
The following paper was originally published in the
Proceedings of the Fifth Annual Tcl/Tk Workshop

Boston, Massachusetts, July 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

The ImageTcl Multimedia Algorithm Development System

Charles B. Owen
Dartmouth Experimental Visualization Laboratory

Dartmouth College
Hanover, NH

The ImageTcl Multimedia Algorithm Development System

Charles B. Owen

Dartmouth Experimental Visualization Laboratory
Dartmouth College

6211 Sudiko� Laboratory, Hanover, NH 03755

cowen@cs.dartmouth.edu
http://devlab.dartmouth.edu/imagetcl/

Abstract

The IMAGETCL multimedia development system is a

new Tcl/Tk-based development environment specif-

ically targeting development of high-performance

multimedia data analysis algorithms. Multimedia

algorithm development is complicated by large vol-

umes of data, complex �le formats, compression

and decompression, and temporal synchronization.

Testing algorithms requires elaborate user interfaces

which can display intermediate and result images,

play audio, and adjust parameters. IMAGETCL uses

the features of the Tcl/Tk environment as a base

on which to build a system that signi�cantly aids

this process. This paper describes the IMAGETCL ap-

proach to algorithm development and describes sev-

eral applications of IMAGETCL in the Dartmouth Ex-

perimental Visualization Laboratory (DEVLAB).

1 Introduction

IMAGETCL is a new system designed to support mul-

timedia algorithm development. Multimedia algo-

rithm development can be described as a �ve step

process: (1) algorithms are theoretically devised,

(2) a prototype of the algorithm is implemented,

(3) test procedures are devised to test and debug

the algorithm, (4) algorithm performance and e�ec-

tiveness are tested using standard and custom data

sets, and (5) user interfaces are developed to sup-

port user interaction and performance demonstra-

tion. These steps are a process and are not neces-

sarily sequential. Media data (images, video, text,

etc.) are noisy, imprecise, and ambiguous. The one

perfect procedure for motion analysis, media align-

ment, or speech recognition is not known. Hence,

proposed algorithms require extensive testing and

adjustment.

The primary design goal of IMAGETCL is simplifying

this process. IMAGETCL is based on the Tool Com-

mand Language and the Tk Toolkit and has been

designed to provide the algorithm developer with a

rapid prototyping environment which greatly aids

steps 2 through 5 [7]. Automatic tools, a power-

ful function and application library, a cohesive me-

dia manipulation structure, and a compiled high-

performance environment support the algorithm de-

velopment process. Test procedures can be quickly

and easily devised and modi�ed using scripts writ-

ten in Tcl. A central database for a site can be

built which contains test data for algorithm evalua-

tion, and high quality user interfaces can be quickly

devised using Tk and Tix.

IMAGETCL is unique in its emphasis on algorithm

development in C++. A large number of com-

ponents are available at the script level and can be

used to build and test applications. However, expe-

rience in the DEVLAB has shown that interpreted

scripting languages do not lend themselves well to

algorithms that directly manipulate samples, pixels,

or voxels. Constraining the developer to matrix ma-

nipulations and avoiding low level loops as is com-

mon in systems such as Matlab limits
exibility in

the design process [14]. IMAGETCL uses Tcl/Tk for

what is does best, overall control and con�guration,

and leaves the low level processing in C++.

1.1 Related Work

Most multimedia development environments have

focused on providing high-level scripting tools in

an attempt to eliminate compiled language develop-

ment. This approach assumes that such a complete

set of tools can be devised and that the interpreted

scripting code can use such powerful primitives that

performance will not be compromised. A major el-

ement of the IMAGETCL design philosophy is that

such a goal is di�cult, if not impossible, to achieve.

Systems often provide some facility for extending

Module

ImageTcl
Media

Database

ObjectObject

Object

Object

Tcl, Tk, Tix ImageTcl
Commands

Control Scripts

Data Packets

Control

Processing

Module

Figure 1: IMAGETCL Execution Structure

the environment using a compiled language (usu-

ally C). In IMAGETCL, however, easy extension of

the environment using C++ is a basic development

element.

Several systems have in
uenced IMAGETCL devel-

opment. VideoScheme, also developed at the DE-

VLAB, utilized the Scheme programming environ-

ment as a rapid prototyping system for digital video

editing and analysis [6]. MIT's ViewStation is

a powerful multimedia environment which is also

Tcl/Tk based [3]. ImageTcl uses a data-
ow struc-

ture very similar to that of the ViewStation. Cor-

nell's Rivl system abstracts away most of the media

parameters, including resolution and timing, and

provides very powerful media manipulation tools

[13]. ImageTcl uses an interpreter level data rep-

resentation similar to that of Rivl. Multimedia ap-

plication development is the major goal of these sys-

tems. IMAGETCL is designed primarily for algorithm

development, though it has many application level

features.

2 System Overview

The system design of IMAGETCL can be divided into

an execution structure and a development structure.

Figure 1 illustrates the execution structure, and Fig-

ure 2 illustrates the development structure. This

section describes the components in these �gures.

Note the clear delineation between control and pro-

cessing. IMAGETCL performs media processing at the

compiled code level and control and user interfaces

at the Tcl scripting level.

2.1 Media Processing Model

IMAGETCL is based on a data
ow media processing

model. This is illustrated in the processing sec-

tion of Figure 1. A directed multigraph (henceforth

referred to simply as a graph) models the
ow of

data in the system. The nodes of the graph are ob-

jects, which provide general media processing. Ob-

jects are connected with directional edges represent-

ing the
ow of data packets containing media data.

Modules attach to objects and provide a speci�c al-

gorithm implementation. The use of modules allows

the separation of generic algorithm code from spe-

ci�c algorithm code. As an example, optical
ow is

a generic class of algorithm which attempts to de-

rive
ow �elds describing the motion in an image

sequence. Horn and Shunck devised a particular al-

gorithm for computation of optical
ow [2]. In the

IMAGETCL model, optical
ow is an object and the

Horn and Shunck algorithm is a module.

Composite objects are constructed using Tcl scripts.

The IMAGETCL Media Database (ItMDB) in Figure

1 is an example composite object. A library of

these scripts is available to the application devel-

oper. Components in that library appear as ob-

jects in the graph. Composite objects are used in

IMAGETCL to hide issues of �le formats and data

compression and decompression from the developer.

Media data does not
ow through interpreted code

Control

Processing

Scripting Environment

Script Library

User Scripts

Build Tools Base System

Class Library

Data Types Modules Commands/Objects

Interactive Component Creation

Figure 2: IMAGETCL Development Structure

by default in this model1. Construction of the graph

and all control is implemented in Tcl. This approach

allows for very fast development of test scripts that

provide a node with data and collate and present

results. The scripts do not process the actual data

and control is not embedded in compiled code, bal-

ancing the
exibility of Tcl with the performance of

compiled languages.

2.2 Core and Standard System Compo-
nents

IMAGETCL components can be divided into three

sets: (1) core components, (2) standard compo-

nents, and (3) user components. Multimedia de-

velopment systems are subject to constant expan-

sion and can rapidly become large and cumber-

some. Compile and link times can grow unwieldy.

IMAGETCL is highly modularized with components

treated as building blocks that can be chosen at will.

Both applications and dynamic link libraries can be

built using any desired set of components. Only one

line in an IMAGETCL build �le need be changed to

add a component.

Core components are those necessary for system op-

eration. These components are always included.

Standard components are those which are included

in the published system. A standard system con-

taining all of these components is available. A user

can also construct a subset system with only desired

components. This modularity allows for faster com-

pile and link times and has been particularly useful

in system development.

1An alternative interpreted path exists for application

exibility.

The itbuild utility builds make �les for applica-

tions and libraries. This utility can combine not

only system and user components, but also outside

components. itbuild automates make �le creation,

system con�guration, and dependency checking.

2.3 User Component Creation

The most important feature of IMAGETCL is user

component creation. Every e�ort has been made

to simplify this process. The Interactive Compo-

nent Creation Utility is the �rst step in component

creation. A user can easily add new commands,

objects, modules, and data types to the system.

Figure 3 illustrates the Interactive Component Cre-

ation Utility �ll-in forms for new commands and

data types. Characteristics of the component are

entered into the form and all necessary �les to cre-

ate the new component are generated. IMAGETCL
is C++ based and has superclasses for a variety of

components. These classes have many options and

creating new elements manually would be cumber-

some. The algorithm designer is primarily inter-

ested in implementation of the algorithm, not class

construction, so automatically generated �les pro-

vide a template that can be used immediately to

create a new component.

Three �les are created: a header �le (.hxx �le), a

source �le (.cxx), and an IMAGETCL build �le (.itb).

The header and source �les implement all classes

necessary for the object including template proce-

dures. Example code for the function is included in

comments. The IMAGETCL build �le is used with the

system build tools to include the component. The

new component can be immediately included in the

Figure 3: ImageTcl Interactive Component Creation Utility

system, compiled, and linked. The user must still,

of course, provide algorithm functionality, but all

of the mechanics of providing a new Tcl command,

instantiation of objects, and usage will be fully op-

erational.

2.4 Algorithm Support

Many resources are available at the algorithm im-

plementation level. Class functions simplify use of

the IMAGETCL environment. These functions in-

clude command processing, error management, and

command dispatching. Support for lists, stacks, di-

rected graphs, trees, and other common containers

is provided in easy to use template classes. Matrix

and vector classes are provided and include over-

loaded operators for arithmetic manipulation as well

as many standard signal processing and statistical

analysis functions. A library of Tcl scripts is pro-

vided to simplify test and application level develop-

ment.

3 ImageTcl Algorithm Development

Process

Section 1 listed the �ve steps in the multimedia al-

gorithm development process: (1) algorithm design,

(2) prototype implementation, (3) implementation

testing, (4) performance and e�ectiveness testing,

and (5) user interface development. This section

illustrates the IMAGETCL approach to each step.

3.1 Algorithms are theoretically de-
vised

Algorithm design is not directly supported in

IMAGETCL. The user is expected to design the al-

gorithm. However, a common algorithm design aid

is the analysis of data for statistical and visual char-

acteristics. IMAGETCL tools can be applied to this

process.

3.2 Prototype implementation

An algorithm is implemented as new IMAGETCL
components, typically objects and modules. The

new components must be derived from one of several

C++ superclasses, must register themselves in the

system, and must implement various virtual func-

tions. While all of this information is documented,

it would slow implementation considerably if this

detail was the responsibility of the programmer. In-

stead, the programmer uses the IMAGETCL Interac-

tive Component Creation utility described in section

2.3. Necessary features, class and command nam-

ing, and function selection for the new component

are described in simple �ll-in forms. A complete set

of template �les for the new component is generated

automatically.

The new component must then be added to the sys-

tem. The user creates an IMAGETCL build �le for

a system{this is a simple �le which lists the com-

ponents to be used and some build options such as

optimization and build type. Adding a new compo-

nent to the system requires a single line in the build

�le. The itbuild utility reads the build �le and cre-

ates a make�le and an application initialization �le.

All that is necessary are make depend and make to

use the new component. Users never modify make

�les directly in IMAGETCL.
The created components are ready to compile and

link, though they are non-functional. The user\�lls-

in" the algorithm. Example code included in com-

ments simpli�es this process. The default behav-

ior is to create an application which will utilize the

standard IMAGETCL shared library.

3.3 Test procedures

Once the new components are created, test scripts

are required which will aid in the debugging of the

components and ensure they are functioning cor-

rectly. A common structure for components is en-

forced by the system, simplifying script develop-

ment. A command creates a named object. As

an example, the statement imagerotate rot will

create a new object named rot. The command

(imagerotate) is equivalent to a C++ class and

the object an instantiation of the class (in fact, this

is the underlying implementation). More details on

the command interface are included in section 4.2.

Various test procedures can be devised for the same

algorithm (and executable), and test procedures are

high-level and can be developed quickly.

A common element in multimedia algorithm test-

ing is parameterization. Many algorithms require

thresholds, iteration counts, and other execution pa-

rameters, and often the adjustment of these param-

eters is a major part of the research. Parameters

in IMAGETCL development are de�ned at the script-

ing level. Support for parameter input from the

scripting level can be implemented using as few as

two lines of C++ code in the algorithm implemen-

tation. Because parameterization is implemented

in interpreted Tcl scripts, parameters can be ad-

justed quickly, either by editing the script and re-

executing, or by adding Tk user interface compo-

nents. This rapid development of test procedures

is a signi�cant advantage of using the Tcl environ-

ment.

3.4 Performance and e�ectiveness test-
ing

Multimedia algorithms (and information retrieval

algorithms in general) require validation on large

sets of data. An algorithm can be tuned to work

well on a small data set, but must demonstrate e�ec-

tiveness and performance on larger data sets. The

IMAGETCL Media Database allows accumulation of

standard test data for a development site. This

data is then available to all IMAGETCL users. The

database contains pointers to media �les which can

be located on di�erent �le systems.

3.5 User interface development

Though user interface development is listed last, it

is commonly concurrent with most other steps. A

project's user interface typically moves from mini-

mal functionality to extensive functionality as the

project proceeds from small tests to large scale val-

idation. The Tcl/Tk/Tix environment, in combina-

tion with composite objects in the IMAGETCL library,
tremendously simpli�es user interface development.

User interface design is often highly iterative, with

components adjusted and rearranged. The place-

ment of this process at the scripting level has been

highly advantageous.

4 System Structure

IMAGETCL is highly modular with pieces designed

as building blocks which can be added and removed

at will for simpler system debugging, porting, and

expansion. These blocks build upon the core sys-

tem and the IMAGETCL environment. A standard

interface to components is enforced by the system in

order to simplify component development and user

scripting. A segregated set of machine speci�c com-

ponents is included to support features speci�c to a

single hardware architecture. A set of standard li-

braries, both Tcl and C++, as well as standard user

algorithms are integral elements of the system.

4.1 Directory layout

An IMAGETCL system is located in a directory avail-

able to all users and has a structure as illustrated

in Figure 4. Machine and operating system speci�c

directories allows segregation of system binaries and

platform speci�c components. An example machine

speci�c component would be the interface to audio

and video machine hardware. This structure pro-

vides all IMAGETCL source and binaries to all users.

4.2 Components interface

IMAGETCL enforces a common component interface.

Commands are grouped into two categories: object

commands and non-object commands. Non-object

commands provide control features in the system

Base Directory

Components
Tcl Library
Script Library

Architecture Specific

External Components

Binaries
Headers
Build Files

Build Files
Documentation Tree Libraries

Architecture Specific
Binaries
Headers
Build Files

Libraries

Figure 4: IMAGETCL Directory Structure

which do not entail the instantiation of an object.

These are elements which have a single persistent

object associated with them. An example is the

connect command, which is used to connect object

outputs to inputs in the graph. An example usage

of this command is: connect video 0 display 0.

In this example output channel 0 of a video input

device is connected to input channel 0 of a display

device. Note that video and display in this example

are object names, not commands2.

The system is highly object-oriented and the major-

ity of commands are object commands. An object

command creates an object. As an example, the

audiooutput command can create an object named

audio using the statement audiooutput audio.

The object is then available as a Tcl command in the

system. Communication with the object is through

use of this command. This is identical to the widget

structure in Tk.

The structure for parameters on commands is also

similar to Tk. Parameters which begin with a \-"

are considered to be object list commands, usually

shorted to just list commands. As an example, in

the Tcl statement audio -sink 0 PCMW, the -sink

is a list command followed by parameters on that

command. Multiple list commands can be used on

the same line; IMAGETCL automatically scans this

list and provides the command and options to the

component. An example of a list command process-

ing member function is included in Figure 5. This

example processes the list command -angle with

argument count checking.

List commands are used when no result is required.

Object commands are used when a response is re-

2As in Tk, they are now Tcl commands, though they are

referred to in this system unambiguously as objects.

int ImageRotate::TclListCommand(char **argv,

int argcnt)

{

// Process the command

if(strcmp(argv[0], "-angle") == 0)

{

if(argcnt != 1)

return ER_ARGCNT;

angle = atof(argv[1]);

}

else return ER_BADLISTCOMMAND;

return ER_NONE;

}

Figure 5: TclListCommand Member Function

quired. Only one object command is allowed per

line and object commands do not start with \-

". An example object command usage might be

set height [videocapture height]. Figure 6 il-

lustrates the member function code to support this

command. TclResult is a member function of the

ImageTclEnvUser superclass.

Commands are dispatched to modules attached to

objects, then to the objects, then to generic han-

dlers in superclasses. This structure allows generic

object and standard system commands with mini-

mal programmer intervention.

4.3 Data types

IMAGETCL uses a data passing structure very simi-

lar to the ViewStation's [3]. A data packet is passed

along the edges of the directed graph. Each edge

has an associated packet queue. A data bu�er is as-

int VideoInput::TclObjCommand(int argcnt,

char **argv)

{

if(strcmp(argv[1], "height") == 0)

{

sprintf(TclResult(), "%d", VideoHeight());

return ER_NONE;

}

return ER_BADCOMMAND;

}

Figure 6: TclObjCommand Member Function

sociated with a data packet and contains the actual

media data. As in the ViewStation, a data packet

is a general control object. Temporal sequencing

information is contained in the data packet. Data

bu�ers are speci�c to a data type (derived, of course,

from a common superclass) and serve as a pay-

load. Modifying sequencing information (reorder-

ing frames, changing frame duration, etc.) can be

done by creating a new data packet and associating

the same data bu�er with that packet, avoiding du-

plication of large media data. Some example data

types in IMAGETCL include monochrome and color

images, PCM audio, JPEG compressed images, and

arbitrary vectors and matrices.

A unique feature of IMAGETCL is that data types

are plug-in components. Users can create new data

types at will. Some example user data types have

included speech biphone probabilities and color im-

age histograms.

4.4 System components

System components are standard plug-in elements

of IMAGETCL. These include audio and video in-

put/output, media conversion, standard media ma-

nipulations, arbitrary data packet routing, image

display, and compression and decompression. A

complete list is omitted here due to space consid-

erations.

4.5 Applications and libraries

A large library is included in IMAGETCL. System

class libraries include matrix manipulation, strings,

lists, and a directed graph template class. At the

scripting level numerous scripts have been designed

which are available as library components. One

example is the ItViewer library. Many applica-

tions are tested through the application of media

in speci�c formats. ItViewer creates a simple me-

dia browser with typical temporal controls. How-

ever, this browser is designed as a system compo-

nent. New controls and menus can be added and

data packets can be routed to algorithms under

test. Most initial test applications are built on the

ItViewer library. Initial test scripts can often be

only a few lines long.

In addition to library components, many script ap-

plications are available, including development and

media manipulation tools. These include applica-

tions which view media in di�erent formats such as

three-dimensional volume slices, and medical image

viewers which support contrast adjustments.

4.6 Why Tcl?

Numerous scripting environments were examined

prior to choosing Tcl for this project. A previous

DEVLAB research system, VideoScheme, utilized

the Scheme programming language, speci�cally the

Scheme in on defun (SIOD) implementation [6].

However, if was felt that the functional nature of

Scheme was not a natural description of the proce-

dural construction and control of test environments.

Perl was considered as an environment as well [15].

The large number of specialized variables and the

lack of a standard user interface were reasons for

not choosing that environment. Other choices con-

sidered included creation of an ad-hoc scripting en-

vironment. Tcl/Tk has clearly been an excellent

choice.

4.7 Why C++?

IMAGETCL development is C++ based. Since the

Tcl/Tk environment is written in the C program-

ming language, an obvious question is: why C++?

C++ has been chosen as the underlying develop-

ment language for several reasons [12]. The fun-

damental basis for this choice is that the object-

oriented structure of C++ matches well with the

media processing model used in the system. In ad-

dition, the strong typing features of the language are

felt to be advantageous by the authors in that they

decrease errors due to type mismatches and lack of

function prototypes. The mix of Tcl and C++ has

been seamless and quite successful in this system.

5 Applications

The DEVLAB has applied IMAGETCL to numer-

ous application areas in multimedia data analysis

[4, 10, 9]. This section brie
y describes a few of

these projects, illustrating the speci�c advantages

of the Tcl/Tk approach.

5.1 fMRI Data Analysis

Functional Magnetic Resonance Imaging (fMRI)

captures volumetric images in a sequence [1]. A

complete brain volume can be captured every two

seconds. The images can be tuned to accentuate

distributions of deoxy- and oxy-hemoglobin, which

have been shown to be closely related to neuronal

activity, providing a valuable view of the internal

workings of the brain. IMAGETCL is being used to

develop algorithms which detect, localize, and pa-

rameterize this activity [8].

fMRI data analysis is a good example of the im-

portance of algorithm development at the compiled

level. A three minute fMRI sequence generates over

50 megabytes of image data. The IMAGETCL acti-

vation localization implementation can process this

data set in about two minutes.

5.2 Text-to-speech Alignment

Text-to-speech alignment is the temporal alignment

of text to speech audio. The process is described

in more detail in other literature [11]. Brie
y, text

is converted to a biphone directed graph (Biphones

are sub-phonemic units of pronunciation). Audio is

converted to biphone probabilities in ten millisecond

time frames. A modi�ed Viterbi algorithm is used

to compute the alignment of the two.

This application is unique in that the Oregon Grad-

uate Institute speech tools, another Tcl/Tk based

system, were added to IMAGETCL. Rather than

building these components into the base system, the

tools were treated as a plug-in component. A sin-

gle IMAGETCL build �le was created to include the

OGI libraries. This illustrates the
exibility of the

IMAGETCL automatic build tools: outside compo-

nents are easy to add to a development project.

5.3 Cut and Pause Detection

The DEVLAB has been very interested in informa-

tion retrieval (IR) in multimedia [5]. One common

component of video IR systems is cut detection [16].

Cut detection is the location of camera edits in dig-

ital video sequences. This information provides a

logical segmentation of the content. Each \cut" is a

contiguous unit and can often be represented using a

single frame called a key frame (or a small set of key

frames). Several algorithms have been implemented

at the DEVLAB.

Cut detection algorithms are often highly parame-

terized. Nearly all systems have �xed thresholds for

detection. Many also have window parameters, his-

togram bucket counts, etc. Optimization of these

parameters and application of test sequences is an

on-going process. In IMAGETCL the parameters are

available at the scripting level and can be easily

moved into user interface components.

An alternative video segmentation method is pause

detection [4]. Pause detection can be described

as \inverse" cut detection. Cut detection searches

for frame pairs with large movement which cannot

be explained by camera motion. Pause detection

searches for periods of minimal motion. The DE-

VLAB has been studying American Sign Language

(ASL) video. In this video, sequences do not have

conventional camera cuts, but do have inter-element

pauses. Reliable detection of these pauses is on-

going research. In addition, the result is a tem-

poral sequence giving the duration and location of

pauses. This sequence must be viewed with the orig-

inal video, often frame-by-frame, in order to gauge

algorithm e�ectiveness.

6 Summary

IMAGETCL, a multimedia algorithm development

system based on Tcl/Tk, is described. IMAGETCL
provides the algorithm developer with a fast and ef-

fective prototyping environment for new multimedia

algorithms. The focus of the system is on algorithm

development in C++ and testing and user interface

development in Tcl. Numerous system automation

tools and library components assist the developer

in this process. Several applications of IMAGETCL in
multimedia research are also described.

7 Acknowledgments

The author wishes to acknowledge Fillia Make-

don for project assistance, development facilities

and support, and much wisdom. The Ameri-

can Sign Language research is in association with

Carol Neidle from Boston University, Benjamin Ba-

han of Gallaudet University, and Otmar Foelsche

of Dartmouth College. Several graduate students

who have contributed to IMAGETCLdevelopment in-

clude James Ford, Jim Shain, and Xiaowen Liu.

They have also participated in ImageTcl applica-

tion projects at the DEVLAB.

8 Availability

Information about IMAGETCL is available at

http://devlab.dartmouth.edu/imagetcl/. At

this time the system is considered to be in an alpha

state and is not generally available, though speci�c

requests will be considered.

References

[1] Peter A. Bandettini and Eric C. Wong. Echo

Planar Imaging, chapter in Echo-Planer Mag-

netic Resonance Imaging of Human Brain Ac-

tivation. Springer-Verlag, 1997.

[2] Berthold K. P. Horn and Brian G. Schunck. De-

termining optical
ow. Arti�cial Intelligence,

17:185{203, 1981.

[3] Christopher J. Lindblad. A programming sys-

tem for the dynamic manipulation of tempo-

rally sensitive data. MIT/LCS/TR-637, Mas-

sachusetts Institute of Technology, 1994.

[4] Xiaowen Liu, Charles B. Owen, and Fillia S.

Makedon. Automatic video pause detection �l-

ter. Technical Report PCS-TR97-307, Dart-

mouth College, 1997.

[5] Fillia Makedon and Charles B. Owen. Multi-

media data analysis using ImageTcl and appli-

cations in automating the analysis of human

communication. In Proceedings of the 3rd Pan-

hellenic Conference with International Partic-

ipation: Didactics of Mathematics and Infor-

matics in Education, Patras, Greece, 1997.

[6] James Matthews, Peter Gloor, and Fillia

Makedon. VideoScheme: A programmable

video editing system for automation and media

recognition. In ACM Multimedia'93, Anaheim,

CA, 1993. ACM Press.

[7] John K. Ousterhout. Tcl/Tk Engineering Man-

ual. Sun Microsystems, 1994.

[8] Charles B. Owen. Application of multiple me-

dia stream correlation to functional imaging

of the brain. In Proceedings of the Interna-

tional Conference on Vision, Recognition, Ac-

tion: Neural Models of Mind and Machine,

Boston, MA, 1997. In submission.

[9] Charles B. Owen and Fillia Makedon. Mul-

timedia data analysis using ImageTcl. In

Gesellschaft f�ur Klassi�kation e.V., University

of Potsdam, Potsdam, Germany, 1997.

[10] Charles B. Owen and Fillia Makedon. Multi-

media information retrieval development using

ImageTcl. In 20th International ACM SIGIR

Conference on Research and Development in

Information Retrieval, Philadelphia, PA, 1997.

Rejected.

[11] Charles B. Owen and Fillia Makedon. Multi-

ple media stream data analysis. In Gesellschaft

f�ur Klassi�kation e.V., University of Potsdam,

Potsdam, Germany, 1997.

[12] Bjarne Stroustrup. The C++ Programming

Language. Addison-Wesley, Reading, Mas-

sachusetts, second edition, 1993.

[13] Jonathan Swartz and Brian C. Smith. A res-

olution independent video language. In ACM

Multimedia'95, pages 179{188, San Francisco,

CA, 1995. ACM Press.

[14] The MathWorks, Inc. The MathWorks web

site, http://www.mathworks.com/, 1997.

[15] Larry Wall and Randal L. Schwartz. Program-

ming Perl. O'Reilly and Associates, Inc., Se-

bastopol, CA, 1991.

[16] Hong Jiang Zhang, Atreyi Kankanhalli, and

Stephen W. Smoliar. Automatic partitioning

of full-motionvideo.Multimedia Systems, 1:10{

28, 1993.

