
The following paper was originally published in the
Proceedings of the Fifth Annual Tcl/Tk Workshop

Boston, Massachusetts, July 1997

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

TclOSAScript - Exec for MacTcl

Jim Ingham
Lucent Technologies (now at Sun Microsystems)

Raymond Johnson
Sun Microsystems

TclOSAScript - Exec for MacTcl

Jim Ingham
Lucent Technologies

(now at Sun Microsystems)
jim.ingham@eng.sun.com

Raymond Johnson
Sun Microsystems

rjohnson@eng.sun.com

Abstract:

We describe the TclOSAScript extension to MacTcl. TclOSAScript provides
the ability for MacTcl scripts to run scripts in any other OSA compatible
language on the Macintosh. Since the OSA is the standard mechanism for
interapplication communication on the Mac, this allows MacTcl to run other
applications, and provides an exec like facility (though arguably using a much
richer communication model.)

I) An Introduction to the Open
Scripting Architecture

The usual interapplication communication mecha-
nism for Unix based tools relies on the simple ex-
pedient of connecting the standard in and stan-
dard out channels of the spawned process to chan-
nels of the parent process. The communication
between the parent and child processes then mim-
ics the user interaction with the process, namely
typing commands on the command line. The
“exec” command in Tcl, as well as the open-with-
pipe command, use this mechanism to give Tcl ac-
cess to processes in the surrounding system.

This method, unfortunately, is inapplicable on
Macintosh systems. Macintosh applications are
only implemented with a Graphical User Interface
(GUI). There is no command line, and thus no
concept of standard in and standard out. How-
ever, this does not mean there is no interapplication
communication mechanism. Instead, a much richer
method of scripting external tasks is provided by
the Open Scripting Architecture (OSA)[1,2].

This problem, and the OSA solution presented here,
were first mentioned in papers in the Usenix Tcl/

Tk 95 and 96 conferences [3,4]. There are two
implementations of this solution that have been
presented. Ted Beldung wrote a extension called
ASTcl[5] which only worked with AppleScript, and
did not use many of the advanced features the OSA
offers. TclOSAScript, which was developed con-
currently, is a more complete implementation. This
is the one we will detail in this paper.

There is a real problem that the OSA aims to solve
as well – beyond the fact that there may well not
be a text based command interface to tasks in a
modern GUI operating system. For while the com-
mand-based form of communication is easy to
implement, to actually drive an application you
need to know the particular language that the ap-
plication uses, be it simple command line switches,
or a real language such as Tcl. There is no generic
way to expose the functional elements of an appli-
cation without tying them to a particular scripting
language.

The solution is to define the basic objects and verbs
that the application supports in a language neutral
way. Then the scripting language must provide a
mechanism for querying out these elements. Fi-
nally, the operating system will provide a messag-

ing system that will allow any scripting language
to drive the objects of the target application.

a) Specification of Verbs & Objects – the aete

The specification of objects is achieved with the
Apple Event Terminology Extension. This is a resource
in the resource fork of the application which lists
the ‘events’ to which the application responds, and
the classes of objects in the application.

Examples of events that an application might rec-
ognize are the ‘get ’, ‘set ’ and ‘create ’ events,
which just provide access to the objects in the ap-
plication. These form part of the “Standard Suite”
of commands that all well designed OSA applica-
tions should support. There are also more special-
ized verbs, such as ‘select ’ or ‘revert ’ in a Word
Processor app or ‘download ’ and ‘view file
list ’ in the FTP client application Fetch. Events
also take parameters, such as which word to select
in a word processor, or which file to download in
Fetch.

Examples of objects are the windows of an applica-
tion, or the words and paragraphs in a word pro-
cessor window. There is also a way of specifying a
containment hierarchy, so each object can be con-
tained in other objects, and can contain other ob-
jects, . Finally, the objects may take qualifiers. An
example of a moderately complicated object speci-
fier, in AppleScript dialect, is: “the f i le
“mactcltk-full-8.0a2 ” in the transfer
window “ftp.sunlabs.com ” of the appli-
cation “Fetch 3.0.2 ””.

The aete makes the connection between the text
phrase which specifies an object or verb, and some
packed 4 character code which will occur in the
compiled form of the interapplication messages. It
also specifies the parameters for the verbs (with
the notion of required and optional parameters),
and the containment hierarchy of the objects. Once
you know the aete of an application, you know the
form any message to that application must take.

b) The Messaging system – Apple Events

The messaging system in the OSA is governed by
the Apple Event Manager. An Apple Event is a
data structure that describes an event in terms of
the aforementioned packed 4 character codes. It
starts with the main verb, and then usually has a
direct object with its qualifiers, and perhaps other
parameters. Apple Events support nesting, so that
a single event can support recursive evaluation
(much like the [] syntax in Tcl).

One application under the MacOS sends an Apple
Event to another application by building up the
Apple Event data structure, and then passing it to
the Apple Event Manager, which places the event
in the event queue of the target application. The
target application then handles this event by pars-
ing up its contents and performing the required
task.

c) OSA compliant languages

All interapplication communication is carried out,
under the hood, by the exchange of Apple Events.
However, this is too low level an exchange mecha-
nism to be useful to the average user.

The job of an OSA compliant language, then, is to
wrap a more human syntax around the construc-
tion of the Apple Event messages. The approved
method for doing this is to read the aete of a target
application, and import the verbs and nouns found
therein into its own syntax in a natural way. Done
this way, the aete can serve as documentation for
how to script each language, and the language can
dynamically appropriate new applications as they
are encountered.

Of the two major OSA compliant languages, only
AppleScript[6] dynamically reads the aete of the
target application. UserLand Frontier[7] has a static
glue table for each application that relates the event
and object codes with commands in the Frontier
language. This limits the number of scriptable ap-
plications that Frontier can actually drive.

d) OSA Components

The final part of the OSA architecture is the OSA
component. This is an implementation of the no-
tion that a scripting language is not so much a part
of the application, as a service that is provided to
applications, to aid them in exposing their opera-
tive parts.

Tcl has been very successful precisely because it
makes it easy to bind together the functional ele-
ments of the application without having to
recompile the application. But to make use of Tcl,
the application must embed a Tcl interpreter within
the object code of the application. This ties the
use of the application to Tcl; you cannot dynami-
cally choose which scripting language you want to
employ.

The OSA goes further to make the operating sys-
tem the manager of scripting solutions. The pro-
vider of a scripting language writes some glue code
that registers the scripting language with the oper-

ating system. Applications request a connection to
the scripting component, and then send script data
to that component to be evaluated. The script data
can even contain tags identifying its language, so
that the application can receive scripting data in
any of the available languages, pass it to the OSA
component manager, which will in turn route it to
the appropriate component.

This connection can be used in two ways. One is
to allow an application to drive other applications,
so that it does not have to duplicate their func-
tionality. A good example of this is the MicroSoft
Internet Explorer, which hands off e-mail, FTP and
NNTP requests to the user’s favorite e-mail, FTP
and Usenet clients using the OSA.

A deeper use of the OSA is to “factor” the user
interface elements of the application from its core
functionality. The user interface elements do not
directly call the subroutines that do the work of
the application. Rather they send AppleEvents back
to the application, which receives these events, and
then dispatches them to the appropriate internal
routines.

The advantage of this is that you can then “attach”
scripts to the UI elements, which scripts do the
work of dispatching the AppleEvents. This imme-
diately provides an architecture much like
HyperCard, or the Tcl/Tk callbacks, but with the
added benefit that the callback language is left up
to the user’s discretion.

II) Tcl and the OSA

There are three steps to fit Tcl into the OSA archi-
tecture. The first is to allow Tcl to use the services
offered by the OSA components installed on the
system. This is the function of the TclOSAScript
extension which is described in the rest of this pa-
per. The next two steps have not yet been com-
pleted. The first of these is to provide a Tcl com-
mand to build and dispatch Apple Events. The
final step is to install Tcl/Tk as an OSA com-
ponent in its own right, so that Tcl would be
an option in all the major Scripting develop-
ment environments.

TclOSAScript

The first stage of this incorporation is com-
pleted. The TclOSAScript extension allows
Tcl scripts to connect to any available OSA
component, and send scripts off to be evalu-

ated by that component. Currently connections
to both of the popular OSA languages, AppleScript
and UserLand Frontier have been tested.
TclOSAScript will be included as a shareable library
in the 8.0 release of MacTcl. What follows is a
general description of the TclOSAScript extension.

1) The OSA command

The first step in using any OSA component is to
get a connection to an instance of the component.
At startup, TclOSAScript scans the list of OSA com-
ponents, opens a connection to each one that is
found, and creates a Tcl command to access that
component. So if the user has AppleScript installed
on their machine, an AppleScript command will
be created. If UserLand Frontier is running at
startup, a UserLand command will be created,
and so on.

There is also a generic command, OSA, that will
allow other connections to be opened, or closed,
and will allow the user to query the list of compo-
nents. This is useful, for instance, to open connec-
tions with other languages.

An example of this use is communication with the
UserLand language. The UserLand OSA compo-
nent is installed only while the Frontier applica-
tion is running. So if you wanted to use Frontier,
you could open it (by using the AppleScript com-
mand), and then use the OSA command to open a
connection to the UserLand component...

It is currently not useful to open multiple connec-
tions to the same component. Since the calls to
the OSA components are synchronous, having sev-
eral connections to a single OSA component does
not gain anything.

2) Compiling and Executing Scripts:

Once you have an open component, you can send
scripts to it, to be executed. The simplest way to
do this is with the execute subcommand (see frag-
ment 1):

AppleScript execute {
 tell application "Fetch 3.0.2"
 download (url "ftp://" & ¬

"ftp.sunlabs.com" & ¬
"/pub/tcl/mac/" & ¬
"mactcltk-full-8.0a2.sea.hqx")

 end tell
}

Fragment 1

This will execute a script that uses the Mac appli-
cation “Fetch” to get the 8.0a2 version of mactcltk
from the Sun ftp site...

However, complicated scripts can take some time
to compile, so if you want to run the same script
over and over, you might want to compile the script
once, and then run it many times. For this pur-
pose, there is a compile /run pair of subcommands.

In the example in Fragment 2, we make a button
whose action is to download all the files in the /
pub/tcl/mac directory whose date is later than the
some reference date (chosen pretty much at ran-
dom here...):

The “AppleScript compile ” command passes
the script to AppleScript to compile, and returns a
script handle for the compiled script. This handle
can be passed to the “AppleScript run ” com-
mand, which will execute the script, and return
whatever value the script returns.

3) Other Tricks

We have also used another
trick of TclOSAScript, to
define the variable refDate.
AppleScript executes its
scripts in “Script contexts”,
which are just namespaces
that retain all the variables
and procedures that are defined in them. The
AppleScript command opens a default context
which it uses for all script execution. So the

“AppleScript execute ” line in Fragment 2 will
set the refDate variable which the getNewFiles
script uses in its execution.

Note that although the notion of a script context
is a part of the OSA specification, it is not one of
the required parts. So, for instance, UserLand Fron-
tier does not use them. It has its own mechanism
for persistence (the object database).

Because Tcl and the code within the AppleScript
commands are just strings, we can combine the two
languages for even more power. As an example let’s
extend the above example to always use the cur-
rent time instead of a set date. The following code
uses double quotes to allow Tcl based substitution
to occur before the AppleScript command com-
piles the string into AppleScript byte codes.

The example in Fragment 3 will get the current
seconds and format the time into a string that is
acceptable for the AppleScript date command. You
must be careful, however, when doing such combi-
nations to make sure you create a valid AppleScript
command. A good understanding of Tcl’s quoting
conventions is required.

4) Return Values

One other issue is the return values that come back
from AppleScript. Suppose that we want to ex-

set getNewFiles [AppleScript compile {
 tell application "Fetch 3.0.2"
 open (url "ftp://ftp.sunlabs.com/pub/tcl/mac")
 set thisWin to (transfer window “ftp.sunlabs.com”)
 set nfiles to (count remote item in thisWin)
 set retVal to {}
 repeat with i from 1 to nfiles
 if the modification date of (remote item i of thisWin) > refDate then
 download (remote item i of thisWin)
 end if
 end repeat
 end tell
 get retVal
}]
AppleScript execute {set refDate to (date "Saturday, February 1, 1997 3:19:02 PM")}
button .b -text "Check for files" -command "AppleScript run $getNewFiles"
pack .b -padx 6 -pady 6

Fragment 2

AppleScript execute "set refDate to (date \"[clock format \
[clock seconds] -format \"%A, %B %d, %Y %X %p\"]\")"

Fragment 3

pand the following example to query the /pub/tcl/
mac directory, and present a list of new files to the
user, so that she can choose which ones to down-
load. Then we could write a subroutine in
AppleScript that returned a list of new files.

However, this will be returned as an AppleScript
formatted list, not a Tcl Formatted list. Now some-
times you may need the AppleScript format (e.g.
to pass back to AppleScript). At other times the
Tcl format is more appropriate.

In TclOSAScript, the return value of the run com-
mand is the AppleScript form of the result. Then
we have added a “-value ” flag to the run and
execute commands. You use it to pass the
name of a variable to the command, and
TclOSAScript will parse AppleScript lists up
into Tcl lists, and AppleScript Records into Tcl
arrays, and put the result in that variable.

5) Loading Scripts

Finally, Tcl is not the most convenient site for
developing AppleScript code. Rather than
have to cut and paste from the Script Editor
into Tcl, TclOSAScript has a “load ” command
that will load script data from a script resource
(which is the format all the AppleScript de-
velopment environments write out), either in
the application itself, or an auxiliary file.

This facility allows for useful methods of user

…
set scriptRsrc [AppleScript load $scriptFile]
AppleScript run $scriptRsrc
…
button .f2.view -text "Display Files" -command loadList

proc loadList {} {
global hostName filePath refDate scriptRsrc
.f1.lf.lb delete 0 end
AppleScript execute -variable retList -context $scriptRsrc \
 "listMoreRecent(\"$hostName\",\"$filePath\",date \"$refDate\")"
eval .f1.lf.lb insert 0 $retList

}

button .f2.load -text "Download" -command {getFiles}

proc getFiles {} {
global hostName filePath scriptRsrc
foreach index [.f1.lf.lb curselection] {

set name [.f1.lf.lb get $index]
 AppleScript execute -context $scriptRsrc \
 "getFiles(\"$hostName\",\"$filePath\",\{\"$name\"\})"
}

}

Fragment 4

customization for Tcl applications. For instance, a
MacTcl application could read the script resources
out of all the files in a “Scripts” folder, and popu-
late the “Scripts” menu in the application with
them.

Using a stored script, containing two AppleScript
subroutines listMoreRecent and getFiles, we can cre-
ate the application shown in Figure 1 and Frag-
ment 4, which will display the new files in the given
directory, and download the ones chosen in the list.
In typical Tcl fashion, the whole application is 60
lines of Tcl, and 24 lines of AppleScript code…

Figure 1

III) Future work

The TclOSAScript extension is almost complete.
It would perhaps be useful to provide an asynchro-
nous mode of execution (analogous to exec with
an &) Another major enhancement would be to
make each component command run in a separate
thread. Then it would be useful to open a connec-
tion to, say, the AppleScript component, send it a
long-running script. Then open another connec-
tion if you have some work to be done before the
first task is completed.

Aside from these details, there remain two parts of
the complete incorporation of Tcl into the OSA
scheme. The first remaining step is to provide a
facility to parse the aete of target applications, and
a Tcl based mechanism for dispatching Apple Events
based on the verbs and objects found therein.

Parsing the aete is relatively straightforward. How-
ever, defining a Tcl representation for AppleEvents
will require more work. The nesting of objects that
is required to specify elements in a target applica-
tion can require the construction of Apple Events
of considerable complexity. For instance, we might
want to query out “Every paragraph of the first
window of the application “WordPerfect” whose
font is “Times Roman” and whose first word is
“Foo””. The equivalent Tcl syntax will have to be
rich enough to mirror that.

The last step is to provide Tcl as an OSA compo-
nent. A proof of concept implementation was done
by Vince Darley[8], but this was without Tk, and
did not address many issues that will be faced by a
full implementation.

IV) Summary

The work that we have done so far, the
TclOSAScript extension, has given Tcl the ability
to take advantage of the other applications in the
Macintosh environment. Our example just used
the FTP client program Fetch, but there are many
other powerful scriptable applications available,
including FileMaker Pro, Quark Express, and both
Netscape and MSIE, to mention just a few. This
richness is now available to the writers of MacTcl
applications.

Conversely, the OSA scriptor now has available the
Tk GUI toolkit which has proved a great boon in
the UNIX world. Many of the work flow applica-
tions that have traditionally been written in
AppleScript and Frontier can now be augmented

with the sort of sophisticated front-end that can so
easily be created in Tcl/Tk. With the native look-
and-feel of version 8.0, the power of Tcl/Tk will
prove as valuable on the Macintosh as it has in
UNIX.

References

[1] Apple Computer
Inside Macintosh - Interapplication Communication
Addison Wesley Publishing Corporation, 1993

[2] Dave Mark
Ultimate Mac Programming
IDG Books WorldWide Inc, 1994

[3] Johnson, R. and Stanton S.
“Cross Platform Support in Tk”
In Proc: Usenix Tcl/Tk Workshop, Toronto,

Ontario, Canada, 1995.

[4] Ingham, J.
“Tcl/Tk as an OpenDoc Scripting Part”
In Proc: Usenix Tcl/Tk Workshop,

Montery, California, 1996.

[5] Ted Belding
<Ted.Belding@umich.edu>
ASTcl.
http://www-personal.engin.umich.edu/~streak/

ASTcl-1.0.sea.hqx

[6] Danny Goodman
Danny Goodman’s AppleScript Handbook
Second Edition
Random House, 1994

[7] Dave Winer
UserLand Frontier
http://www.scripting.com/frontier/

[8] Vince Darley
OSATcl
http://www.fas.harvard.edu/~darley/Vince-

Downloads.html

