of Figure 1 is
processor-core-specific. TEEM, on the other hand,
grows to handle execution of different processor types.
TEEM is at the heart of the embedded execution system
of Figure 1.

TEEM is tclsh (Tcl shell) extended with processor
modeling commands from four categories listed below.
Tcl procedures can extend each category.

• Model Management: The pssr command queries
available model types, constructs one or more
processor instances and deletes model instances. Tcl
callbacks that run when a processor is created provide
a mechanism for loading and setting up the processor.

• Model Access: These commands initialize, examine
and modify model instance state (registers, memory,
buses and pins). Tcl procedures extend basic query
mechanisms to provide information in an application-
oriented format.

• Model Control: Execution and breakpoint commands
drive simulation at the C++ level until breakpoints or
exceptions occur. Tcl breakpoint callback procedures
can copy data between registers and memory of
different processors to model interconnection.
Callbacks can also resume processor execution to

model scheduling in multiprocessor systems.

• Model Input / Output : These commands attach files
or Tcl callback procedures to I/O activity. Tcl
callbacks support simulation of I/O activity by
sourcing and sinking I/O signals between data streams
and modeled embedded system I/O.

TEEM operates as a stand-alone tclsh or in conjunction
with one or more of the other components shown in
Figure 1. In stand-alone mode TEEM supports
interaction with an embedded system based on
simulation models or emulation hardware. Emulation
hardware can include processor evaluation cards or
processors embedded in a user’s prototype system.
When TEEM emulates a processor via hardware, a
model instance serves as a database for buffering
processor state. Processor execution downloads model
state to hardware when execution begins and uploads
state to the model upon reaching a breakpoint. Section 3
discusses integration of hardware emulation into TEEM.

TEEM’s Tcl command interpreter provides an ideal
environment for batch execution, procedural extension
and regression testing. However, textual commands give
a low-bandwidth user interface, so typical interactive
usage requires a graphical user interface (GUI). Instead
of including GUI code, TEEM provides a generic socket
interface to allow a client application to submit Tcl
queries. The GUI process retrieves and updates model
state via remote Tcl procedure calls. This optional C /
assembly debugger and related graphical signal capture
and display tool are discussed in section 4.

In addition to the stand-alone version, TEEM and its
GUI may connect to vendor simulators via the IDM
interface shown in Figure 1. Typical embedded systems
contain analog components and may contain digital
components that are not modeled in the TEEM
environment. The integration of a vendor simulator such
as Model Technology’s VHDL circuit simulator or Math
Works’ Simulinkarithmetic function simulator

model
B

T
C
L

I*

D
M

TEEM

graphical

simulator

drivers

emulation
hardware

vendor
debugger

signal capture
/ display

*Interactive Device Model

Figure 1: Embedded system software generation and execution tools

device

C / assembly

GUI:

C compiler

linker

assembler

libraries

Software

Generation

System for

Embedded

Software

model
A

Embedded

Execution

Environment

Components

loader

(simulator/TEEM interface)

provides a means for using TEEM models and TEEM
debugging functionality in larger systems. While TEEM
remains available for processor query and debugging,
the external simulator supplants TEEM’s built-in model
driving functions. Section 5 discusses how TEEM is
linked to a host simulator via the simulator’s functional
API.

2. Tcl Environment for Extensible Modeling
= tclsh + processor models

2.1 Tcl-to-model interface classes

Figure 2 shows TEEM’s internal structure. Arrows show
inter-class communication paths between four C++
classes and the extendedtclsh. ModelStatic is a Tcl-to-
modeling interface class composed strictly of static
functions and class-static variables. Each built-in
modeling command takes the form of a ModelStatic
function that complies with Tcl_CreateCommand’s
parameter conventions. ModelStatic uses no “this”
object or inheritance. Its class variables manage the set
of models.

Model is a processor modeling base class that runs
simulated circuitry. Each Model-derived class adds
processor-specific objects such as registers and I/O ports
for storing state. It also adds simulation code for
advancing processor state on clock transitions.

The hardware development mode (HDM) class provides
access to a real, running processor. It retrieves
processor-dependent configuration information from its
Model. An HDM object also uses its Model object as a
database that stores its processor state information.

Each Model object and HDM object ties to one
ModelMonitor object. ModelMonitor is a base class
with one derived class per processor core.
ModelMonitor performs debugging-oriented monitor
tasks that are not part of processor simulation or
emulation. Key ModelMonitor jobs include stepping the
processor, watching for breakpoint conditions in the
Model, directing return to Tcl on uncaught exceptions,

and directing callbacks to Tcl on caught exceptions.
Both calls forward from tclsh to a ModelMonitor
instance and callbacks from ModelMonitor to tclsh
travel via class-static functions in ModelStatic.

2.2 Model management

Section 1 listed four categories of ModelStatic
commands that manage a set of processors, query/
update a processor, run a processor and simulate
processor I/O. An important goal of TEEM is to enable
debugging of multiple processor instances. Tcl’s ability
to support object-action command structure enables
almost seamless transition of scripts from single to
multiple processor debug environments.

Thepssr model management command can create a
processor instance (pssr newmodelName), delete a
processor instance (pssr deleteinstanceName), and
query the set of available processors (pssr
modelTypes).

Pssr gives access to a dynamically linked library of
ModelMonitor C++ class constructors. Each constructed
object returns a uniqueinstanceName to Tcl. The
instanceName becomes a Tcl command until the object
is destroyed. WheninstanceName is called as a Tcl
function, it saves a ModelStatic pointer to thecurrent
processor instance ModelMonitor object on the C++
stack, copies its owninstanceName’s address into this
current instance pointer, passes the remainder of the
command to Tcl_Eval(), and restores the previous
current instance pointer from the C++ stack on return.
The next section explores the utility of this dynamic
current instance pointer.

2.3 Model access

2.3.1 Fxpr: processor-oriented expressions

Assumepssr new mydspcreates model instances
named “p1” and “p2” on two successive calls. TEEM
changescurrent instance twice to interpret the
expression:

expr “[p1 fxpr r0] == [p2 fxpr r1]”

Figure 2: Major C++ classes within TEEM

tclsh
ModelStatic ModelMonitor

Model

(argc-argv Tcl
commands)

(simulated
processor)

(breakpoint,
I/O watch, etc.) HDM

(emulated
processor)

First TEEM sets current instance to p1 and calls
ModelStatic’sfxpr with register name r0 to retrieve the
r0 value from thefirst instance of mydsp. Next TEEM
sets current instance to p2 and calls fxpr with register
name r1 to retrieve the r1 value from thesecond instance
of mydsp. Finally, the results of both fxpr queries pass
to Tcl’s expr to compare the results.

Fxpr accesses a target ModelMonitor using
ModelStatic’s current instance pointer. Fxpr is
syntactically compatible with expr, but its arithmetic
semantics are determined by the current processor’s
ModelMonitor. For example a fixed-point digital signal
processor supplies fixed-point semantics, while a
floating-point microcontroller supplies floating-point
semantics. Fxpr builds and evaluates a processor-neutral
parse tree. Parse tree evaluation consults virtual
functions in the current ModelMonitor to evaluate
numeric constants, model state references (e.g., register
r0), variables and arithmetic operations.

Fxpr’s use of the current instance pointer typifies the
remainder of ModelStatic functions. The processor
query, processor execution and I/O attachment
commands interact with a model instance whose
identity is determined from the current instance pointer.
Therefore any remaining ModelStatic function can be
prefixed by aninstanceName. EnteringinstanceName
without a command suffix makesinstanceName the
default current instance for all commands that lack an
instanceName prefix.

Tcl programmers can write processor-neutral model
manipulation scripts that do not specifyinstanceName.
Their procedures operate on the current processor, using
its model-specified semantics transparently.
Alternatively, these programmers can prefix specific
commands with aninstanceName. Application of
instanceName has stacked, dynamic extent. A major
advantage of choosing this object-action convention
over the alternative action-object convention [reference
1, section 28.3] is that scripts and adjunct tools can
prefix an entire set of commands with object
instanceName. Tcl evals the remainder of a prefixed
command withininstanceName’s scope as part of the
instanceName command. The trailing commands affect
the intended processor even though they contain no
processor-specification code. The action-object
convention would require each Tcl action command to
specify its processor, making multi-processor
generalization of Tcl commands very difficult to
achieve.

Fxpr syntax is a superset of expr. Fxpr adds an
assignment operator for copying a value into model
state. Model state includes registers, I/O ports and other

model signals housed in Model, as well as user-declared
signal variables housed in ModelMonitor. Fxpr also has
memory vector operations for loading and copying
sequences of model memory contents within and
between processor Models.

Fxpr provides partial compatibility with an earlier, non-
Tcl command line debugger. Users are accustomed to
typing expressions such as “r0 = r1 + 3” into the
debugger. We did not wish to require that “fxpr” be
prefixed to every register/signal access and update (e.g.,
“fxpr r0 = r1 + 3”), so fxpr is linked to Tcl’sunknown
command. Unknown procedures (such as “r0”) call the
fxpr parser to determine if the leading token is a symbol
for a unit of model state in the current instance. If a valid
symbol is recognized, the entire command passes to the
fxpr parser, otherwise Tcl’s default unknown handler is
called. Tcl scripts typically make the “fxpr” prefix
explicit to speed processing and eliminate any potential
ambiguity.

2.3.2 Other query / update commands

There are several other query commands. The?
command includes options for determining the names,
types, and properties of user-accessible elements within
a model. Example names are “r0,” “pc,” “time.”
Example types are register, I/O port, memory block,
user-declared signal variable. Example properties are
signal width and memory width, allocation size and base
address. Thewidth command retrieves signal and
memory width. Thealloc command includes options for
determining embedded memory configuration and for
allocating memory for simulation or emulation. A user
or TEEM client process can use? to find out what
objects are inside a processor model. The user or client
can then usefxpr , width andalloc to retrieve and
update the state of those objects.

Each user command that creates a unit of debugger state
returns an instance-handle string to Tcl that identifies
that unit of state. Name-to-element bindings are unique
within a Model. Each object of class Model includes a
C++ symbol table that binds each Model-unique name
to an element’s type and its defining object within the
Model. Each ModelMonitor object houses several
symbol tables for administering breakpoints, exceptions,
I/O connections, and other user-defined debugging state.
In addition to Model state, all ModelMonitor debugger
state—the state of breakpoint triggers, user-installed
breakpoint and exception callbacks, and the state of
Model I/O monitors—are available for Tcl-based query.
The accessibility of declarative information about
Model and debugger state combines with the
interpretive nature of Tcl to support very powerful
methods for extension and customization.

Tcl’s hash tables and string library functions make
provision of platform-independent symbol table objects
a simple exercise. TEEM runs on several UNIX

platforms as well as Win32. At the C++ level TEEM
uses only ANSI C libraries and the Tcl library to achieve
portability. A considerable portion of the queryable
model infrastructure works on top of the Tcl C library.

Query commands determine both identity and content of
state-bearing elements in a processor. Query results
return Tcl strings or lists. ModelStatic command
functions, Tcl extensions, and ancillary tools that
interact with models can avoid hard-coded processor
specifics.

Themload command demonstrates processor
independence. Mload loads model memory from an
executable file. Recall from Section 1 that different
processor cores use different executable file formats.
Different compilers or assemblers may pass different
debugging information. Within the execution
environment ModelMonitor integrates over these
variations in file structure. Each core-specific
ModelMonitor codes for its processor’s executable file
structure in a virtual mload helper function. The mload
command loads Model memory and ModelMonitor
debugging tables for any TEEM processor.

Processor-neutral syntax and processor-interpreted
semantics extend naturally to C language expression
handling for debugging. We are investigating a model-
directed approach to C debugging comparable to the
processor-independent techniques of ldb [2] and cdb [3].
These debuggers use processor-independent symbol
table information compiled into the executable program
to achieve processor independence. A TEEM-based
approach houses similar symbol table information in its
queryable models and ModelMonitor loaders.

2.4 Model control

ModelStatic control commands start and stop execution.
Tcl callback procedures enable multiprocessor
scheduling.

Thereset command resets the current processor’s state,
and thestep [n] andresume commands advance its
state. Model-ModelMonitor pairs cooperate in
advancing processor state and monitoring breakpoint
and exception status. Step or resume returns processor
halt status to Tcl only when an uncaught breakpoint or
exception arises in a processor.

The user can set breakpoints on program locations,
assorted program-memory interactions, or on the
successful, non-zero evaluation of any fxpr expression
within a model. Some processor models may augment

the default set of breakpoint types, and hardware
emulation may restrict available types of breakpoints. A
Model may also assert a variety of exception conditions
of four severities—note, warning, error and fatal. The
list of exceptions is available for query from Tcl.
Default processing of a breakpoint successfully returns
a breakpoint identifier string (and TCL_OK) to Tcl.
Default exception processing prints messages viaputs,
and errors and fatal exceptions return failure diagnostics
(and TCL_ERROR) to Tcl.

A Tcl callback procedure name may be supplied as a
handler for a breakpoint or exception. An empty string
signifying “ignore” may be supplied for any non-fatal
exception. When a handled breakpoint or exception
arises during processor execution, ModelMonitor calls
Tcl_Eval() (via ModelStatic), passing the Tcl callback
procedure name and event-identifying parameters that
the callback uses as event keys. The current instance is
set to the interrupted processor, and the callback
procedure has access to the full range of Tcl commands
for passing information between processors and reading
and writing files and other data streams. If the callback
does not callstep or resume, ModelMonitor returns to
Tcl upon completion. If the callback does callstep or
resume, ModelMonitor resumes execution of the
processor after the callback completes. Only fatal errors
force a break.

Breakpoints and exceptions can trigger user-defined
extensions to a processor model, transparent simulation
of processor I/O events, processor state logging and
multiprocessor synchronization. A processor scheduler
can be as simple as the following Tcl loop:

proc sched {pssrlist} {
pssrlist is a list of processor instances
while 1 {

foreach p $pssrlist {
$p resume } } }

Sched schedules simulation of the processors named in
$pssrlist in round-robin order. Each processor resumes
execution until it reaches a breakpoint, at which time
sched schedules the next processor. Within the action of
“$p resume” a breakpoint handler can pass information
between processors; the handler has the option of
resuming its processor without letting control return out
to sched.

As written abovesched’s outer loop iterates until an
error occurs within one of the “$p resume” actions. Any
such error propagates TCL_ERROR out ofsched in the
normal Tcl manner.

2.5 Model I/O

Model and ModelMonitor support attachment of any
Model I/O port to a text file. Alternatively Model-level
I/O operations may call a user-specified Tcl procedure.
A processor input action from an I/O port can cause a
call to a Tcl procedure that returns a value for that port.
A processor output action to an I/O port can cause a call
to a Tcl procedure that takes the output value as an
argument. The combination of breakpoint, exception
and I/O event callback procedures allows the user to
design fully customized, event-driven, multiprocessor
simulations within Tcl. The execution of the callback
procedures is encapsulated as part of Model execution.

In fact, a processor designer can prototype a model in
Tcl by writing only three C++ virtual Model functions
as callbacks to Tcl. We normally write final processor
Models in C++ for speed, but we have implemented
partial Models using Tcl to allow concurrent
engineering of the Models. For example, we have
written a partial Model that houses only memory in
order to test the loader of its companion ModelMonitor
class. Unrelated Model functions are stubbed out by
binding them to Tcl callback procedures. Using Tcl
callbacks as stubs to support incremental construction of
partial Models has been very useful.

3. Emulation access to processor hardware

The HDM class shown in Figure 2 provides
communications between TEEM and each target
processor through an IEEE 1149.1-compliant “JTAG”
serial interface. HDM control of JTAG goes through a
PC ISA bus card; optional networked access is via a
TCP/IP socket interface. The HDM class hides physical
communication details by providing a set of generic
block transfer functions such as memory upload/
download, register upload/download, processor reset,
step and resume, and event monitoring. Plans for more
sophisticated controller-based PCI and PC Card
interfaces require that physical implementation details
be encapsulated in the HDM class hierarchy.

Tcl-queryable models again play an important role. An
HDM object determines processor details by querying
its Model at startup. With emulation enabled, each
HDM object intercepts calls to its corresponding Model,
delegating non-emulation work back to the Model. Tcl
continues to interact with processor state by querying
and updating a Model. HDM uses the Model as a
database for storing processor state.

4. Relational Tk mega-widgets and data-
base-event-driven graphical update

The graphical C / assembly debugger of Figure 1 is a

good demonstration of the expressive power of Tcl/Tk.
In about 5000 lines of Tcl code it replaced a C-based
approach to an earlier debugger that had about 45,000
lines of C GUI code. The Tcl/Tk GUI has far greater
functionality thanks to Tcl as a query language. The Tcl/
Tk debugger has a processor source window and
command line history and search processing that use
straightforward application of Tcl programming and Tk
library widgets. The most significant custom savings for
Tk came about through the construction of a relational
mega-widget that leverages the queryable nature of
TEEM. Any queryable data set in TEEM—i.e., the
entire model and debugger state—can be displayed in
the familiar row-column format of a relational database.
We constructed an instantiable relational mega-widget
in about 1300 lines of Tcl/Tk. The mega-widget’s
constructor includes parameters for domain names and
associated properties, including formatting and editing
callback procedures. User editing of fields and complete
tuples is parameter-driven. Mega-widget instances were
useful in building display / interaction windows for the
following TEEM element types: registers, pins / buses,
signal variables, breakpoints, memory vectors, I/O
connections, and a spreadsheet-like watch window that
can use user Tcl procedures to create customized views
into model data sets. Figure 3 gives an abbreviated look
at a register window and a relational watch window.

Performance was an issue of concern at the outset of
GUI design, especially for PCs. Our solution was to
minimize GUI-TEEM communication by doing as
much work as possible within TEEM. Tcl “watchdog”
procedures query active models periodically within the
TEEM process. These procedures send display update
messages to the GUI process only when widget contents
need to change. This approach eliminates system call
and inter-process communication overhead that would
be required by GUI-driven model query. This approach
makes good use of the interpreted nature of Tcl. No
knowledge of the GUI client process is coded into the
TEEM server process, but the GUI can source client Tcl
“watchdog” code into the TEEM process for efficiency.
Efficiency is gained without a loss in modularity.

5. Host simulators and Tcl as a coroutine

5.1 Simulator / TEEM interface

An embedded system designer may wish to model and
debug one or more of our processors in a vendor
simulation environment in order to gain access to tool
capabilities, circuits or arithmetic functions modeled in
that environment. A typical simulator architecture
requires the user to start a simulator process and specify
models as data. The simulator then loads models from

object files via a dynamic, incremental loader. The
models must supply certain access functions specified
by the simulator as part of its C application procedural
interface (API). The models may call C simulator
functions that are also part of the C API.

The Interactive Device Model (IDM) interface of Figure
1 is part of ModelMonitor of Figure 2. It achieves a
great deal of leverage from both Tcl and the queryable
nature of Model. When a vendor simulator initializes its
first TEEM Model after the incremental load of TEEM,
ModelMonitor starts tclsh and constructs the
communication paths of Figure 2. Thereafter
ModelMonitor knits each additional Model into tclsh.

Previous IDM design required a great deal of processor-
specific hand code in order to integrate a new processor
into a given simulator. At about 800 lines of code per
processor variant x 5 variants per year x 2 simulators,
we were averaging around 8000 lines of processor-
specific IDM code per year, and were limited in the
number of additional processors and simulators we
could support. With TEEM the IDM can query both the
models and the simulator environments, and the number
of lines for new processor variants drops to a constant 0.
Any processor modeled in TEEM is immediately
available to the IDM interface. A new simulator takes a
constant of about 100 lines to integrate with TEEM.

5.2 Tcl as a coroutine

Figure 4 illustrates the control problem we encountered
when attempting to integrate Tcl as an incrementally
loaded subroutine beneath a host simulator. Arrows

represent subroutine calls. The first call to a TEEM
model initializer calls Tcl_Eval as part of tclsh. Suppose
in the process of initializing TEEM, Tcl_Eval sources a
commands file that calls Modelstep or resume. The
external simulator requires that a model initializer or
evaluation function must return to the simulator to
advance the simulation, i.e., to bring about thestep or
resume. Unfortunately if Tcl_Eval returns, the context
in which Tcl was sourcing its file will be lost. Tcl cannot
simply return to the host simulator.

In this environment Tcl must run not as a subroutine, but
as a coroutine peer of the host simulator. With a
coroutine organization the Tcl thread has its own
execution stack. During Tcl execution this thread is
active and the simulator thread is blocked. The Tcl
thread can access Models and ModelMonitors,
performing queries and other model interactions. Only
when Tcl callsstep or resume is it necessary to block
the Tcl thread and resume the simulator thread. Step and
resume require coroutine resumption logic when run
under a host simulator.

Lightweight threads under UNIX and Win32 should
be able to supply the coroutine mechanism. Coroutines
implemented using lightweight threads do not violate
Tcl’s single-thread limitation, since only one thread is
active within Tcl at any given time. TEEM initialization
starts a second thread for tclsh and yields control to that
thread. ModelStatic’s step / resume manages thread
execution; synchronization code blocks the simulator
thread in order to return fromstep or resume to Tcl, and
it blocks Tcl in order to initiate astep or resume within

Figure 3: Relational watch window gives spreadsheet-like views into a model

the simulator. This scheme worked fine with Tcl and
some toy applications, and it worked with Model
Technology’s VHDL simulator. Unfortunately another
simulator not named in this report had mysterious
failures when we used lightweight threads. Because we
have no means to debug this simulator-specific problem,
we switched to a safer but more cumbersome
multiprocess approach to coroutines. The blocking
threads remain a viable option for cooperative
applications, but the external simulator did not
cooperate with us.

Our multiprocess solution runs the host simulator and
tclsh in separate process spaces. It distributes the class-
static functions of class ModelStatic of Figure 2 over an
inter-process communication (IPC) medium, and places
ModelStatic’s data in the appropriate processes. These
functions all use the Tcl_CreateCommand-compliant
argc-argv calling convention. Consequently distributing
these functions across IPC required engineering only
one distributed function. The tclsh process houses the
main Tcl interpreter, but the simulator process also
houses a Tcl interpreter used for decoding and calling
the correct ModelStatic functions received via IPC. All
user-initiated Tcl interpretation occurs in tclsh, and all
ModelMonitor and Model objects reside in the
simulator process. Tcl callbacks reverse the order of IPC
remote call, calling from ModelMonitor to tclsh. We use
an IPC-medium-independent C++ class we already had
in hand to transport the remote calls and data, binding it
to sockets.

6. Conclusion

Tcl plays many important roles in the TEEM processor
modeling environment: 1) Tcl is the model query
language that the debugger and ancillary tools use to
retrieve processor configuration data. 2) Tcl is a
modeling language that supports interconnection of
processor instances and prototyping of connecting

circuitry. 3) Tcl supports model extension and error
handling through breakpoint-triggered, exception-
triggered and I/O-triggered callbacks. 4) The Tcl C API
and calling convention provide the local and remote
procedure calling standard for C and C++-based system
components. 5) The Tcl C library provides portable
library functions for all required machine/OS platforms.
6) Tcl’s well-defined representation of success and error
status and return value from a procedure extends readily
to a clear notion of a transaction between a tool and a
queryable model. Delimited transactions achieve tool
synchronization. 7) Each queryable model connects
easily to a set of Tk relational mega-widgets that reflect
model contents in tabular form. Event-driven widget
update, where the change of a widget-displayed datum
constitutes an event, minimizes inter-process
communication overhead between the modeling and
graphical debugger processes. Tcl as the query language
supports efficient model event detection in the modeling
process. 8) Tcl can integrate as a coroutine into external
simulators, providing TEEM capabilities in many
contexts.

7. References

1. John K. Ousterhout,Tcl and the Tk Toolkit. Reading,
Ma.: Addison-Wesley, 1994.

2. Norman Ramsey and David R. Hanson, “A
Retargetable Debugger,”Proceedings of the SIGPLAN
’92 Conference on Programming Language Design and
Implementation, SIGPLAN Notices, 27(7), 22-31
(1992).

3. David R. Hanson and Mukund Raghavachari, “A
Machine-Independent Debugger,”Software—Practice
and Experience, Vol. 26(11), 1277-1299 (November,
1996).

tclshhost TEEM model Tcl

Figure 4: External simulator to model calling stack

simulator initialization or
evaluation function

sources
a file

model
step or
resume(Tcl_Eval)

