
The following paper was originally published in the
Proceedings of the Fifth Annual Tcl/Tk Workshop

Boston, Massachusetts, July 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

GeNMSim - The Agent Simulator
Tcl Based Agent Simulation Software

Ilana Gani-Naor, Ehud (Udi) Margolin, Raz Rafaeli
Milestone Software & Systems

Yoqneam Ilit, Israel

GeNMSim - The Agent Simu lator
Tcl Based Agent Simulation Software

Ilana Gani-Naor (ilana@milestone.co.il)
Ehud (Udi) Margolin (udi@milestone.co.il)
Raz Rafaeli (raz@milestone.co.il)

Milestone Software & Systems, P.O.B 152, Yoqneam Ilit, Israel

Abstract

Network Management (NMS) application vendors,
often encounter a situation where the device being
managed or tested (which includes an SNMP agent) is
not available at the time of the NMS application devel -
opment, whereupon this becomes the critical path in the
development cycle of the new device. To shorten this
critical path, we’ve developed GeNMSim, which is a
Tcl/Tk based Multi Platform SNMP agent simulator.
The main features of GeNMSim are user customisation
using Tcl callbacks, Portability across Unix and Win-
dow95/NT platforms and automatic creation of the
simulator database by a set of Tcl based tools.
GeNMSim is a commercial product targeted at Data
Communication and Telecommunication companies
involved in SNMP development.

Introduction

GeNMSim is a Tcl based SNMP agent simulation soft -
ware. This article gives a short background on the need
for this product and looks at the incentive to build this
product with Tcl. Then we’ll dive a little deeper into
the technical aspects of GeNMSim, give some examples
of the database structure and cover the process of
creating this database, see how GeNMSim runtime is
built (with a very short glimpse into the GeNMS tech-
nology). The Tcl based callback mechanism follows
and the conclusions section discusses the performance
and portability problems encountered and the need for
better development tools that arised in the process of
developing this product.

What is an Agent Simulator

Network Management Systems (NMS)

Network Management Systems (NMS) are software
platforms which provide the functionality and tools to
centrally manage communication networks. An NMS
platform may be from a small scale Windows based

application to a large scale, Unix based distributed ap-
plication. A new equipment added to the network needs
a management application that hooks up to the existing
NMS platform currently managing the network. This
management application is usually supplied by the net -
work equipment vendor and is used to monitor and
control the equipment.

SNMP, Management Information and MIB
Files

An important part in the design of a new networking
device is the design of the management information
that will be available for this new device. SNMP
(Simple Network Management Protocol) which is the
most prevalant management protocol, defines a syntax
for this management information called MIB
(Management Information Base). The MIB includes the
variables and tables that can be read from (or written
to) this device. It also defines other important attributes
of this managed information. SNMP Supports GET,
SET, GET_NEXT, RESPONSE and TRAP messages to
and from the agent. [1],[3]

Following is an example of the MIB file syntax:

sysName OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..255))
ACCESS read-write
STATUS mandatory
DESCRIPTION

“An administratively-assigned name for
this managed node. By convention, this is
the node’s fully-qualified domain name.”

::= { system 5 }

MIB File syntax example

NMS Applications Development Cycle

A networking equipment, includes a software agent
which communicates with the management application
managing this equipment. In order to develop a man-
agement application, one needs the device’s MIB defi -

nition and a working agent. Since a networking device
cannot be shipped without a management application,
starting the application development only after the
agent is already functional, causes a substantial delay in
the availability of the equipment with its management
application.

Using a Simulator instead of the Real Agent

Using an agent simulator can help to reduce this delay,
by turning the development process of the agent and the
management software to concurrent processes, and re-
ducing the overall development cycle. Using a simula-
tion can also improve the final quality of the agent by
causing the design problems in the MIB to arise at an
earlier stage, when its easier to make changes in the
agent software. The simulator can also be used for
testing the management software since it is much easier
to configure a simulation then to build a real working
language for testing. Developing an agent prototype in
a high level scripting environment instead of the regu-
lar embedded software environment, helps to get better
results from the agent in a shorter time.

GeNMSim Main Features

The main features supported by GeNMSim are:

 • Automatic creation of a working database from
MIB files

 • Multiple agents in one GeNMSim process
 • User customisation with Tcl callbacks
 • Online traffic statistics with GeNMSim ‘Probe’
 • Multi Platform - runs on Unix and Windows95/NT

Why Tcl ?

Portability

GeNMSim is designed as a portable product for Unix
and MS/Windows platforms. Using Tcl as the engine
behind GeNMSim avoids many of the portability issues
that are encountered in such a product. The main part in
GeNMSim for which Tcl does not provide portability is
the network interface which is implemented in the Unix
version using the SNMP library provided by Carnegie
Mellon University and in the Windows version using an
agent enabled WinSNMP package. [5]

User Customisation

GeNMSim provides many hooks for user customisation
of the agent. Using Tcl as the scripting language for

user customisation gives the user all the power of
Tcl/Tk without the need to compile or link the program.
User scripts written for one operating systems are
ported automatically. The user gets all the GeNMSim
added Tcl commands of which some are implemented
as C functions and others as Tcl procedures.

Ease of Development

Developing a project using Tcl saves substantial R&D
time. Making changes to the code does not require
compilation and thus much of the programmers idle
time is reduced. The user interface part is very simple
to build and does not require learning a Motif or an
MS/Windows GUI package. The GeNMSim database is
also implemented as a set of Tcl scripts which avoids
the need to write and maintain a separate parser and
allows using the functionality of the Tcl script loading
mechanism while loading the data base.

Alternatives

The most important requirement from GeNMSim is its
ability to be customised by the user. This requirement
can be achieved either by using a script language (like
Tcl) or by having the user work in a Compile/Link pro-
gramming environment. Other scripting languages
(such as Visual Basic or Perl) are not portable between
Unix and Windows and are hard to customise. Using a
C/C++ programming model, forces the user to have a
full development environment and also takes us back to
the portability issue. [2]

GeNMSim Tcl Based Data Base

General

An SNMP agent simulation requires 3 types of infor -
mation:

 1 . The SNMP MIB files which are designed by the
networking equipment vendor as part of the overall
design, and are shared by both the agent and the
manager.

 2 . Current agent MIB values - These values represent
the current state of the simulated agent with current
values of the data held in the agent.

 3 . Agent behaviour - A real agent is characterised by
both the information it can provide and the actions
it can take when something happens. These actions
have to be defined when creating a simulated
agent.

Defining a new agent for simulation is done in 2
phases:

 1 . Define the Agent Type. This can be viewed as de-
fining a new class in object oriented programming.
An Agent Type defines the information and be-
haviour of a certain agent type.

 2 . Define the Agent Instance. This can be viewed as
defining an object of a given class in object ori -
ented programming. The Agent Instance includes
the current state and values of a specific agent be-
ing simulated.

Agent Type Data Base

The process of creating a new Agent Type is divided
into two parts:

 1 . Automatically extract the information contained in
the MIB files which define the management scope
of the simulated agent. This process is carried out
via the Create Agent tool which is described later.

 2 . Manually configure the new agent type by adding
the agent behaviour via callback functions. Call -
back functions are Tcl procedures that are called at
certain points of the simulation. Callbacks are de-
scribed in further detail later on.

Lets assume we’re defining an agent type named My-
AgentType. The Agent Type is defined by 4 ASCII
files which are actually Tcl scripts.

The first and most important file is MyAgentType.def
file which includes the definition of MIB information
as extracted from the MIB files.

Figure 1 shows an example of the .def file:

The keyword Sim_Db_loadMibDef is actually a Tcl
procedure which adds an attribute for the specified MIB
object to the data base.

The second file is MyAgentType.oid which defines
translation from ascii names to ASN.1 decimal notation
which is required for the simulation process. This file is
also a Tcl script in which each line is a call to a proce-
dure to add a <name,oid> pair in the data base.

An important part of the agent behaviour is to send
SNMP traps which are asynchronous messages sent to
the manager with accordance to the agent behaviour.
The third file named MyAgentType.traps defines the
traps supported by this agent and are also automatically
extracted from the MIB definition files.

The fourth and last file is MyAgentType.user_def .
This file contains all the callback registration
commands for this agent type. This file has the same
syntax as .def files. The reason for seperating the user
additions from the automaticlly created file is in order
to allow easier migration in subsquent creation of the
AgentType database and in new GeNMSim versions,
since this file is not erased when the database is recre-
ated.
Agent Instance Data Base

The Agent Instance is also built in two phases:

 1 . As part of the automatic process, a template of the
Agent Instance is created to allow quick start for
the agent simulator user.

6LPSOH

0,%

2EMHFW

7DEOH +HDGHU

7DEOH (QWU\

6LPB'EB/RDG0LE'HI V\V'HVFU 7DEOH �

6LPB'EB/RDG0LE'HI V\V'HVFU 7\SH 675

6LPB'EB/RDG0LE'HI V\V'HVFU $FFHVV UHDG�RQO\

6LPB'EB/RDG0LE'HI [��&DOO3DUP([SW'DWD 7DEOH �

6LPB'EB/RDG0LE'HI [��&DOO3DUP([SW'DWD 7DEOH1DPH [��&DOO3DUP7DEOH

6LPB'EB/RDG0LE'HI [��&DOO3DUP([SW'DWD 7\SH ,17

6LPB'EB/RDG0LE'HI [��&DOO3DUP([SW'DWD $FFHVV UHDG�ZULWH

6LPB'EB/RDG0LE'HI [��&DOO3DUP([SW'DWD 9DOLGDWH)XQF FKNBQXPBUDQJH

6LPB'EB/RDG0LE'HI [��&DOO3DUP([SW'DWD 9DOLGDWH3DUDPV �� ��

6LPB'EB/RDG0LE'HI [��&DOO3DUP([SW'DWD 'HI9DO �

0,% 2EMHFW

%DVH 1DPH

'HILQH

7DEOH

9DOLGDWLRQ)XQFWLRQV

'HULYHG IURP0,%

2EMHFWV LQ

7DEOH

6LPB'EB/RDG0LE'HI [��&DOO3DUP7DEOH 7EO,QGH[�[��&DOO3DUP,QGH[�

6LPB'EB/RDG0LE'HI [��&DOO3DUP7DEOH 7EO2EMHFWV �[��&DOO3DUP,QGH[[��&DOO3DUP6WDWXV ���

'HIDXOW 9DOXH

Figure 1: AgentType .def file example

 2 . This template is modified by the user (currently via
a text editor) to reflect the real (initial) values of
the simulated agent and are updated by the
GeNMSim runtime as values in the database are
modified.

Lets assume we’re defining an agent instance named
MyAgent. This instance is of type MyAgentType. The
Agent Instance is defined by 2 more Tcl scripts.

The first and most important file is MyAgent.rt file
which includes the current values of the database ta-
bles.

Figure 2 is an example of the .rt file.

The keyword Sim_Db_loadMibRt is actually a Tcl
procedure which adds an entry for the given MIB ob-
ject to the data base.

The second file is MyAgent.managers which defines
the addresses of the managers which will receive traps
generated by this agent.

GeNMSim Offline Tools

There are several offline tools in GeNMSim which help
in preparing the simulation. We’ll concentrate on the
CreateAgent tool which plays an important role in
GeNMSim and is the most interesting in terms of Tcl.
This tool is a Tcl program which parses MIB files and
generates the automatic parts of the GeNMSim data-
base.

Parsing the MIB Files

A MIB file is a text file in a standard format defining
Attributes (Types, Access, Syntax etc.). MIB files may
import definitions from other MIB files (such as include
files). Each MIB object defined in the MIB file has a
unique location in the global MIB tree.

The following is an example of the MIB file syntax:

iso OBJECT IDENTIFIER ::= { 1 }
org OBJECT IDENTIFIER ::= { iso 3 }
dod OBJECT IDENTIFIER ::= { org 6 }

ObjectSyntax ::= INTEGER
ObjectName ::= INTEGER
internet OBJECT IDENTIFIER ::= { iso org(3)
 dod(6) 1 }
directory OBJECT IDENTIFIER ::={ internet 1 }
mgmt OBJECT IDENTIFIER ::={ internet 2 }
experimental OBJECT IDENTIFIER ::={ internet 3 }
private OBJECT IDENTIFIER ::={ internet 4 }
enterprises OBJECT IDENTIFIER ::={ private 1 }

sysLocation OBJECT-TYPE
SYNTAX DisplayString (SIZE (0..255))
ACCESS read-write
STATUS mandatory
DESCRIPTION
“The physical location of this node (e.g.,
t̀elephone closet, 3 UG floor’).”

::= { system 6 }

$JHQW

7\SH

&XUUHQW 0,%

2EMHFW 9DOXH

$JHQW

,QVWDQFH

+HDGHU

6LPSOH

2EMHFWV

7DEOH

2EMHFWV 7DEOH

,QVWDQFH

6LPB'EB/RDG0LE5W LS5RXWH'HVW�������������� �������������

6LPB'EB/RDG0LE5W LS5RXWH,I,QGH[�������������� �

6LPB'EB/RDG0LE5W LS5RXWH0HWULF��������������� �

6LPB'EB/RDG0LE5W LS5RXWH0HWULF��������������� �

6LPB'EB/RDG0LE5W LS5RXWH0HWULF��������������� �

VHW GHPR�7\SH� '(02

VHW GHPR�$GGUHVV� DXWR

VHW GHPR�*HW&RPPXQLW\� SXEOLF

VHW GHPR�6HW&RPPXQLW\� SULYDWH

6LPB'EB/RDG0LE5W V\V'HVFU�� À6LPXODWHG 'HYLFH 7\SH $%&Á

6LPB'EB/RDG0LE5W V\V2EMHFW,'�� ������������������������

6LPB'EB/RDG0LE5W V\V8S7LPH�� �

6LPB'EB/RDG0LE5W V\V&RQWDFW�� À-RKQ 'RHÁ

6LPB'EB/RDG0LE5W V\V1DPH�� À'HPR 6\VWHPÁ

6LPB'EB/RDG0LE5W V\V/RFDWLRQ�� À/RQGRQÁ

6LPB'EB/RDG0LE5W V\V6HUYLFHV�� �

Figure 2: Agent Instance .rt file example

The CreateAgent program parses this text, extracting
from it the MIB Name, Syntax, Access and its Loca-
tion in the MIB tree. If the MIB object is part of a Ta-
ble, the table information is also resolved. In order to
parse these files, the Tcl string and regexp commands
are used extensively. In the example above, we can see
the SYNTAX of the MIB object is ‘DisplayString

(SIZE (0..255))’ meaning it is a string with maxi -
mal length of 255 characters. In this case, a validation
callback function will automatically be registered to
check that the values set to this object do not exceed the
limits in the definition. The same scenario applies to
other conditions that may appear for MIB object values.

The CreateAgent is actually comprised of several Tcl
scripts each responsible for one part of the agent data-
base. These scripts are called as separate tasks using the
Tcl exec command in order to allow an independent
global variable scope for each of the scripts. See also

the sec tion on portability later on.

Figure 3 shows the input and output of the CreateAgent
program.

The GeNMS Technology

Overview

Since GeNMSim is based on the GeNMS technology, it
is important at this point to take a brief glance on the
GeNMS technology. GeNMS is a Tcl/Tk based tech-
nology which provides a framework for creating net -
work management products, applications and tools.
GeNMS includes many mechanisms intended to allow
easy development of these products. Tcl/Tk gives it the
GUI portability and allows for most of the OS inde-
pendence. GeNMS also supports portability over NMS
platforms and management protocols.

Message & Trap handling

Messages, Which are one of the GeNMS mechanisms,
are implemented as a C structure and function library
which has a Tcl interface. A message is represented in
Tcl as a string handle. There are API functions to create
new messages, add or fetch variables, read or update
header parameters and forward the message to the net -
work. A message received from the manager via the
network interface, is passed to a message dispatching
mechanism which then registers the message (in a Tcl

0,%

)LOH

0,%

)LOH

0,%

)LOH

0,%

)LOH

3DUDPHWHUV�

1DPH

7\SH

&RPPXQLW\

$GGUHVV

&UHDWH $JHQW

$JHQW 7\SH

�GHI �XVHUBGHI

�WUDSV �RLG

$JHQW ,QVWDQFH

�UW �PDQDJHUV

Figure 3: Create Agent - Input and Output files

hash table) and forwards the message to the simulator
handling function (in the case of GeNMSim) which is
implemented fully in Tcl. The simulator processes this
message by extracting the request code and variables
and accessing the data base as requested. The response
message is then built and send via the GeNMS sched-
uling mechanism (Tcl TimerHandler based scheduling
mechanism) back to the manager via the network and
platform layers.

GeNMSim Runtime

The GeNMSim runtime is a GeNMS/Tcl/Tk based ex-
ecutable enriched with numerous application specific
commands.

The process starts with an initialisation phase which
loads the data base files, starts the network interface,
creates the GeNMSim windows and prepares for mes-
sage processing. This includes creating a new socket
and file handler and adding this file handler via the Tcl
FileHandler mechanism to the Tcl select loop. Since
SNMP is based on UDP, there’s usually a well known
UDP port to which an SNMP agent listens to.

When initialisation is complete, GeNMSim is ready to
receive SNMP and to ‘act’ as a real agent.

GeNMSim Traps

Traps are generated in GeNMSim callback functions or
as a result of a delayed action which is activated by the
scheduling mechanism. The trap is a message which
originates at the simulator level and is sent to the net -
work.

Using Tcl Data Structures for holding data

Most of the agent’s internal data is held in Tcl two di -
mensional arrays. Since GeNMSim can support more
the one concurrent agent, one of the array dimensions is
the agent type or agent name and the other index is the
attribute. Each MIB name has its own attribute array
and there are several general purpose arrays to hold the
name to oid translation and a linked list of the objects
currently held in the agent.

Callback Type Description

PreInit Called when GeNMSim is started before loading the data base

PostInit Called after data base is loaded

PreGet Called upon a get request before the GET is done

Get Called upon a get request instead of the standard GET processing

PostGet Called upon a get request after the GET is done

PreSet Called upon a set request before the SET is done

Set Called upon a set request instead of the standard SET processing

PostSet Called upon a set request after the SET is done

Validate Called upon a set request to check if the value to be set meets
field validation criteria

ValidateGroup Called upon a set request after each one of the object validation
callbacks are processed to validate mutual dependencies

Figure 4: GeNMSim Callback Types

Customising GeNMSim with Tcl based
Callback Functions

What is a Callback Function

Customising an application can be done is several
methods. One of the most common ways is to give the
application user, the hooks to add procedures that will
determine the behaviour of the application at that point.
In order to add a new callback to GeNMSim, the user

has to write this callback in a designated directory (in
Tcl) and then register the callback in the database and
associate it with the desired MIB object and callback
type.

Types of Callback Functions

GeNMSim supports 10 types of Callbacks. Figure 4
lists the supported callback types.

Callback Registration and Usage Example

The following ill ustration shows an example of a call -
back function. This example is of a Get callback for the
MIB object sysUpTime which generally means ‘how
much time has this systems been running’ . In our case,
the callback function returns the current time from the

system. 1st The callback is registered in the .user_def
file. The callback itself uses the Unix ‘date’ command
to get the current time. Another way to implement this
callback in a more portable way is to use the Tcl
‘clock’ command.

Using GeNMSim Database API from Call-
backs

It often occurs that callbacks need to have access to the
GeNMSim database. In such a case, the callback has
access via the database API functions which is a set of
Tcl procedures or commands. An example of a callback
function that makes use of some of these API functions
is listed below. In this example, the PostGet callback
increments a counter in the MIB. The name of the
counter is passed to the callback by the calli ng mecha-
nism. This information is available from the callback
registration.

proc Ex_PostGet_Increment_Counter {agent_name \
 mib_name mib_type \

 mib_value args} {
Extract counter name from the ‘args’ var i able
 set cnt_name [lindex $args 0]

Get the current value of the counter.
 if {[Sim_Db_GetMibVal $agent_name $cnt_name \

6LPB'EB/RDG0LE'HI V\V8S7LPH *HW)XQF *HWB([DPSOHBDFWXDOBWLPH

&DOOEDFN)XQFWLRQ 5HJLVWUDWLRQ ��XVHUBGHI ILOH�

SURF *HWB([DPSOHBDFWXDOBWLPH ^DJHQWBQDPH ?

PLEBQDPH ?

PLEBW\SH ?

PLEBYDOXH` ^

XSYDU �PLEBYDOXH YDOXH

XSYDU �PLEBW\SH W\SH

� 5HWXUQ W\SH DQG YDOXH

VHW W\SH �7,0(�

VHW WPSBGDWH >H[HF GDWH@

VHW YDOXH >OLQGH[�WPSBGDWH �@

`

&DOOEDFN)XQFWLRQ

)XQFWLRQ

1DPH

$JHQW 1DPH

�UW ILOH QDPH

1DPH � %\ YDOXH

7\SH � %\ UHIHUHQFH

9DOXH � %\ UHIHUHQFH

7KH &DOOEDFN UHWXUQV

WKH YDOXH RI WKH 0,%

REMHFW E\ VHWWLQJ WKH

YDULDEOH µYDOXH¶ ZKLFK

SRLQWV WR WKH µPLEBYDOXH¶

SDUDPHWHU�

7KH 0,% 2EMHFW

IRU ZKLFK WKLV FDOOEDFN

LV GHILQHG

$FFHVV D V\VWHP FDOO

WR JHW WKH WLPH QRZ

Figure 5: Callback registration and implementation

 cnt_value] != 0} {
 puts " -- > Error while getting value of \
 object $cnt_name"
 return
 }

Get the type of the i ncremented object
 Sim_Db_GetMibType $agent_name $cnt_name \
 cnt_type

Set the new value (old value + 1) to cnt_name
 Sim_Db_SetMibVal $agent_name $cnt_name \

$cnt_type [incr cnt_value]

Save the run - time values to the rt file
 Sim_Db_SaveRtValues $agent_name
}

A Callback using GeNMSim
database API functions

GeNMSim Windows

GeNMSim has several windows implemented in Tk to
display statistics of the traff ic which passes through the
agent. The windows include a general statistics win-
dow, a message list window and a message details win-
dow. Since these are pretty simple Tk windows, There
is no need to discuss them in detail .

Conclusions and Future Directions

Performance

An SNMP agent can in some cases be a computation
intensive application. These cases may be when a
GET_NEXT command is applied for a MIB object
which is currently not present in the database.
(GET_NEXT means, fetch the object which follows the
given object in the MIB tree). Since implementing a
tree data structure in Tcl is far from optimum,
GeNMSim holds the objects in Tcl arrays with linked
lists giving the order of the variables. In a test case,
made on a simulated agent with about 200 entries, a
GeNMSim agent responds after 3 seconds, while a real
agent responds in only a fraction of a second. In a
larger agent the performance penalty is linear since the
search is performed sequetially. If we’ ll consider a ta-
ble with 5 columns (a typical case) which is located in
an agent of 500 lines, then a GET_NEXT to this table
when it is empty, using GeNMSim may take up to 25
seconds (5 columns X 5 seconds each). This kind of a
response from an agent cannot be considered accept-
able. In most cases though, fetching or updating a vari-
able from the database is done in reasonable time. To

improve performance, we’re now considering to add a
C implemented tree structure for the MIB tree.

Portabilit y

GeNMSim was initially developed for SunOS with Tcl
7.5 and Tk 4.1 . Most of the GeNMSim Tcl code has
been ported with no changes to Windows95/NT with
several exceptions:

 1 . Unix file access systems calls - Commands like
chmod and cat, which have no Tcl commands to
‘cover’ them, were used in the Unix version but
could not be ported to the windows version.

 2 . Unix environment var iables - The env array
which contains the system environment variables
was extensively used in the original Unix version.
This feature exists on the Windows/NT system but
in Windows/95, which is based on DOS, environ-
ment variable names are case insensitive and there
is a problem with allocation of environment space
for the environment variables. To overcome these
problems, most of the environment variables where
switched with configuration variables in a Tcl
global array.

 3 . Tcl exec command - The exec command was used
in the Unix version in the CreateAgent tool to in-
voke the sub-tools in separate shells. Since the
Windows version does not support exec (Tcl ver-
sion 7.5), we used multiple interpreters in which
we started the sub-tools. Slave interpreters, in
combination with the alias command, allowed in-
vocation of sub-tools in their own scope of global
variables.

Other then the Tcl code portabilit y issues, there was a
need to rewrite the networking layer to support
WinSNMP. Since GeNMS is a modular technology,
this task was simple (about weeks of programming).

Development Tools

GeNMSim is a pretty large project. It contains over
10,000 lines of Tcl code and a large number of C code
lines. A good, source level debugger for Tcl (plain va-
nill a Tcl/Tk) would have been much help during the
process of debugging GeNMSim.

Performance analysis is also an important issue when
creating a computation intensive Tcl program.

GeNMSim makes use of the debugging aids that are
part of the GeNMS technology. These include a so-
phisticated debug printings mechanism, a Tk widget

configuration dump and the GeNMS Classes & Objects
mechanism which is beyond the scope of this paper.

The Future of GeNMSim

GeNMSim is one of a family of products that Milestone
is creating for the NMS market. The next version of
GeNMSim will i nclude an off line graphic configuration
tool to edit and configure the database. There is also a
thought about supporting other management protocols
besides SNMP.

Availabili ty

GeNMSim is a commecial product. For more informa-
tion contact (via email): GeNMS@milestone.co.il .

Evaluation copies available upon request.

Refrences

[1] Marshall T. Rose. The Simple Book: An Intro-
duction to Internet Management (2nd edition).
Prentice Hall , 1993. ISBN 0-13-177254-6

[2] Marshall T. Rose, Keith McCloghrie. How to
Manage Your Network Using SNMP. Prentice
Hall , 1995. ISBN 0-13-141517-4

[3] Willi am Stalli ngs. SNMP, SNMPv2, and CMIP.
Practical Guide to Network-Management Stan-
dards. Addison-Wesley, 1993, ISBN
0-201-63331-0

[4] John Ousterhout. Tcl and the Tk Toolkit. Addi-
son-Wesley, 1994/ ISBN 0-201-63337-X

[5] Eric F. Johnson. Graphical Applications with
Tcl & Tk. M&T Books, 1996. ISBN
1-55851-471-6

