i

The following paper was originally published in the
Proceedings of the Fifth Annual Tcl/Tk Workshop
Boston, Massachusetts, July 1997

GeNMSim - The Agent Simulator
Tcl Based Agent Simulation Software

llana Gani-Naor, Ehud (Udi) Margolin, Raz Rafaeli
Milestone Software & Systems
Yoqgneam llit, Israel

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org

4. WWW URL: http://www.usenix.org

GeNMSim - The Agent Simu lator

Tcl Based Agent Simulation Software

llana Gani-Naor (ilana@milestone.co.il)
Ehud (Udi) Margolin (udi@milestone.co.il)
Raz Rafaeli (raz@milestone.co.il)

Milestone Software & Systems, P.O.B 152, Yogneam llit, Israel

Abstract application to a large scale, Unix based distributed ap-
plication. A new equipment added to the network needs

Network Management (NMS) application vendors,a management application that hooks up to the existing

often encounter a situation where the device beingNMS platform currently managing the network. This

managed or tested (which includes an SNMP agent) isianagement application is usually supplied by the net -

not available at the time of the NMS application devel -work equipment vendor and is used to monitor and

opment, whereupon this becomes the critical path in theontrol the equipment.

development cycle of the new device. To shorten this

critical path, we've developed GeNMSim, which is aSNMP, Management Information and MIB

Tcl/Tk based Multi Platform SNMP agent simulator. Files

The main features of GeNMSim are user customisation

using Tcl callbacks, Portability across Unix and Win An important part in the design of a new networking

dow95/NT platforms and automatic creation of thedevice is the design of the management information

simulator database by a set of Tcl based toolsthat will be available for this new device. SNMP

GeNMSim is a commercial product targeted at DatgSimple Network Management Protocol) which is the

Communication and Telecommunication companiesnost prevalant management protocol, defines a syntax

involved in SNMP development. for this management information called MIB
(Management Information Base). The MIB includes the
Introduction variables and tables that can be read from (or written

to) this device. It also defines other important attributes
GeNMSim is a Tcl based SNMP agent simulation soft -of this managed information. SNMP Supports GET,
ware. This article gives a short background on the neeSET, GET_NEXT, RESPONSE and TRAP messages to
for this product and looks at the incentive to build thisand from the agent. [1],[3]
product with Tcl. Then we'll dive a little deeper into
the technical aspects of GeNMSim, give some gheam Following is an example of the MIB file syntax:
of the database structure and cover the process of
creating this database, see how GeNMSim runtime is gﬁﬂ%%ﬁ;ﬁi&%ﬁﬁ 0.255)
built (with a very short glimpse into the GeNMS tech- ACCcESS read-write

nology). The Tcl based callback mechanism follows STATUS mandatory

and the conclusions section discusses the performanceDESCR"DT'O'\I
and portability problems encountered and the need for “An administratively-assigned name for -
better development tools that arised in the process of this managed node. By convention, this is

. . the node’s fully-qualified domain name.”
developing this product. v

={system5}
What is an Agent Simulator
MIB File syntax example

Network Management Systems (NMS) NMS Applications Development Cycle

Network Management Systems (NMS) are softwaréy neworking equipment, includes a software agent

platforms which provide th(_a fu_nctionality and tools t0 \yhich communicates with the management application
centrally manage communication networks. An NMSmanaging this equipment. In order to develop a man-

platform may be from a small scale Windows based,yement application, one needs the device’s MIB defi -

nition and a working agent. Since a networking deviceuser customisation gives the user all the power of
cannot be shipped without a management applicatioricl/Tk without the need to compile or link the program.

starting the application development only after theUser scripts written for one operating systems are
agent is already functional, causes a substantial delay ported automatically. The user gets all the GeNMSim
the availability of the equipment with its managementadded Tcl commands of which some are implemented
application. as C functions and otters as Tcl procedures.

Using a Simulator instead of the Real Agent Ease of Development

Using an agent simulator can help to reduce this delaypeveloping a project using Tcl saves substantial R&D
by turning the development process of the agent and theme. Making changes to the code does not require
management software to concurrent processes, and reempilation and thus much of the programmers idle
ducing the overall development cycle. Using a simulatime is reduced. The user interface part is very simple
tion can also improve the final quality of the agent byto build and does not require learning a Motif or an
causing the design problems in the MIB to arise at amMS/Windows GUI package. The GeNMSim database is
earlier stage, when its easier to make changes in trso implemented as a set of Tcl scripts which avoids
agent software. The simulator can also be used fathe need to write and maintain a separate parser and
testing the management software since it is much easiatlows using the functionality of the Tcl script loading
to configure a simulation then to build a real workingmechanism while loading the data base.

language for testing. Developing an agent prototype in

a high level scripting environment instead of the reguAlternatives

lar embedded software environment, helps to get better

results from the agent in a shorter time. The most important requirement from GeNMSim is its
ability to be customised by the user. This requirement

GeNMSim Main Features can be achieved either by using a script language (like
Tcl) or by having the user work in a Compile/Link pro

The main features supported by GeNMSim are: gramming environment. Other scripting languages

(such as Visual Basic or Perl) are not portable between
* Automatic creation of a working database fromUnix and Windows and are hard to customise. Using a

MIB files C/C++ programming model, forces the user to have a
» Multiple agents in one GeNMSim process full development environment and also takes us back to
* User customisation with Tcl callbacks the portability issue. [2]

* Online traffic statistics with GeNMSim ‘Probe’
+ Multi Platform - runs on Unix and Wirdows95/NT GeNMSim Tcl Based Data Base

General
Why Tcl ?

An SNMP agent simulation requires 3 types of infor-
Portability mation:

GeNMSim is designed as a portable product for Unix 1. The SNMP MIB files which are designed by the
and MS/Windows platforms. Using Tcl as the engine networking equipment vendor as part of the overall
behind GeNMSim avoids many of the portability issues design, and are shared by both the agent and the
that are encountered in such a product. The main partin manager.

GeNMSim for which Tcl does not provide portability is 2. Current agent MIB values - These values represent
the network interface which is implemented in the Unix the current state of the simulated agent with current
version using the SNMP library provided by Carnegie values of the data held in the agent.

Mellon University and in the Windows version using an 3. Agent behaviour - A real agent is characterised by

agent enabled WinSNMP package. [5] both the information it can provide and the actions
o it can take when something happens. These actions
User Customisation have to be defined when creating a simulated
agent.

GeNMSim provides many hooks for user customisatiorDefining a new agent for simulation is done in 2
of the agent. Using Tcl as the scripting language fophases:

1. Define theAgent Type This can be viewed as de- The keywordSim_Db_loadMibDef is actually a Tcl
fining a new class in object oriented programming.procedure which adds an attribute for the specified MIB
An Agent Typedefines the information and be- object to the data base.
haviour of a certain agent type.

2. Define theAgent Instance.This can be viewed as The second file isviyAgentType.oid which defines
defining an object of a given class in object ori -translation from ascii names to ASN.1 decimal notation

ented programming. ThAgent Instanceincludes

which is required for the simulation process. This file is

the current state and values of a specific agent balso a Tcl script in which each line is a call to a proce-
ing simulated.

Agent Type Data Base

The process of creating a negent Typeis divided

into two parts:

dure to add a <name,oid> pair in the data base.

An important part of the agent behaviour is to send
SNMP traps which are asynchronous messages sent to
the manager with accordance to the agent behaviour.
The third file namedVlyAgentType.traps defines the
traps supported by this agent and are also automatically
extracted from the MIB definition files.

1. Automatically extract the information contained in
the MIB files which define the management scopeThe fourth and last file idMyAgentType.user_def .

of the simulated agent. This process is carried ouThis file contains all
via theCreate Agentool which is described later.

the callback registration
commands for this agent type. This file has the same

2. Manually configure the new agent type by addingyntax as .def files. The reason for seperating the user
the agent behaviour via callback functions. Call-additions from the automaticlly created file is in order
back functions are Tcl procedures that are called ab allow easier migration in subsquent creation of the
certain points of the simulation. Callbacks are deAgentType database and in new GeNMSim versions,
scribed in further detail later on.

Lets assume we're defining an agent type naivigd
AgentType. The Agent Typeis defined by 4 ASCII

files which are actually Tcl scripts.

since this file is not erased when the database is recre-
ated.
Agent Instance Data Base

The Agent Instanceis also built in two phases:

The first and most important file idyAgentType.def

file which includes the definition of MIB information

as extracted from the MIB files.

Figure 1 shows an example of the .def file:

Simple
MIiB
Object

Table Header

Table Entry

1. As part of the automatic process, a template of the
Agent Instanceis created to allow quick start for
the agent simulator user.

MIB Object
Base Name

Sim_Db_TLoadMibDef
Sim_Db_LoadMibDef
Sim_Db_LoadMibDef

Sim_Db_LoadMibDef
Sim_Db_LoadMibDef

Sim_Db_TLoadMibDef
Sim_Db_LoadMibDef
Sim_Db_LoadMibDef
Sim_Db_LoadMibDef
Sim_Db_LoadMibDef
Sim_Db_LoadMibDef
Sim_Db_LoadMibDef

&

Table 0
Type STR
Access read-only

sysDescr
sysDescr
sysDescr

x25CallParmTable TblIndex
x25CallParmTable TblObjects

"x25CallParmIndex”
"x25CallParmIndex x25CallParmStatus ...

x25CallParmExptData Table 1
x25CallParmExptData TableName x25CallParmTable
x25CallParmExptData Type INT
x25CallParmExptData Access read-write
x25CallParmExptDatd ValidateFunc chk_num_range
x25CallParmExptDatj ValidateParams “1 3"
x25CallParmExptData Defval 2

Objects in
Table

Validation Functions
Derived from MIB

Default Value

Figure 1: AgentType .def file example

2. This template is modified by the user (currently viaParsing the MIB Files
a text editor) to reflect the real (initial) values of
the simulated agent and are updated by thé MIB file is a text file in a standard format defining
GeNMSim runtime as values in the database ardttributes (Types, Access, Syntax etc.). MIB files may
modified. import definitions from other MIB files (such as irclude
Lets assume we'’re defining an agent instance namefiles). Each MIB object defined in the MIB file has a

MyAgent. This instance is of typ®lyAgentType. The

Agent Instanceds defined by 2 more Tcl scripts.

The first and most important file islyAgent.rt file
which includes the current values of the database ta-

bles.

Figure 2 is an example of the .rt file.
Agent
Type

unique location in the globMIB tree.

Agent I set demo(Type) DEMO
Instanc set demo(Address) auto Current MIB
Header set demo(GetCommunity) public Object Value
set demo(SetCommunity) private
Sim_Db_LoadMibRt sysDescr.0 “Simulated Device Type ABC”
Simple Sim_Db_LoadMibRt sysObjectID.O 1.3.6.1.4.1.999.1.2.3.0
Objects Sim_Db_LoadMibRt sysUpTime.O0 1
Sim Db_LoadMibRt sysContact.O “John Doe”
Sim Db_LoadMibRt sysName.O “Demo System”
Sim_Db_LoadMibRt sysLocation.O “London”
Sim_Db_LoadMibRt sysServices.O 1
Sim_Db_LoadMibRt ipRouteDest.192.165.34.13 192.165.34.13
Table Sim Db_LoadMibRt ipRouteIfIndex.192.165. 3“\
. Sim_Db_LoadMibRt ipRouteMetric1.192.165.34.13 Table
Objects| | gim Db ToadMibRt ipRouteMetric?.192.165.34.13 1> |nstance
Sim_Db_LoadMibRt ipRouteMetric3.192.165.34.13 1
.

The keywordSim_Db_loadMibRt is actually a Tcl

Figure 2: Agent Instance .rt file example

procedure which adds an entry for the given MIB ob-

ject to the data base.

iso
org
dod

The second file iMyAgent.managers which defines

the addresses of the managers which will receive traps

generated by this agen

t.

GeNMSim Offline Tools

There are several offline tools in GeNMSim which help

The following is an example of the MIB file syntax:

OBJECT IDENTIFIER :={1}
OBJECT IDENTIFIER ::={is0 3}
OBJECT IDENTIFIER ::={org 6}

ObjectSyntax ::= INTEGER
ObjectName

©=INTEGER

internet OBJECT IDENTIFIER ::={iiso org(3)

dod(6) 1}

directory OBJECT IDENTIFIER ::={internet 1}
mgmt
experimental OBJECT IDENTIFIER ::={internet 3}

in preparing the simulation. We’'ll concentrate on the

CreateAgent tool which plays an important role in

private
enterprises OBJECT IDENTIFIER ::={ private 1}

OBJECT IDENTIFIER ::={internet 2 }
OBJECT IDENTIFIER ::={internet 4 }

sysLocation OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..255))

GeNMSim and is the most interesting in terms of Tcl. ACCESS read-write

This tool is a Tcl program which parses MIB files and STATUS mandatory
h t ti ts of the GeNMSIm data- mochTION j
generates the automatic parts o I “The physical location of this node (e.g.,

base.

“telephone closet, 3

* floor’).”

i={system6}

The CreateAgentprogram parses this text, extracting The GeNMS Technology

from it the MIB Name, Syntax, Accessand itsLoca

tion in the MIB tree. If the MIB object is part of Ea- Overview

ble, the table information is also resolved. In order to

parse these files, the Tslring andregexp commands Since GeNMSim is based on the GeNMS technology, it

are used extensively. In the example above, we can s&eimportant at this point to take a brief glance on the

the SYNTAX of the MIB object is DisplayString GeNMS technology. GeNMS is a Tcl/Tk based tech-

(SIZE (0..255)) meaning it is a string with maxi - nology which provides a framework for creating net -

mal length of 255 characters. In this case, a validatiomwork management products, applications and tools.

callback function will automatically be registered to GeNMS includes many mechanisms intended to allow

check that the values set to this object do not exceed tleasy development of these products. Tcl/Tk gives it the

limits in the definition. The same scenario applies toGUI portability and allows for most of the OS inde

other conditions that may appear for MIB object valuespendence. GeNMS also supports portability over NMS
platforms and management prdocols.

The CreateAgentis actually comprised of several Tcl

scripts each responsible for one part of the agent data-

base. These scripts are called as separate tasks using the

Tcl exec command in order to allow an independent

global variable scope for each of the scripts. See also

MIB I Agent Type
File
MiB \

F|Ie

MIB

File

Agent Instance

Name
Type
Community
Address

Parameters:
Figure 3: Create Agent - Input and Output files

l Create Agent

the sec tion on portability later on. Message & Trap handling

Figure 3 shows the input and output of €reateAgent Messages, Which are one of the GeNMS mechanisms,

program. are implemented as a C structure and function library
which has a Tcl interface. A message is represented in
Tcl as a string handle. There are API functions to create
new messages, add or fetch variables, read or update
header parameters and forward the message to the net-
work. A message received from the manager via the
network interface, is passed to a message dispatching
mechanism which then registers the message (in a Tcl

hash table) and forwards the message to the simulator
handling function (in the cae of GeNMSim) which is
implemented fully in Tcl. The simulator processes this
message by extrading the request code and variables
and accessng the data base & requested. The response
message is then built and send via the GeNMS sched-
uling mechanism (Tcl TimerHandler based scheduling
mechanism) bad to the manager via the network and
platform layers.

GeNM Sim Runtime

The GeENMSim runtime is a GeNMS/Tcl/Tk based ex-
eautable enriched with numerous applicaion spedfic
commands.

The process sarts with an initialisation phase which
loads the data base files, starts the network interface
creges the GeENMSim windows and prepares for mes-
sage processng. This includes creaing a new socket
and file handler and adding this file hander via the Tcl
FileHandler mechanism to the Tcl seled loop Since
SNMP is based on UDP, there's usualy a well known
UDP port to which an SNMP agent ligens to.

Callback Type Description

When initidlisation is complete, GeENMSim is ready to
recéve SNMP andto ‘ad’ asared agent.

GeNMSm Traps

Traps are generated in GeNM Sim cdlbadk functions or
as aresult of a delayed adion which is adivated by the
scheduling mechanism. The trap is a message which
originates at the simulator level and is @nt to the net -
work.

Using Tcl Data Sructures for hading daa

Most of the ayent’s internal datais held in Tcl two di -
mensional arrays. Since GeENMSim can suppat more
the one ancurrent agent, one of the aray dimensionsis
the aent type or agent name and the other index is the
attribute. Each MIB name has its own attribute aray
and there ae several general purpose araysto hdd the
name to oid trandation and a linked list of the objeds
currently held in the agent.

Cadlled when GeNMSim is garted before loading the data base

Cadled uponaget request instead of the standard GET processng

Called uponaset request instead of the standard SET processng

Cadlled uponaset request to ched if the value to be set meds

Prelnit
Postinit Call ed after data base is loaded
PreGet Cdled uponaget request before the GET isdore
Get
PostGet Cdlled uponaget request after the GET isdone
PreSet Cadlled uponaset request before the SET isdore
Set
PostSet Called upona set request after the SET isdore
Validate

field validation criteria
ValidateGroup

Cdled uponaset request after ead ore of the objed validation

cdlbadks are processd to vali date mutual dependencies

Figure 4: GeNMSm Callback Types

Customising GeNMSim with Tcl based

Callback Functions
What is a Callback Fundion

Customising an application can be dore is svera
methods. One of the most common ways isto gve the
applicaion wser, the hooks to add procedures that will
determine the behaviour of the gplicaion at that point.
In order to add a new cdlbadk to GeENMSim, the user

system. 1% The cdlbad is registered in the .user_def
file. The cdlbad itself uses the Unix ‘date’ command
to get the aurrent time. Ancother way to implement this
cdlback in a more portable way is to use the Tcl
‘clock’ command.

Callback Function Registration (user_def file)

GetFunc

Get_Example_actual_time

[Sim_Db_loadMibDef sysUpTime

—-

The MIB Object
for which this callback
is defined

Function
Name

The Callback returns
the value of the MIB
object by setting the
variable ‘value’ which
points to the ‘mib_value
parameter.

Access a system call
to get the time now

Ha Upvar $mib_value value

\ set tmp_date [exec date] egf————

Callback Function

proc Get_Example_actual_time { agent_name\\
mib_name \
mib_type \
mib_value} {

Name - By value
Type - By reference
Value - By reference

upvar $mib_type type

Return type and value
set type "TIME”

set value [lindex $tmp_date 3]
}

J

Figure 5: Callback registration and implementation

has to write this cdlbad in a designated diredory (in
Tcl) and then register the cdlbad in the database and
asgciate it with the desired MIB objed and cdlbadk

type.

Types of Callback Functiors

GeNMSim suppats 10 types of Callbadks. Figure 4
liststhe suppated cdlbadk types.

Call back Registration andUsage Example

The following ill ustration shows an example of a cal -
bad function. This exampleis of a Get cdlbadk for the
MIB objed sysUpTime which generally means ‘how
much time has this ystems been running'. In ou case,
the cdlbad function returns the airrent time from the

Using GeNMSm Database APl from Call-
backs

It often occurs that cdlbadks need to have accssto the
GeNMSim database. In such a cae, the cdlbadk has
accessvia the database APl functions which is a set of
Tcl procedures or commands. An example of a cdl back
function that makes use of some of these API functions
is listed below. In this example, the PostGet cdlbadk
increments a ourter in the MIB. The name of the
cournter is pased to the cdlbadk by the cdling mecha
nism. This information is available from the cdlbadk
regstration.

proc Ex_PostGet_Increment_Counter {agent_name \
mib_name mib_type \
mib_value args} {
Extract counter name from the ‘args’ var
set cnt_name [lindex $args 0]

i able

Get the current value of the counter.
if {{Sim_Db_GetMibVal $agent_name $cnt_name\

cnt_value] I= 0}{
puts" -- > Error while getting value of \
object $cnt_name"
return

}

Get the type of the i ncremented object
Sim_Db_GetMibType $agent_name $cnt_name \
cnt_type

Set the new value (old value + 1)tocnt_name
Sim_Db_SetMibVal $agent_name $cnt_name \
$ent_type [incr ent_value]

Save the run - time values to the rt file
Sim_Db_SaveRtValues $agent_name

}

A Callback using GeNMSm
database API functions

GeNMSmWindows

GeNMSim has ®veral windows implemented in Tk to
display statistics of the traffic which passes throughthe
agent. The windows include agenera statistics win-
dow, amessage list window and a message detail s win-
dow. Sincethese ae pretty simple Tk windows, There
isno real to discussthem in detail .

Conclusions and Future Diredions
Performance

An SNMP agent can in some caes be a @mputation
intensive gplication. These caes may be when a
GET_NEXT command is applied for a MIB objed
which is currently nat present in the database.
(GET_NEXT means, fetch the objea which foll ows the
given objed in the MIB tred. Since implementing a
tree data structure in Tcl is far from optimum,
GeNMSim halds the objeds in Tcl arrays with linked
lists giving the order of the variables. In a test case,
made on a simulated agent with abou 200 entries, a
GeNMSim agent responds after 3 seconds, while ared
agent responds in only a fradion d a seoond In a
larger agent the performance penalty is linea since the
seach is performed sequetialy. If we'll consider a ta-
ble with 5 columns (a typicd case) which is locaed in
an agent of 500 lines, then a GET_NEXT to this table
when it is empty, using GeNMSim may take up to 25
seoonds (5 columns X 5 semnds ead). Thiskind o a
resporse from an agent cannat be mnsidered accept-
able. In most cases though fetching a updating a vari-
able from the database is dore in reasonable time. To

improve performance, we're now considering to add a
C implemented treestructure for the MIB tree

Portahility

GeNMSim was initialy developed for SunOS with Tcl
7.5 and Tk 4.1 . Most of the GeNMSim Tcl code has
been pated with no changes to Windows95/NT with
several exceptions:

1. Unix file access gstems calls - Commands like
chmod and cat, which have no Tcl commands to
‘cover’ them, were used in the Unix version bu
could na be ported to the windows version.

2. Unix environment variables - The env array
which contains the system environment variables
was extensively used in the original Unix version.
This fedure exists on the Windons/NT system but
in Windows/95, which is based on DOS, environ
ment variable names are cae insensitive and there
is a problem with alocdion o environment space
for the environment variables. To overcome these
problems, most of the environment variables where
switched with configuration veriables in a Tcl
global array.

3. Tcl exec @mmand - The execcommand was used
in the Unix version in the CreaeAgent tool to in
voke the sub-tods in separate shells. Since the
Windows version dces not suppat exec (Tcl ver-
sion 7.5), we used multiple interpreters in which
we dstarted the sub-tools. Slave interpreters, in
combination with the alias command, allowed in
vocaion d sub-todls in their own scope of global
variables.

Other then the Tcl code portability isaues, there was a
need to rewrite the networking layer to suppat
WinSNMP. Since GENMS is a moduar techndogy,
thistask was smple (abou weeks of programming).

Devdopment Todls

GeNMSim is a pretty large projed. It contains over
10,000lines of Tcl code and a large number of C code
lines. A good source level debugger for Tcl (plain va
nilla Tcl/Tk) would have been much help duing the
processof debuggng GENMSim.

Performance analysis is also an important issie when
creding a omputation intensive Tcl program.

GeNMSim makes use of the debuggng aids that are
part of the GeNMS techndogy. These include a so-
phisticated debug mgintings mecdhanism, a Tk widget

configuration dump and the GeNMS Classs & Objeds
mechanism which is beyondthe scope of this paper.

The Future of GeNMSm

GeNMSim isone of afamily of products that Mil estone
is creaing for the NMS market. The next version o
GeNMSim will i nclude an dffline graphic configuration
toal to edit and configure the database. There is also a
though abou suppating aher management protocols
besides SNMP.

Avail abili ty

GeNMSim is a mommedal product. For more informa-
tion contad (via enail): GeNM S@mil estone.co.il.

Evaluation copies avail able uponrequest.
Refrences

[1] Marshall T. Rose. The Smple Book: An Intre
duction to Internet Managment (2™ edition).
PrenticeHall, 1993 ISBN 0-13-1772546

[2] Marshall T. Rose, Keith McCloghrie. How to
Manage Your Network Using SNMP. Prentice
Hall, 1995 ISBN 0-13-1415174

[3] William Stallings. SNMP, SNMPv2, and CMIP.
Practical Guide to Network-Management Stan -
dards. Addison-Wesley, 1993 ISBN
0-201-633310

[4] John Ousterhou. Tcl and the Tk Todlkit. Addi-
son-Wesley, 1994 |SBN 0-201-63337%X

[5] FEric F. Johrson. Graphical Applications with
Tl & Tk M&T Books, 1996 ISBN
1-55851471-6

